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Abstract 
This article presents the Distributed Adaptive Control 
(DAC) theory of mind and brain as a candidate standard 
model of the human mind. DAC is defined against a refor-
mulation of the criteria for unified theories of cognition ad-
vanced by Allen Newell, or the Unified Theories of Embod-
ied Minds – Standard Model benchmark (UTEM-SM) that 
emphasizes real-world and real-time embodied action. DAC 
considers mind and brain as the function and implementa-
tion of a multi-layered control system and addresses the 
fundamental question of how the mind, as the product of 
embodied and situated brains, can obtain, retain and express 
valid knowledge of its world and transform this into policies 
for action. DAC provides an explanatory framework for bio-
logical minds and brains by satisfying well-defined con-
straints faced by theories of mind and brain and provides a 
route for the convergent validation of anatomy, physiology, 
and behavior in our explanation of biological minds. DAC is 
a well validated integration and synthesis framework for ar-
tificial minds and exemplifies the role of the synthetic 
method in understanding mind and brain. This article de-
scribes the core components of DAC, its performance on 
specific benchmarks derived from the engagement with the 
physical and the social world (or the H4W and the H5W 
problems) and lastly analyzes DAC’s performance on the 
UTEM-SM benchmark and its relationship with contempo-
rary developments in AI. 

 Introduction 
Allen Newell proposed to address the “great psychological 
data puzzle” by postulating a single set of mechanisms for 
all cognitive behavior or Unified Theories of Cognition 
(UTC). He devised a list of criteria that any UTC had to 
satisfy: 1) Behave flexibly as a function of the environ-
ment; 2) Exhibit adaptive (rational, goal-oriented) behav-
ior; 3) Operate in real-time; 4) Operate in rich, complex, 
detailed environments; 5) Use symbols and abstractions; 6) 
Use language; 7) Learn from the environment and from 
experience; 8) Acquire capabilities through development; 
9) Operate autonomously, but within a social community; 

10) Be self-aware and have a sense of self; 11) Be realiza-
ble as a neural system; 12) Be constructible by an embryo-
logical growth process; 13) Arise through evolution 
(Newell, 1994, p.19). We can take this list as a starting 
point to define the criteria a standard model of the human 
mind should satisfy (See also Anderson & Lebiere, 2003). 
Newell advanced his SOAR theory as a candidate UTC. 
Although Newell made an important step in the advance-
ment of UTC’s and achieving human level performance is 
again a major theme in contemporary AI, no generally ac-
cepted UTC is available today. I propose that this is due to 
the insufficient considerations given to embodiment, situ-
atedness, computation and learning in the development of 
mind. This is based on developments in contemporary AI, 
cognitive science and advances in neuroscience in particu-
lar concerning the system level organization of the embod-
ied brain. Hence, now about 25 years later we can recali-
brate UTC by redefining as criteria for Unified Theories of 
Embodied Minds – Standard Model (UTEM-SM) where 
candidate UTEM-SMs have to answer both functional and 
structural constraints:  
1: Functional constraints (Psychology of mind):  
Level 1: Display autonomous adaptive and flexible real-
time goal-oriented behavior in complex physical environ-
ments (Newell test: 1, 2, 3, 4, 7, 10-sense of self); 
Level 2: Display autonomous adaptive and flexible real-
time goal-oriented behavior in complex real-world social 
environments including the use of symbols and language 
(Newell test: Level 1 + 5, 6, 9, 10-self-aware); 
2: Structural constraints (Biology of embodied brain):  
Biological validity: be plausibly the product of biological 
evolution and be demonstrably constructible through neu-
ro- and morphogenesis (Newell test: 11-13)  
Physical realizability: perform in real-time, in the real-
world using resources (e.g. energy, computation) compara-
ble to biological systems.  
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The UTEM-SM benchmark refines and elaborates New-
ell’s original UTC benchmark by defining levels of per-
formance (physical vs social), psychological and biological 
validity and by including behavioral and epistemic auton-
omy together with real-world and real-time performance as 
specific constraints. This implies that UTEM-SM argues 
that UTCs should be both scientific theories of natural 
minds and brains as well as models for synthesizing artifi-
cial ones. In this way the misleading effects of mimicry 
that the Turing test faces is avoided while biological inspi-
ration is rejected as a method.  

 
Distributed Adaptive Control (DAC) as a candi-
date standard model of the human mind 
Distributed Adaptive Control (DAC) is a theory of mind 
and brain introduced in 1991 against the background of 
developments in the fields of artificial intelligence and 
cognitive science and has been generalized towards robot-
ics, cognitive science, psychology, neuroscience, neurolo-
gy and education. DAC departs from the fundamental par-
adox between rationalism and empiricism: does knowledge 
originate in reason as advanced by Plato or in the senses as 
proposed by his student Aristotle? At the heart of the con-
tradiction between these schools of thought stands the ob-
stacle of the putative inability of scaling sensory data to 
valid knowledge and reasoning as assumed by Descartes 
and argued by Hume. This dilemma has dominated the 
study of mind and brain in the 20th century, for instance in 
the criticism leveled by Chomsky against Skinner’s theory 
of language, triggering the AI revolution of the 1950ies 
and by cognitivists such as Fodor against the connection-
ism of the 1980ies. There is still no consensus on how this 
fundamental problem of epistemology can be resolved. 
DAC advances a theory of this knowledge problem based 
on a notion of constructive empiricism where scientific 
theories strive towards being empirically adequate (Van 
Fraassen, 1980) through the convergent validation of link-
ing to the multiple levels of description of biological and 
artificial minds and brains (Verschure, 2012). However, 
given that we can see the mind/brain as a knowledge or-
gan, DAC has taken this fundamental epistemological chal-
lenge as its point of departure. In AI this problem is also 
known as the symbol grounding problem or how can an 
artificial intelligence conceived as a Turing machine assign 
meaning to its symbols? (Harnad, 1990). In a broader per-
spective, we can speak of the problem of priors or what is 
the minimal set of rules and representations to bootstrap a 
natural or artificial intelligence?  (Verschure, 1998;2012).  
The driving intuition behind DAC is that knowledge is 
grounded in the interaction between embodied agents and 
the physical and social environments in which they are 
situated, constrained by mechanisms of learning and 
memory and bootstrapped from minimal priors that 
emerged during evolution. DAC was of immediate rele-

vance to the nascent field of "New AI " (See for a review 
Verschure, 2012) and it was also one of the first neural 
models of a cognitive architecture ported to both simulated 
and physical robots (Mondada & Verschure, 1993). 

DAC takes 'mind' as the collections of functional mac-
roscopic properties of embodied brains that are directly or 
indirectly expressed in action. Mind is an amalgamation of 
processes supporting motivation, perception, cognition, 
attention, memory, learning, action and consciousness. The 
mind is situated in physical and social environments, and 
because of the tight coupling of body, brain, mind, and 
environment especially when taking into account memory, 
we can speak of a nexus (Verschure, 2012). 'Behaviour' is 
defined as autonomous changes in the position or shape 
(confirmation) of the body or soma of an agent. Once be-
havior serves internally-generated goals we can speak of 
'action', i.e., it is intentional or conative. The 'brain' is a 
distributed, wired control system that exploits the spatial 
organization of connectivity combined with the temporal 
response properties of its units to achieve transformations 
from sensory states, derived from both the internal (body) 
and external (world) environment, into action. DAC fol-
lows 19th-century physiologists Claude Bernard and Ivan 
Pavlov in conceptualizing the mind/brain as a control sys-
tem that generates action to maintain a multi-stable equilib-
rium between the body and the environment. DAC thus 
downgrades the importance of dominant metaphors such as 
information processing or computation. In other words, 
information is created and processed, and processes real-
ized that might be describable in computational terms of 
symbol manipulation, but these are at best descriptions of 
processes and mechanism that serve and are predicated on 
the realization of current and the planning of future goal 
oriented action by an embodied and situated agent. The 
core variable the DAC mind/brain controller maintains in a 
dynamic equilibrium is the integrity of the organism in the 
face of the second law of thermodynamics, defined through 
the organism’s needs that are continuously challenged by 
somatic and environmental change. A control system is 
usually considered as distinct from what it controls, i.e., 
the plant. However, DAC considers the body as an integral 
part of the control system itself (Verschure & Pfeifer. 
1992; Verschure et al, 2003).  

From the perspective of control, the question is what top-
level functions and essential variables the mind/brain op-
timizes to generate the How of action? DAC proposes that 
these are just five: needs, drives and motivation or “Why”; 
states of the world such as objects or “What”; spatial struc-
ture of the task or “Where”; the temporal dynamics of the 
task and the agent or "When"; "Who" in case the agent 
deals with other agents. The function of the mind/brain is 
to solve the H4W optimisation problem when a single 
agent confronts its physical world and H5W in case the 
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world also contains other agents such as predators, prey, 
and conspecifics (Verschure, 2016).   

 
The structure of DAC 
DAC comprises four coupled layers of control (Figure 1). 
The Somatic Layer (SL) of DAC designates the body and 
defines three fundamental sources of information: sensa-
tion driven by external and internal sources of stimulation, 
needs defined by the essential variables that assure surviv-
al, and actuation defined by the control of the skeletal- 
muscle system. 

Figure 1. Abstract repre-
sentation of the Distrib-
uted Adaptive Control 
(DAC) theory showing 
its main processes (box-
es) and dominant infor-
mation flows (arrows). 
DAC comprises four 
layers (Soma, Reactive, 
Adaptive and Contextu-
al) and three functional 
columns: exosensing, the 
sensation and perception 
of the world 
(left,red)  endosens-
ing, detecting and sig-
nalling states derived 
from the physically in-
stantiated self (middle, 
blue); and the interface 

between self and the world through action (right, green). The 
arrows show the primary flow of information mapping exo- and 
endosensing into action, defining a continuous loop of interaction 
via the world.  The Soma designates the body with its sensors, 
organs, and actuators defining the needs, or Self Essential Func-
tions (SEF), the organism must satisfy to survive. The Reactive 
Layer (RL) comprises dedicated Behaviour Systems (BS) each 
implementing predefined sensorimotor mappings serving the 
SEFs. A so called allostatic controller regulates action selection, 
task switching, and conflict resolution among all BSs by setting 
their internal homeostatic dynamics relative to overall system 
demands. The Adaptive Layer (AL) acquires a state space of the 
agent-environment interaction and shapes action. The learning 
dynamics of AL is constrained by the value functions derived from 
the allostatic control of the RL and minimises perceptual and 
behavioral prediction error building a model free action genera-
tion system. The contextual layer (CL) expands the time horizon 
in which the agent can operate, realizing model based policies, 
through the use of sequential short and long-term memory sys-
tems (STM and LTM respectively). STM acquires conjunctive 
sensorimotor representations that are generated by the AL as the 
agent acts in the world. STM sequences are retained as goal-

oriented model based policies in LTM triggered by value signals 
driven by the RL and AL. The contribution of the LTM policies to 
goal oriented decision-making depends on four factors: goal 
states, perceptual evidence, memory chaining, valence (including 
the expected cost of reaching a given goal state). The content of 
working memory (WM) is defined by the memory dynamics that 
represents this four-factor decision-making model. The autobio-
graphical memory system of CL allows the restructuring of 
memory around the unifying notion of Self which is of particular 
relevance for the interaction with the social world. See text for 
further explanation. 

 
The Reactive Layer (RL) [8] comprises fast predefined 

sensorimotor loops that support direct behaviors underly-
ing Self Essential Functions. These reflexes are coupled 
via need and drive systems creating sense-affect-act tri-
ades. In contrast to standard reactive models (e.g., Brooks, 
1986), the distinguishing feature of the DAC RL is that it is 
part of a larger architecture and serves distinct behavioral 
and epistemic functions. The activation of a reflex carries 
essential information on the interaction between the agent 
and the world that is a key control signal for subsequent 
layers driving conflict resolution and epistemic needs, i.e., 
knowledge acquisition (See below). To avoid conflicts 
between internal states, such as avoidance and approach, a 
competitive relationship exists between the different inter-
nal states. A further distinguishing feature of this layer is 
that it is modeled in terms of an allostatic process that reg-
ulates the homeostatic behavior sub-systems serving SEFs. 
This is both closer to the dynamics of physiological sys-
tems and scalable as opposed to more phenomenological 
behavior found in behavior-based robotics (e.g.,(Arkin, 
1998). The SEFs of RL are both oriented towards direct 
survival as well as epistemic functions such as exploration 
and novelty seeking.  

The Adaptive Layer (AL) extends the predefined sen-
sorimotor loops of the RL with acquired sensory and action 
states. Hence, it allows the agent to transcend from strictly 
predefined reflexes through learning. The AL is interfaced 
to the full sensorium of the agent, its internal needs and its 
effector systems receiving internal state information from 
the RL and in turn generating action. AL comprises adap-
tive mechanisms to deal with the fundamental unpredicta-
bility of both the internal and the external environment, 
e.g. the symbol grounding problem. Through learning, a 
state space of world states is acquired together with the 
shaping of action patterns and their association. The AL 
models the learning dynamics of classical conditioning 
advancing a prediction based Hebbian learning rule 
Verschure & Pfeifer, 1992) which has been phrased in a 
general formal framework: correlative subspace learning 
(CSL) (Duff & Verschure, 2010). The AL of DAC pro-
vides a solution to the problem of priors/symbol grounding 
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described earlier because it acquires the state space of the 
world and the agent through its interaction with the envi-
ronment. CSL captures the law of associative competition 
formulated by Rescorla and Wagner that emphasizes that 
learning depends on how unexpected a stimulus is given 
the internal state of the organism (Rescorla & Wagner, 
1972). The CSL model is also consistent with adaptive 
filter methods going back to the Kalman filter and other 
derived approaches (Kalman, 1960). Indeed, DAC is an 
early example of the “predictive brain” perspective 
(Friston, 2010;Maffei, et al., 2014). The AL allows the 
agent to overcome the predefined behavioral repertoire of 
the RL and to successfully engage with unpredictable as-
pects of the world.  

The Contextual Layer (CL) of DAC expands the spatio-
temporal window of action by developing policies for goal-
oriented action using systems for short-, long- and work-
ing-memory (Figure 2). These memory systems allow for 
the formation of sequential representations of states of the 
environment and actions generated by the agent. The atom-
ic elements are formed by the state space of exo- and endo-
sensing constructed by the AL or its sensorimotor contin-
gencies. The acquisition and retention of these sequences 
are conditional on the goal achievement of the agent. These 
behavioural plans can be recalled through sensory match-
ing and internal chaining among the elements of the re-
tained memory sequences. The dynamic states that this 
process entails are DAC´s working memory system. 

Experiments with the CL of DAC with simulated and 
physical robots revealed that a unique feedback loop exists 
between action and perception that stabilizes the interac-
tion between the AL and CL through behavior itself called 
behavioral feedback (Verschure et al., 2003). Thus model 
based policies or behavioral plans acquired by the CL, 
through their mapping to action carve out an effective be-
havioral space or niche rendering the world more predicta-
ble and the perceptual reconstruction error smaller. 

 

Figure 2: Contextual layer 
of DAC: (1) The predicted 
perceptual states or proto-
types and the motor activi-
ty generated by the AL are 
acquired and stored as a 
segment in STM if the 
discrepancy between pre-

dicted (e) and encountered 
(x) sensory states, D, falls below a predefined threshold. D is the 
time averaged reconstruction error of the AL perceptual learning 
system: x - e; (2) If a goal state is reached, e.g., reward or pun-
ishment detected, STM is retained in LTM conserving its order, 
and STM is reset. Every sequence is labeled with the specific goal 
and internal state/valence it pertains to; (3) the motor population 

(MM) receives input per the rules of the AL; (4) If RL/AL motor 
activity is sub-threshold, the values of the current prototypes, e, 
are matched against those stored in LTM and action options are 
generated by optimizing goals, perceptual evidence, value and 
memory chaining. (5) MM receives the CL action policy derived 
motor response as a weighted sum over the active memory seg-
ments of LTM and performs action selection.  (6) The segments 
that contributed to the executed action will prospectively bias 
other associated LTM segments. The Contextual Layer (CL) boot-
straps the system further to deal with novel and a priori unknown 
states of the world and the agent in an extended spatio-temporal 
window creating behavioral plans or policies (Figure 2). The CL 
comprises systems for short and long-term and working memory 
(STM, LTM, and WM, respectively). These memory systems allow 
for the formation of sequential representations of states of the 
environment and actions generated by the AL or its acquired 
sensory-motor contingencies. The acquisition and retention of 
these sequences are conditional on the goal achievement of the 
agent and the absence of RL activation. CL policies are recalled 
through sensory matching and internal chaining among the ele-
ments of the retained memory sequences. The dynamic states that 
this process entails are the CL's working memory system. 

A further question was whether the solutions that DAC 
found could be considered optimal. Lacking consensus 
benchmarks and comparable approaches a more formal 
approach was taken based on work by Massaro who pro-
poses based on his studies of multi-modal speech percep-
tion that Bayesian integration is a universal principle of 
perception and cognition (Massaro, 1997). Indeed, DAC 
comprises constructs that are analogs of the central com-
ponents of a Bayesian analysis: goals, actions, hypotheses, 
observations, experience, prior probabilities and a score 
function. By phrasing the robot foraging tasks performed 
with the DAC architecture in Bayesian terms, it was shown 
that the CL generates actions that are optimal in a Bayesian 
sense (Verschure & Althaus, 2003). In this perspective, the 
optimal action, a, is the one that optimises the expected 
gain <g>a:     

� � � � � ��	
 ��
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��� �  

where �����	
� is the posterior probability defined by 
Bayes’ rule and �� ��� �  is a score function that defines 
the gain obtained from executing action a if sn is true. s and 
r are the perceptual predictions generated and stored at the 
contextual and adaptive layers, respectively and G is de-
termined by the labeling of the LTM sequences regarding 
the goal states they are associated with. These goal states 
are the top-level representations generated by the Self col-
umn of the architecture comprising needs, drives, value 
and goals and their associations with states of the world. 
The actions selected by the CL are Bayesian optimal with 
respect to G. Hence, DAC can be considered an autono-
mous embodied rational system that acquires its own 
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knowledge through its interaction with the environment 
and subsequently uses it in a Bayes optimal fashion to 
reach its goals, a key step towards UTEM-SM. 

Answering the UTEM-SM benchmark with DAC  
DAC has been widely used to address the H4W challenge 
as in robot foraging tasks (Level 1). However, to satisfy the 
UTEM-SM benchmark, it must also generalize to the so-
cial world, or H5W, (Level 2) and satisfy structural con-
straints derived from the brain and functional ones from 
psychology. DAC has been successfully mapped to the 
specifics of the neuroscience of mind and brain along two 
types of models to realize convergent validation. On the 
one hand, a whole brain architecture approach was fol-
lowed which facilitates the mapping to behavior and psy-
chology, while components of the architecture and basic 
operating principles have been linked to the invertebrate 
and mammalian brain through anatomically and physiolog-
ically constrained models [22]. These two lines of the DAC 
project have been integrated into a first embodied whole 
brain model comprising detailed models of core brain 
structures including cerebellum, entorhinal cortex, hippo-
campus and Prefrontal/Premotor cortex, or DACX (Maffei 
et al, 2015). DACX validates the overall DAC model in the 
context of foraging including obstacle avoidance, hoarding, 
exploration and homing. In parallel, predictions of DAC 
derived hypotheses have been validated in the laboratories 
of experimental neuroscientists and core principles of DAC 
have been mapped to highly effective neurorehabilitation 
and education technologies (See for a review Verschure, 
2012). This shows the commitment of DAC to convergent 
validation with the goal to obtain an empirically adequate 
description of biological minds and brains and its valida-
tion through real-world applications.  

To generalize from H4W to H5W, the DAC architecture 
has been mapped to the control of anthropomorphic robots 
that engage in dyadic interactions with humans (Lallée et 
al., 2015). This step has included the augmentation of the 
functions of the architecture to include drives to socially 
engage, to seek knowledge of the world through interaction 
with humans, the ability to acquire models of other agents 
and "read their minds", to use social cues to establish and 
maintain interaction and to learn language. Underlying the 
successful deployment of DAC in H5W scenarios the sys-
tem was augmented with an autobiographical memory sys-
tem that allows the robot to anchor its experiences in the 
H5W ontology (Lallee & Verschure, 2015). This DACh, h 
for Humanoid, architecture has been shown to successfully 
solve the H5W challenge in restricted task domains with a 
single human, another key step towards UTEM-SM. The 
current challenge is to scale the current H5W capabilities 
up to to make anything a task, the requirement for Robot 
Artificial General Intelligence and the DAC theory predicts 

that this will require a form of robot consciousness 
(Verschure, 2016). 

Currently, artificial intelligence is in the grips of a third 
wave of neural network modeling after the early models of 
Rashevsky and Rosenblatt and their reprise in the connec-
tionism of the late 1980ies. Two approaches stand out that 
again fall at opposite sides of the rationalism-empiricism 
divide. First, due to advances in computing technology and 
the availability of massive data sets, learning in multi-
layered neural networks has made significant progress into 
complex task domains (Lecun, Bengio, & Hinton, 2015; 
Schmidhuber, 2015). Hence, deep learning assumes mini-
mal priors but requires extremely large data sets for train-
ing. These data sets, however, are still labeled by humans 
to drive supervised learning. Subsequently, deep learning 
has been combined with reinforcement based learning with 
the goal to reach human or super-human performance in 
benchmark tasks such as Atari video games (Mnih et al., 
2015) and complex games such as Go (Silver et al., 2016). 
These approaches still require large quantities of trials to 
train the network that is much higher than what humans 
need. In response, others have proposed that one-shot 
learning can be achieved when pre-existing core 
knowledge is provided in the form of physics and psychol-
ogy simulation engines (typically Bayesian causal models 
(Lake et al., 2015). These approaches do express core ten-
ets of the DAC theory such as the need for learning de-
pendent acquisition of the state space, its compression and 
the combined realization of this state space with the devel-
opment of action policies. However, they are also still 
problematic when applied to real-world systems. Deep 
learning approaches require large data sets made up of un-
correlated adjacent samples as well as significant computa-
tional resources, making them hardly compatible with the 
real-time constraints faced by real-world minds. Bayesian 
causal models, in turn, require extensive prior knowledge 
dependent on the physical and social environment, which 
still must be accounted for, is hardly generalizable across 
different applications and will remain brittle in the face of 
real-world variability. Both approaches are critically de-
pendent on human labeling of data and pre-specification of 
prior knowledge and procedures and are thus failing on the 
problem of priors and symbol grounding among others. 
DAC advances and has implemented an alternative ap-
proach considering that embodiment and situatedness pro-
vide a grounded source of priors for embodied minds based 
on the following principles: First, embodiment strongly 
constrains the viable set of sensorimotor states of the agent 
through the specific physical coupling of the body and the 
environment. These constraints are specific to the particu-
lar morphology of an embodied mind, its internal needs 
(e.g. in term of energy consumption and damage minimiza-
tion) and the environment in which it operates, precluding 
a full explicit pre-definition as assumed in terms of full 

485



pre-labeling of data and an intuitive physics/psychology 
engine. Second, situatedness places the embodied mind in 
the social environment governed by specific norms and 
conventions and provides crucial cues about well-adapted 
behavioral policies [24]. Here again, this is specific to the 
context in which embodied minds operations and cannot be 
fully predefined as assumed by an intuitive psychology 
engine. Also, DAC has taken real-world benchmarks of 
greater ecological validity such as foraging, language 
learning and real-world maze solving than computer and 
board games. These more contemporary approaches are 
essentially providing alternative views on sub-systems 
accounted for in the DAC theory (Moulin-Frier et al. , 
2017) and consequently are still far removed from achiev-
ing the UTEM-SM-SM challenge. In contrast, DAC has 
already made significant inroads towards this benchmark 
by addressing both levels of functional constraints (H4W 
and H5W) and by having established strong links with the 
neuronal principles and psychological processes of percep-
tion, cognition, and action. However, to quote Allan Tu-
ring: “We can only see a short distance ahead, but we can 
see plenty there that needs to be done.”  
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