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Abstract

Social interacting is a complex task for which machine learn-
ing holds particular promise. However, as no sufficiently ac-
curate simulator of human interactions exists today, the learn-
ing of social interaction strategies has to happen online in the
real world. Actions executed by the robot impact on humans,
and as such have to be carefully selected, making it impossi-
ble to rely on random exploration. Additionally, no clear re-
ward function exists for social interactions. This implies that
traditional approaches used for Reinforcement Learning can-
not be directly applied for learning how to interact with the
social world. As such we argue that robots will profit from hu-
man expertise and guidance to learn social interactions. How-
ever, as the quantity of input a human can provide is limited,
new methods have to be designed to use human input more
efficiently. In this paper we describe a setup in which we
combine a framework called Supervised Progressively Au-
tonomous Robot Competencies (SPARC), which allows safer
online learning with Reinforcement Learning, with the use of
partial states rather than full states to accelerate generalisation
and obtain a usable action policy more quickly.

Introduction

Human-Robot Interaction (HRI) studies how people and
robot can co-exist in society, and how they can interact so-
cially in different environments and contexts. Robot are ex-
pected to behave appropriately regardless of the domain of
interaction. However, it is impossible to foresee all possible
interaction outcomes in dynamic and open social domains,
as such the robot’s responses cannot be implemented in the
robot before its deployment in the real world. Similarly to
people, robots need to be able to learn how to complete
tasks through creating and optimising action policies. This
includes learning social norms and how to make sense of the
social world.

For a robot, interacting in the real world often requires
taking in a diverse and large range of sensory inputs, which
results in a high-dimensional sensory space. The robot then
is required to select actions based on its current state in sen-
sor space. However, parts of the state can be irrelevant to
the current goal, and as such should not be taken into ac-
count when selecting the current action. Often, only a lim-
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ited number of features in the space are important. To inter-
act efficiently, a robot has to learn to identify these salient
features and associate them with appropriate actions.

In previous work (Senft et al. 2015; 2017), we introduced
the Supervised Progressively Autonomous Robot Compe-
tencies (SPARC) as a way to teach a robot an action pol-
icy while interacting based on a human supervisor interven-
ing and correcting actions before they were executed by the
robot. In this paper, we propose to extend this approach to
allow the supervisor to highlight features in the environment
relevant for the selected action. During the action selection
phase, the robot can compare these features, defined as par-
tial states, with the current state to select an action. The se-
lected action is presented to the human supervisor, who can
either correct the proposed action or approve it for execu-
tion.

Background

Reinforcement Learning

The main framework for an agent to learn how to interact in
an environment while interacting is Reinforcement Learning
(RL) (Kober, Bagnell, and Peters 2013; Sutton and Barto
1998). In RL, an agent interacting in an environment re-
ceives numerical rewards in reaction to its actions. The agent
subsequently learns an action policy to maximise the ex-
pected cummulative discounted reward.

In many cases where RL achieves success, the agent has
access to a virtual environment where the only real cost of
exploring is computational effort: the agent can interact as
long as needed to gather enough information on the envi-
ronment and the result of its actions on the environment in
order to find a sufficiently optimal action policy. Using sim-
ulation RL can achieve impressive results, as shown in RL
learning to play Backgammon in the 90s (Tesauro 1995) to
the more recent success in mastering the game of Go (Silver
et al. 2016). Even when a virtual environment is available,
but especially when it is not, human knowledge and effort is
required during the design of the algorithm or the learning
phase before the learning can be successful.

Human impact on Reinforcement Learning

Initial knowledge is often crucial to allow an algorithm to
learn an efficient action policy. This knowledge, originating
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from human expertise, can be exploited in many ways.

Design decisions: Initial knowledge has to be used in the
design of the algorithm, the representation of the state and
actions spaces and the reward funtion. For example, only
carefully crafted features allowed Tesauro to improve its al-
gorithm for Backgammon from a intermediate-level player
to super-human level (Tesauro 1995). Similarly, the design
of complex neural networks for state generalisation, the rep-
resentation of actions as motor primitives rather than raw
motor angles or adding additional information in the reward
function have important impacts on the ability of the robot to
reach a successful policy (Kober, Bagnell, and Peters 2013).

Demonstrations: Initial knowledge can be provided to the
agent through demonstrations. These demonstrations can be
used to create an initial policy which is sufficiently efficient
to start interacting in the environment and gather informa-
tion to improve over time. This initial policy, required to re-
ceive meaningful feedback from the environment can be im-
possible to reach by relying only on random exploration and
feedback from the environment. For example the game of
Go in its larger board size contains more than 10210 states,
so exhaustive search is not possible. Silver et al. (Silver et
al. 2016) started with supervised learning from Go masters’
games to learn a decent enough policy and then proceeded
using deep learning, self play and tree search to achieve
super-human capabilities and the capacity to beat the best
human players.

These demonstrations can also be used to learn a reward
function. With Inverse Reinforcement Learning, the agent is
not provided with a reward function, but derives it instead
from a set of expert demonstrations. The agent can then ex-
plore around the demonstrated policy to optimise the reward
function. With this approach, Abbeel and Ng achieved bet-
ter than human control for a robotic helicopter (Abbeel and
Ng 2004) based on demonstrations from experts and further
exploration and autonomous learning.

Guiding the learning: Rather than solely providing initial
knowledge to the agents, humans can also guide the agent
during its learning, a method more resembling human teach-
ing.

A first approach consists in sequencing the tasks the robot
will face. This approach, known as “scaffolding” (Saunders,
Nehaniv, and Dautenhahn 2006), progressively increases the
difficulty and complexity of the task as the robot is learning
to reach policies which would take prohibitively long with-
out scaffolding.

Agents learning in environments providing rewards can
also benefit from additional rewards from human teach-
ers. Depending on the task and the environment, different
ways exist to combine rewards from multiple sources, and
studies show that augmenting rewards from the environ-
ment by human ones can speed up the learning and reduce
the number of undesired behaviours (Griffith et al. 2013;
Knox and Stone 2010; Judah et al. 2010).

When environments do not supply rewards, they can be
replaced by human ones. For example, the TAMER frame-
work (Knox and Stone 2009) derives a reward function from

the human feedback and uses this function to evaluate the
current behaviour. In a similar approach, MacGlashan et al.
proposed COACH in (MacGlashan et al. 2017). COACH as-
sumes that human rewards represent the advantage function,
i.e. how much the current action is better than the current
policy, allowing to adapt the reward function to the strate-
gies used and the current state of the learner.

Another approach to guide the learning is to bias the ac-
tion selection. In (Thomaz and Breazeal 2008), the authors
propose using a human supervisor to supply an agent with
both rewards and potential guidance indicating what the
agent should pay attention to, or what action it should take
next. They show that giving the power to the supervisor to
bias the action selection can improve the learning, making it
faster and safer.

In (Senft et al. 2015), we introduced the Supervised
Progressively Autonomous Robot Competencies (SPARC).
SPARC relies on a supervisor with the ability to control the
robot’s actions. This supervisor is presented with the action
the robot is about to execute. He can then choose to cancel
it, allow it to be executed, or can select an alternative ac-
tion. Based on the supervisor’s decisions, the robot learns
which actions are desired and can as such refine its policy
over time, thus progressively reducing the need for the su-
pervisor to correct or select an action.

SPARC gives control of the robot’s actions to an expert,
who can guide the exploration in the desired part of the envi-
ronment which ensures the robot’s behaviour is consistently
appropriate. As the exploration is guided, and all the actions
are useful, the learning can be faster than autonomous learn-
ing or learning based on human feedback as illustrated in
Figure 1. In Autonomous Learning, the agent has first to dis-
cover its environment to start gathering relevant feedback,
leading to a low initial performance and a slow improvement
in early stage of learning. With teaching based on human
feedback, the teacher can quickly provide information on ac-
tions to reach an efficient policy more quickly. However, as
the teacher only provides feedback and cannot prevent the
agent making mistakes, the initial performance can be poor.
On the other hand, SPARC, with the control of the teacher
over the executed actions, can prevent the agent from mak-
ing mistakes in early stages, achieving a high performance
even at the start of the learning.

Compared to similar algorithms (Chernova and Veloso
2009; Walsh et al. 2010), which allow the agent to request
demonstrations and/or the teacher to provide demonstrations
to correct mistakes made by the robot, SPARC allows the
teacher to correct any action before its execution, thus re-
ducing importantly the risk of the agent making errors. The
total blending between autonomous execution of actions and
demonstrations and the control over every actions executed
by the agent are the specificities of SPARC.

In (Senft et al. 2017), we presented a way to combine
SPARC and RL, by assigning a positive reward to every
action executed by the robot, making the assumption that
every action has been explicitly or implicitely approved by
the supervisor. However this method directly mapped a sin-
gle (state, action) pair to a reward without making use of
any kind of generalisation. As such it was not applicable to
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Figure 1: An illustration of the evolution over time of the
performance, autonomy and human workload for an au-
tonomous learner, an approach using human feedback, and
SPARC.

environments with a continuous or high dimensional space
or non-deterministic transitions from one state to another,
elements which are typically present in social interactions.
Similarly to TAMER or COACH, this approach allows to re-
produce an action policy from a teacher even in the absence
of a reward function, but as the teacher has control over the
robot actions, the learning can be faster and safer.

Partial State Supervised Reinforcement

Learning

To make RL applicable in high dimensional or continuous
states, the algorithm requires a way to generalise knowledge
to unseen states. A classic approach is to use a feed-forward
neural network or deep learning to learn a the value func-
tion generalising to unseen states. Neural networks rely on
having a large number of datapoints to converge toward a
good function approximator. Alternatively, Cobo et al. pro-
posed in (Cobo et al. 2011) to abstract features automatically
from demonstrations to learn faster. But even in this case,
the number of datapoints required is still high (around 1000
samples per participant). However, in many applications and
especially in HRI, these amounts of data are not available or
obtainable due to practical constraints. Furthermore, human
responses are often noisy and lack consistency, so methods
are needed which can generalise from a low number of noisy
data points.

In this paper we propose to use a human user to highlight
the relevant features of the environment to reduce the state
dimension of the points only to relevant information. We in-
troduce the concept of a partial state, a sliced version of the
state defined only on a subset of the dimensions of the state.
This shifts the (state, action) pair paradigm to (partial state,
action) and in the case of RL, the tuple (state, action, reward)
to (partial state, action, reward). This allows a comparison of
the current state and the datapoints only on relevant features
for action selection. With this instance-based method (Aha,
Kibler, and Albert 1991), the algorithm can have a state ab-
straction allowing it to generalise even with a few datapoints
instead of the large numbers normally required to abstract
features from examples.

Learning algorithm

An expert supervises the agent actions, and can assign re-
wards to actions and highlight the parts of the states which
are relevant to assigning this reward to this partial state.

As the supervisor can estimate the future impacts of an
action, the problem of credit assignment for delayed rewards
can be ignored which allows us to consider only a myopic
approach in a fashion similar to TAMER (Knox and Stone
2009).

For this paper, we will reuse the formalism of rewardless
Markov Decision Process to identify the different elements
of our system. The agent has access to a set of actions A
and a state S ∈ [0, 1]n. We also define the partial states
S ′ ∈ [0, 1]n

′
with n′ ≤ n as a slice of S , a subset of S

where some dimensions have been removed.
When the agent executes an action a in state s, it re-

ceives the reward r associated with the partial state s′.
For example, a state s could be defined in 4 dimensions
such as s = [1, 0.2, 0, 0.5], and s′ in two dimensions with
s′ = [−, 0.2, 0,−] with symbol ’−’ reprensenting the di-
mensions removed. For the learning algorithm, this means
that the action a has been evaluated r in the partial state s′.

To each action a ∈ A we can associate a set Ca of pairs
(s′, r) representing the rating done by the supervisor to ac-
tion a with features highlighted for the multiple s′. When
adding a new pair (s′, r), we can discard potential previous
pairs with an identical s′ to represent the evolution of the
policy evaluation by the supervisor.

Algorithm 1: Algorithm for selecting an action
based on the previous (partial state, action, reward)
tuples and the current state.

inputs : Current state s, set of (a, s′, r)
output: selected action π(s)
foreach a ∈ A do

foreach p = (s′, r) ∈ Ca do
compute similarity Δ between s and s′:

Δ(p) = 1−
∑n′

i (s′(i)−s(i))2

n′

find closest pair p̂:
p̂ = argmaxpΔ(p)
compute expected reward r̂(a) for taking a in s:
r̂(a) = Δ(p̂) · r(p̂)
with r(p) the reward r of the pair p = (s′, r)

Select the action with the maximum expected reward:
π(s) = argmaxar̂(a)

When facing a new state s where an action has to be se-
lected, the agent can select an action following Algorithm 1
in a instance-based learning fashion. For each action a ∈ A,
we take the pair (s′, r) with the closest s′ to the current state
(as defined by the average quadratic distance over the nor-
malised dimensions where s′ is defined). That way, each ac-
tion a can be associated to an expected reward defined by
the product between the similarity of the closest partial state
known for a and the reward obtained for executing a in that
partial state. Finally, the action with the highest expected re-
ward can be selected.

The normalisation of each dimension of the state allows
distances to be comparable as values on all dimensions have
the same range. Additionally taking the average quadratic
distance over each defined dimension allows to compare
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Figure 2: Interaction setup: the child and the robot are inter-
acting on the touchscreen and a supervisor can control the
robot using a GUI on a tablet.

similarities even when states are defined on a different num-
ber of dimensions.

Combination with SPARC

SPARC has been shown to be compatible with RL in (Senft
et al. 2017), and can also be easily combined with the ap-
proach presented in this paper using partial states. For exam-
ple, when selecting an action for the robot to be executed, the
supervisor can also select which features in the environment
should be selected as the partial state, and this associates the
reward to this action in this partial state. Similarly, when an
action is proposed to the supervisor the features represented
by the dimensions of the closest partial state for this action
can be exposed to the supervisor as a way to explain why this
action has been selected. Facing this, the supervisor can: (1)
not react, allowing the action to be executed and associating
a reward of +1 to the partial state and the action proposed,
(2) change the partial state to correct the features related to
this action or (3) cancel it, preventing the execution and as-
sociating a reward of -1 to the partial state identified by the
robot or the supervisor.

Application scenario

An example of an application is a social robot which in-
teracts with children in an educational scenario. The robot
plays an educational game with children to teach them no-
tions about diverse topics according to the needs of the
teacher. For this example, a child and a robot are playing a
game about the food web, teaching which animals eat which
ones on a Sandtray (Baxter, Wood, and Belpaeme 2012). In
addition to the child and the robot, an adult supervises the
robot using a tablet with a Graphical User Interface (GUI)
to teach the robot how to interact with the child as shown in
Figure 2.

The GUI (Figure 3) is an augmented version of the game
itself, which can be use to make the robot move items on the
game by dragging them on the GUI or which can display ac-
tions proposed by the robot with a cancel button to refuse an
action. For example in Figure 3 the robot proposes to move
the eagle to the rat, and highlights (as shown by blue circles)
the eagle and the rat. This indicate that features relevant to
the eagle and the rat have been used to select this action.

Figure 3: Interface for the supervisor with an action being
proposed, moving the eagle to the rat highlighting both the
eagle and the rat.

In the current implementation, the state is defined by the
distance between each animal and their energy. With these
features selected, the partial state transmitted to the user is
the distance between the eagle and the rat, the eagle’s energy
and the rat’s energy. Similarly, when selecting an action, the
supervisor can select features in the state relevant to the ac-
tion.

The main limitations of the approach reside in the differ-
ence of representation of the state and action spaces between
the supervisor and the algorithm and the limit in communi-
cation. For example a user could try to move an animal close
to another one, and depending on the representation of the
actions on the algorithm side, the action might not be un-
derstood in the same way. Similarly, features used by the
supervisor to select actions might not be represented in the
state used by the algorithm. And lastly, in the case of im-
plicit selection of features, a single case of features repre-
sentation (for example highlighting two animals) might not
be perceived in the same way by observers.

Future work

The system presented in the previous section will be im-
proved and evaluated in the real world with children in the
next months.

The current work could also be extended to allow the
agent to continue to improve its behaviour even in the ab-
sence of a supervisor, progressively exploring around the
learnt policy improving its behaviour beyond the demonstra-
tions. This could be done by allowing the supervisor to pro-
vide rewards during the learning phase and combine these
rewards with the demonstrations to learn a reward func-
tion in a fashion similar to Inverse Reinforcement Learn-
ing (Abbeel and Ng 2004) or TAMER (Knox and Stone
2009). This could also use partial states associated to these
rewards to ease the generalisation of the reward function
with only a low number of datapoints. However, without the
supervisor, the assumption that only a myopic action selec-
tion is sufficient would not hold anymore and the problem
of delayed rewards would have to be tackled.
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