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Abstract

When working with robots it is very important that the robot
understands the user. This is more difficult when the user
is only able to speak to it. You do not want a robot to call
for milk when the user said call for help. It is possible for a
robot to get a clear understanding of the user in a lab environ-
ment where there is no noise or reverberation to distort the
instructions. However, in a normal setting this is not always
the case. We concentrate on speaker separation to improve
speech recognition. To do this we use non-negative matrix
factorisation (NMF) and deep learning techniques. For train-
ing and testing these techniques, we introduce a new corpus
that is recorded with a microphone array. In this paper, we use
different NMF and deep learning techniques for the speaker
separation. We found that adding directional information im-
proves the separation when there is no noise or reverberation.
However, when reverberation is present we saw that the NMF
technique with the Itakura-Saito cost function out performs
the other techniques. With deep learning we found that a re-
current neural networks is able to perform the separation of
the speakers.

Introduction
With the introduction of devices, such as Google Home and
Amazon Echo, the importance of speech recognition has in-
creased. However, speech recognition still assumes a clean
environment (no noise or reverberation) and finds it difficult
to understand people in real-life environments. In order to
work correctly, devices like Google Home assume that the
speaker can be clearly understood. To help with this we use
deep learning (Huang et al. 2014; Kang et al. 2015; Nugraha,
Liutkus, and Vincent 2016; Weninger et al. 2014) and non-
negative matrix factorisation (NMF) (Févotte, Bertin, and
Durrieu 2009; Grais and Erdogan 2011; Parathai et al. 2015;
Stein 2014) to separate the speaker from background noise
or other speakers. For NMF, the choice of cost function is
very important. The right cost function can improve the per-
formance of NMF significantly.

We use four different deep learning networks and three
different NMF cost functions which are trained and tested
on three corpora. The three corpora we use are an acoustic-
camera (AC) corpus, a vocalization corpus (Salamin, Poly-
chroniou, and Vinciarelli 2013) and the map task corpus
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(Anderson et al. 1991). The AC corpus is the only one that
contains noise and is used to test the performance of the
algorithm when there is additional noise and reverberation
in the recordings. For deep learning techniques, we use a
long short-term memory (LSTM) network, convolution neu-
ral network (CNN), deep neural network (DNN) and a recur-
rent convolution neural network (RCNN). As cost functions
for NMF, we choose Itakura-Saito (Févotte, Bertin, and Dur-
rieu 2009), Euclidean and Kullback-Leibler.

The novelty of this paper mainly in the usage of the
acoustic-camera corpus that we created. This corpus con-
tains far-field recordings of two speakers speaking with
overlapping speech. The speakers are moving through the
room whilst speaking. Therefore the corpus can also be used
for speaker tracking. The microphone array (which is called
the acoustic-camera) is able to make far field recordings (>5
metres away from the AC) and locate the sound sources in
these recordings.

Corpus

We use three different corpora for testing the NMF and deep
learning techniques. A concise overview of the three corpora
is given in Table 1.

The first corpus is a small corpus recorded with the AC
(see Table 1). This device contains 72 microphones, which
are placed in a circular configuration with a diameter of 1
metre and one camera in the middle of the circle. The AC
is capable of recording for a maximum of 1:30 minutes at
a frame rate of 192kHz for the audio recordings. It gives
us an exact location of the microphones and allows us to use
beam-forming to get an approximate location of the sources.
Beam-forming uses the recordings from all microphones to
determine which direction the sound is coming from (Döbler
and Heilmann 2008; Schröder and Jaeckel 2012). In a clean
environment, the AC is able to locate the origin of the sound
(see Figure 1), but with multiple sound sources, it is not able
to separate them. The room used for recordings has noise
from the air-conditioning along with reverberation due to
the room size, as is typical of many home and office envi-
ronments. The high sensitivity of the microphones to noise
and echo means that post processing is needed to create a
clear approximation of the source location.

We made 7 recordings with the AC. Of these 7 record-
ings 5 are female-male and 2 are male-male recordings. In
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corpus # sub-
jects

# mics # files file length separated
ground
truth

noise distance
micro-
phone to
source

recording
envi-
ron-
ment

Fs transcripts

vocalization corpus 120
(63
women,
57
men)

1 (per file) 2763 0:10 Yes No < 1 metre Lab
setting

16kHz No

map task corpus 64 1 (per file) 191 5:00 No No < 1 Metre Lab
setting

20kHz Yes

acoustic-camera 9 (6
men, 3
women)

72 (per file) 7 1:30 No Yes > 6 metres Empty
room

192kHz Yes

Table 1: Overview of the different corpora.

Figure 1: Pressure map showing the origin of the sound (pink
blob) and reverberation (red blobs)

total we have 9 different speakers, 3 women and 6 men. All
speakers were given the first 7 pages out of the book A way
in the wilderness by R. M. Ballantyne1 to read aloud. There-
fore, the speech can easily be transcribed. The speakers were
instructed to stand still for two thirds of the recorded time,
after which they should walk around the room keeping a
minimal distance of 6 metres away from the camera. Each of
these seven recordings contains two speakers and were made
in a room of 9 by 13 metres, in total we have recorded 9 dif-
ferent speakers. The AC does not provide us with depth in-
formation but does give us a video recording of the speaker.
This, we can use for visual tracking.

The second corpus that we use is the vocalization corpus2

(Salamin, Polychroniou, and Vinciarelli 2013) which con-
tains recorded telephone conversations of 120 different sub-
jects. In the recording there is background speech present
of a second speaker. This does not provide us with a clean
ground truth. For this corpus there is no localisation infor-
mation available.

The map task corpus (Anderson et al. 1991) is the third
corpus we are using. In this corpus people have headphones
and a microphone and need to explain to each other how to

1http://www.gutenberg.org/ebooks/21715?msg=
2http://www.dcs.gla.ac.uk/vincia/?p=378

get from A to B on a map. This corpus contains speech of 64
subjects. In the recordings the second speaker can be heard
in the background. This means that this does not provide us
with a clean ground truth nor does this corpus have localisa-
tion information available.

For the corpora that do not have localisation information,
we have created this artificially when it is needed. To do this
we use a time delay of one audio frame. This means that our
artificially created microphones spaced at a relative distance
of 1 audio frame apart. This is dependent on the frame rate
of the recording. For example, when a recording is made at
16 kHz the microphones would be spaced at speedofsound

framerate

metres or in this case 340.29
16000 metres which is equal to 0.021

metres.

Techniques

As input data for the different techniques we are using the
short-time Fourier transform (STFT) with a window of 30
ms and an overlap of 10 ms. The window size is slightly
bigger than what is normally used in speech applications (25
ms) and should pick up speech better than shorter windows.
The amount of overlap is the same as what is normally used
for speech recognition. We use the vocalization corpus and
map task corpus to determine how well each technique per-
forms the separation task. With our own corpus we measure
the performance of the different techniques when there is
noise and reverberation in the recording. To deal with this,
we applied some preprocessing techniques in the form of
noise reduction and a multi-band compressor for reverbera-
tion reduction. This gave us four different sets of files; one
without both reverberation and noise, one with only rever-
beration, one with only noise and the original recording con-
taining both.

Non-negative matrix factorisation

NMF is a clustering algorithm that tries to approximate the
input signal (X) which is the squared magnitude information
of the recordings. To ensure that the input to the algorithm
is non-negative we square the outcome of the STFT. It does
the approximation by multiplying two matrices (W and H)
together (see Equation 1). The W matrix is an approxima-
tion of the signal coming from the different sources (K) and
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Technique cost function parameters
Sparse Euclidean Euclidean λ = 0.0001
Convolution Euclidean Euclidean
IS Itakura-Saito
Sparse IS Itakura-Saito λ = 0.0001
Convolution IS Itakura-Saito
Sparse KL Kullback-Leibler λ = 0.0001
Convolution KL Kullback-Leibler
DoA Kullback-Leibler
TDoA Kullback-Leibler

Table 2: Overview of the different NMF techniques and cost
functions.

the H matrix is an approximation of the gain of the differ-
ent sources. When multiplied together, this gives us the ap-
proximated version of X (X̃). Assuming that the size of X
is frequency (F) multiplied by time (N) then the size of the
matrix W is F x K and the size of H is K x N. The difference
between the approximated version and the input signal is the
cost (see Equation 2) which can be calculated using different
cost functions. In our case, we are using Kullbeck-Leibler
divergence (see Equation 4), Euclidean distance (see Equa-
tion 3) and Itakura-Saito divergence (see Equation 5) as cost
functions. Apart from the different cost functions we use
four different versions of NMF (see Table 2) these are: direc-
tion of arrival, time-difference of arrival, sparse and convo-
lution. (Stein 2014) describes the direction of arrival NMF
in an additional version called non-negative tensor factori-
sation where the direction of arrival is used as an extra di-
mension. For completeness we have also applied this to our
corpora. Two of the techniques require extra information in
the form of direction of arrival (Stein 2014) or time differ-
ence of arrival (Nikunen and Virtanen 2014) to separate the
sources.

X ≈ X̃ = WH (1)

D(X|X̃) =

F∑
f=1

N∑
n=1

d([X]fn|[X̃]fn) (2)

dEUC(x|y) = 1

2
(x− y)2 (3)

dKL(x|y) = xlog
x

y
− x+ y (4)

dIS(x|y) = x

y
− log

x

y
− 1 (5)

Deep learning

As input for the Deep learning techniques we use the un-
modified STFT of the input signal. We use 4 different net-
works:
• recurrent neural network (RNN) with two long-short term

memory (LSTM) nodes with 512 units (Huang et al.
2014)

• convolution neural network (CNN) with two convolution
layers with 64 filters of 3 x 3 (Choi, Fazekas, and Sandler
)

Figure 2: A comparison between different NTF and NMF
techniques on the vocalization corpus.

• deep neural network (DNN) with two hidden layers
(Huang et al. 2014) each with 150 units

• recurrent convolution network (RCNN) with two convo-
lution layers (64 filters of 3 x 3 ) and one recurrent layer
(512 units)

In addition to the current configuration each network has a
separation layer which contains an additional hidden layer
with 512 units and a Wiener filter that is used for the separa-
tion. The loss function we use for optimising the network is
the mean squared error between the output of the network,
which is two signals, and the ground truth of the sources.

Results

For evaluating the different techniques we apply 3 ob-
jective measurements introduced in (Vincent, Gribonval,
and Févotte 2006) namely: signal-to-distortion ratio (SDR);
signal-to-interference ratio (SIR) and signal-to-artefact ratio
(SAR). These measurements take a ground truth and a the
outcome of the algorithms for comparison. Positive values
indicate better performance for all measurements. If we take
for example SIR then a negative value for SIR would mean
that there is more information present from the interfering
signal than from the ground truth signal.

Looking at the results from applying NMF to the vocal-
ization corpus (see Figure 2), we see that adding directional
information gives the algorithm an advantage over the tech-
niques that lack this information. However, when this algo-
rithm is provided with noisy data where the location of the
microphones is exact instead of relative, the algorithm pre-
forms worse than much simpler techniques (see Figure 3).
This could be because of the distance between the micro-
phones, which is not only exact but also bigger ((Stein 2014)
assumes a distance of 1 audio frame between the micro-
phones). The exact distance has a disadvantage because now
an audio frame can be lost because of the distance measure-
ment.
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Figure 3: A comparison between different NMF techniques
on the reverberant (top), noisy (middle) and original (bot-
tom) recordings from the AC corpus using the cleaned (no
noise or reverb) recordings as the ground-truth.

Figure 4: A comparison between different deep learning
techniques on the vocalization corpus.

Looking at the deep learning techniques (see Figure 4),
we see that the normal LSTM (thus the recurrent network
with two LSTM nodes) out performs all techniques. Also,
changing this particular network into a forward-backward
network where it has information from the past and the fu-
ture performs worse than the normal LSTM but not worse
than the other techniques.

Conclusion

In this paper we applied different techniques to the problem
of speaker-speaker separation. As input data to this we used
corpora that contain recordings of single speakers as well as
our own corpus which contains recordings of two speakers.
We have ensured that the input data contained overlapping
speech which makes it more difficult for an algorithm to dis-
tinguish between speakers. At the time of writing not all ex-
periments have finished. We are still waiting for the results
of the speech recogniser, map task corpus and AC corpus.

We found that adding directional information to NMF
gives us the best result (as seen by (Stein 2014)) on the vo-
calization corpora (see Figure 2). However, when there is
noise or echo present in the recording, as it the case with
the AC corpus, then the Itakura-Saito cost function performs
best (3). This cost function is only surpassed by the sparse
Euclidean distance when both noise and echo are present.
For deep learning we found that a single layer long short-
term memory (LSTM) gives the best result. This network out
performs a forward-backward 2-layer LSTM, a deep neu-
ral network, a convolution neural network and a recurrent
convolution neural network (see Figure 4). We also see that
NMF out performs deep learning. Unfortunately, NMF does
not allow for real-time separation thus can only be used off-
line.

Comparing the results to the related work we see that our
results are worse. The reasons for this is that our corpus con-
tains noise and overlapping speech which makes it harder
for an algorithm to separate the speakers then when there is
some kind of turn-taking happening. As with the vocaliza-
tion corpus this was never designed for speaker separation
but for laughter detection.
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