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Abstract 
To contribute to the development of a standard model of 
mind and brain, I present the general model I have been de-
veloping based on an interdisciplinary review of the litera-
ture. More specifically, I hope to show that evolutionary 
considerations are necessary to produce an accurate model 
of the mind as a whole. The basic architecture consists of 
three general design dimensions: a basic action control cir-
cuit (1st dimension), specific content domains (2nd dimen-
sion), and different levels of action-control circuits (3rd di-
mension), with the levels based on the evolutionary history 
and spatial layout of the brain, as well as increasing compu-
tational sophistication. It is hoped that this architecture will 
provide a complementary perspective and additional infor-
mation to help develop a common standard model. 

 Introduction 
Because of the highly integrative nature of brain function, 
progress toward a true understanding of the human mind 
and brain will be limited without a clearer specification of 
the main behavioral control systems and their dynamic 
interactions. That is, we need to specify the general cogni-
tive architecture. This lack of a comprehensive theoretical 
model has also limited the achievements in artificial intel-
ligence and autonomous systems (i.e., robotics), especially 
for intelligence beyond expert systems, i.e., artificial gen-
eral intelligence. I have thus undertaken a review of the 
psychology, cognitive science, systems neuroscience, and 
evolution (especially behavioral biology, biological an-
thropology, and evolutionary neuroscience) literature to 
build the general model of mind and brain presented here. 
In particular, an evolutionary perspective provides a theo-
retical framework to best understand the overall findings, 
as well as insights into characteristics that are otherwise 
typically neglected or underdeveloped in models of mind 
and brain: e.g., levels of action control circuits (discussed 
below).  
 Taken together, the literature suggests three broad di-
mensions by which the cognitive architecture is organized: 
a general action control circuit (1st dimension) that is uti-

lized by systems dedicated to specific content domains (2nd 
dimension) and at different levels of processing complexity 
(3rd dimension). 
 In what follows, I first describe each main dimension of 
the general model, then I present the complete model, and 
then discuss how the model relates to the four main archi-
tectural features of (1) structure and processing, (2) 
memory and content, (3) learning, and (4) perception and 
motor control (Laird et al., in press). 

The Cognitive Architecture of Mind & Brain 
1D: Action Control Circuit  
The fundamental unit of the general model is the well-
known perception-cognition-action cycle or system, which 
corresponds to the control and execution of a deliberate act 
(Laird et al., in press). Before presenting the entire action 
control circuit, I will describe key segments that comprise 
it. Inputs that drive the circuit originate from two main 
sources: those internal and external to the organism, which 
are symbolized as “{SEI}” in the model, with the brackets 
indicating that stimuli are composed of sets of component 
features (see Fig. 1A).  
 The internal stimulus input consists of signals from the 
body based on needs for growth, homeostasis and survival. 
The external stimuli are transduced by the sensory systems 
and then perceptually processed. The goal of perceptual 
processing is to sift through the otherwise intractable 
amount of potential information and derive a representa-
tion of the relevant input. This is achieved via the use of 
current knowledge in Long-Term Memory (LTM) and af-
fective gating that determines whether a given input is po-
tentially relevant to the organism’s goals (Gazzaniga et al., 
2013; LeDoux, 1996, 2003; Kahneman, 2011). Perceptual 
processing seamlessly moves into cognitive processing to 
obtain the input representation (i.e., the neural activity that 
represents the input). Fig. 1B depicts a simple example 
representation of an organism’s environment, in which the 
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 Figure 1. First components of the action control circuit. A. 

Stimuli (both external and internal) are input to long-term 
memory with affective gating determining whether they are poten-

tially relevant to the organism’s goals. A representation of the 
environment is then produced via processes such as reasoning, 
judgment and prediction. B. An example representation of an 

organism’s environment, with the individual in a particular loca-
tion (initial state), the goal in a different location (goal state), 
and other locations containing obstacles (darker squares) to 

avoid. 

 
individual is in a particular location (initial or current 
state), its goal is in a different location (goal state), and 
various other locations contain obstacles that must be 
avoided when navigating through the world to attain the 
goal. Depending on the level of cognitive processing (3rd 
dimension described below) this may include more explicit 
reasoning processes, but typically requires some form of 
judgment about the inherently uncertain and incomplete 
input (Kahneman, 2011). Moreover, given the dynamic 
nature of the environment, representations are not static, 
and thus must be constantly updated. However, even then 
it is often not sufficient to simply track the inputs received. 
Rather, organisms need to use the inputs to derive predic-
tions to anticipate subsequent states. That is, even before 
decision-making or action selection based on the state of 
the environment, the relevant state must be predicted from 
a sequence of states. Prediction, then, can be considered 
one of the main tasks of the organism, and in particular, the 
main ‘goal’ of the perceptual side of processing that pro-
duces the representation of the world that is required to 
select the proper action (Sutton & Barto, 1998; Glimcher & 
Fehr, 2014).  
 Once a representation is sufficiently formed the individ-
ual or agent can determine what to do. This typically en-
tails a decision-making process that requires a valuation 
process, to determine the expected payoff from outcomes 
resulting from each choice option, and then the decision, 
ultimately leading to action selection, determined by a 

comparison of the expected values of the choice options 
(Fig. 2) (Glimcher & Fehr, 2014). 
 

 
 Figure 2. Once a representation is formed the individual de-

termines what to do via a decision-making process that selects an 
action based on a comparison of the expected values of the choice 

options. 

 
 Once the action is taken, an outcome occurs, which then 
influences subsequent actions as feedback. Fig. 3 depicts 
this feedback error as being generally broadcast, which has 
been well established, especially in neuroeconomics with 
respect to dopamine neurons that have been shown to carry 
an error signal (Glimcher & Fehr, 2014). Finally, although 
evidence shows that this general feedforward sequential 
circuit drives motor control, all components of the circuit 
appear to have bidirectional arrows to the other compo-
nents, attesting to the highly integrative nature of brain 
processing. These arrows have been largely omitted to 
clarify the main structure of the cognitive architecture, 
with the exception of the recurrent connection from deci-
sion-making to representation, reflecting the large body of 
evidence that the decision-making process itself can help to 
produce the most relevant and accurate state representation 
(Holyoak & Morrison, 2012). 
 

 
Figure 3. Once the action produces an outcome, feedback is broadcast 

back through the circuitry. The recurrent connection from decision-
making to representation shows that the decision-making process itself 

can help to produce the most relevant and accurate state representation. 

 
 In sum, the fundamental unit of the general model is the 
‘perception-cognition-action’ cycle that drives deliberate 
acts (Laird et al., in press). Multiple iterations that together 
achieve the organism’s goal can also be conceptualized as 
problem-solving via the execution of an action policy. 

2D: Content Domains  
Converging evidence strongly suggests specialized net-
works for processing specific types of content (Table 1). 
Perhaps the best example is the study of reward processing 

395



in the brain, which has characterized multiple brain regions 
and the brain circuitry dedicated to valuation of stimuli 
such as food and fluids for decision-making (Glimcher & 
Fehr, 2014). Another clear example of specialized content 
processing is the “social brain network” comprised of re-
gions such as STS (biological motion), FFA (face pro-
cessing), TPJ (predicting other’s beliefs, goals, and inten-
tions: i.e., theory of mind), ventral premotor cortex (ob-
serving other’s intentional actions), and MPFC (processing 
self and others) (Gazzaniga et al., 2013). Evidence also 
shows that social stimuli are considered primary rewards 
(Gazzaniga et al., 2013). Regarding environmental threats, 
it has long been established that brain circuits involving the 
amygdala, for example, monitor the environment for po-
tential threats and danger (LeDoux, 1996, 2003). 
 This content-specific architecture is also anticipated by 
an evolutionary-neuroscience perspective. Extensive re-
search in physiological neuroscience has led researchers 
such as Swanson (2000) to consider the hypothalamus as 
the first central nervous system region (moving rostrally 
from spinal cord to cortex) to control a complete, purpose-
ful behavioral act, such as ingesting food. Indeed, hypotha-
lamic nuclei appear dedicated to the major fundamental 
functions of survival, including ingestion, defense, mating, 
and basic dominant-subordinate social behaviors. Given 
that this framework constitutes the main architectural de-
sign for the first behavioral control center in the brain, one 
might suspect that it would provide the foundation for fu-
ture evolutionary advances, including the archetypical tel-
encephalon that evolved with vertebrates (i.e., cortex and 
subcortical structures, many of which make up the limbic 
system). This line of reasoning would also suggest that 
even neocortex may be organized around these fundamen-
tal functions. And in fact there is such evidence, for exam-
ple, in premotor and primary motor cortex, where Graziano 
and colleagues found evidence for a mapping of these re-
gions based on evolutionary functions (e.g., reaching and 
grasping, i.e., procurement, and defense) (e.g., Graziano, 
2016). Indeed, findings in affective neuroscience are re-
vealing the extensive influence of regions mediating affect 
and emotion, leading one of their most prominent re-
searchers to conclude that cognitive neuroscience should 
consider these fundamental functions as truly constituting 
the underlying design principle of the brain (LeDoux, 
2003). 
 Taken together, the second overarching architectural 
design principle is that the action-control circuitry is orga-
nized into specialized content domains based on the main 
fundamental functions of organisms identified by evolu-
tionary theory and neuroscience (Table 1). 
 
 

 
Table 1. Content domains and their key challenges. 

 

3D: Levels of Control Circuits 
In this section I describe the evidence for levels of action 
control circuits, and it is important to first clarify the use of 
“levels” in this architecture. As opposed to levels based on 
scale, here they are based on the evolutionary history and 
spatial layout of the brain, as well as increasing computa-
tional sophistication (c.f., Laird et al., in press). I first de-
fine the levels more broadly in terms of level types. Given 
that the characteristics of each specific level are still being 
actively investigated, this broader characterization may 
prove most useful for a current version of a standard model 
of mind and brain. I also describe important related fea-
tures such as working memory and the general concept of 
foreground versus background processing. Then, to pro-
vide a clearer understanding of what the specific levels 
would be, I present my model of these that includes one 
level of Type 1, two of Type 2, and three each for Types 3 
& 4, for a total of nine levels of action control circuits.  
Level Types 1-4: The Algorithmic Mind 
The general concept of levels of cognitive systems in the 
brain has become prevalent, leading to a wide acceptance 
of at least two general classes of systems: i.e., a dual-
system conception of mind and brain. This view is vividly 
portrayed by prominent cognitive psychologists such as 
with Kahneman’s (2011) Systems 1 and 2. Nonetheless, 
most researchers admit that there are likely multiple sys-
tems, but it has been difficult to reach consensus on exactly 
what that number is, leaving two general systems to cap-
ture the two extremes of fast, associative and perceptually 
based processing versus slower, more deliberate and ab-
stract reasoning-based processing (for reviews: Kahneman, 
2011; Evans & Stanovich, 2013). Two key dimensions that 
characterize these systems are (1) the level of abstraction, 
regarding the type of content processed, and (2) the type of 
processing. For the former, cognitive science has well 
characterized levels of abstraction from highly concrete, 
perceptual and specific instances of stimuli (e.g., specific 
objects) to categories to concepts (including fully imagined 
ones such as forces, spirits, or minds) to fully abstract con-
cepts (such as variables in mathematics) (Gazzaniga et al., 
2013). For processing types, there is strong evidence for 
three general classes of cognitive systems: innate, associa-
tive- and reasoning-based, with the former two systems 
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processing relatively content-specific stimuli, and reason-
ing systems processing content-specific or abstract stimuli 
(Wynne & Udell, 2013; Tomasello & Call, 1997; Holyoak 
& Morrison, 2012; Gazzaniga et al., 2013).   
 Research especially in behavioral biology has character-
ized many basic innate processes (i.e., instincts) in nonhu-
man animals (Wynne & Udell, 2013). Although rigorous 
learning theory work in the laboratory has suggested that 
even presumably ‘hardwired’ abilities have a strong learn-
ing component (such as learning which foods to eat) 
(Glimcher & Fehr, 2014), genetic studies nonetheless point 
to a strong genetic component (Knopik et al., 2016). With 
respect to content specificity, the more innate systems re-
spond to relatively specific releasing stimuli.  
 The set of innate systems are classified here as Level 
Type 1, and as illustrated in Fig. 4, Type 1 is displayed as a 
basic action control circuit (with “thinking” representing 
representation and decision-making, and with action exe-
cution, outcome, and feedback omitted for clarity). Type 1 
is also displayed as the lowest level type, following the 
general structure and evolution of the brain. 
 
 

 
Figure 4. The 3rd model dimension (levels of action control cir-
cuits) contains four algorithmic-based level types, representing 

progressively higher levels of computational abilities, and a fifth 
level type that represents metacognition, which helps orchestrate 
overall processing. Working memory participates in both algo-
rithmic and reflective processing helping to produce seamless 

orchestration and more optimal solutions. Foreground and back-
ground processing represent degrees of awareness, and the 

dashed line represents parallel (below) versus relatively more 
serial (above) processing among the specific systems of each 

type. 

 
 For associative (or, more generally, statistical) process-
es, ‘animal learning’ research in particular has amassed a 
large body of evidence for different types of associative 
learning processes, most notably Pavlovian and instrumen-
tal reinforcement learning (Glimcher & Fehr, 2014; Sutton 

& Barto, 1998). Currently, one of the most active areas of 
research in neuroeconomics has focused on these rein-
forcement learning processes, providing more detailed evi-
dence for these systems and showing that they occupy dif-
ferent levels in the brain (Glimcher & Fehr, 2014). With 
respect to content specificity, although these systems have 
significant generalization ability, they are normally driven 
by more surface-level perceptual features relating to specif-
ic types of reward grounded in the fundamental content 
domains. These associative processes are classified as 
Type 2 (Fig. 4). 
  Higher-level cognition research, on the other hand, 
has focused more on reasoning-based processes, which 
offer multiple complementary advantages to trial-and-error 
associative learning, including bypassing the effort, time, 
and errors required for learning, as well as utilizing 
knowledge for higher degrees of prediction accuracy, plan-
ning and control. In particular, causal reasoning appears to 
be a central cognitive process in humans, with the basic 
ability apparently genetically underpinned, attesting to its 
importance (Holyoak & Morrison, 2012). 
 With respect to content specificity, reasoning systems 
can process both content-specific and more abstract stimu-
li. Following research by Kahneman, his colleagues and 
others, it is suggested that lower reasoning systems tend to 
process more perceptually based stimuli, leading to a 
“WYSIATI” (i.e., “what you see is all there is”) characteri-
zation; while higher systems tend to process more abstract, 
conceptual stimuli (Kahneman, 2011; Evans & Stanovich, 
2013). Although this progression from a concrete to ab-
stract ontogeny structure may prove to be more of a con-
tinuum with the specific levels themselves, it is nonethe-
less useful to capture these major distinctions, and I have 
thus classified the reasoning systems as Level Types 3 and 
4 (Fig. 4). 
 Taken together, the evolutionary, psychological and neu-
roscience evidence points to levels of systems in the brain 
that each can control behavior. Furthermore, although the-
se levels may prove to be more of a low-to-high continuum 
(including with each component: e.g., the affective/goal 
gate comprised of drive to motivation to affect to emotions 
to goals), nonetheless, such a computational architecture 
necessitates mechanisms of arbitration that determine 
which system(s) (i.e., levels) will actually guide behavior. 
And substantial evidence suggests that there is indeed an 
explicit cognitive-control system, which I have labeled 
more generally as Level Type 5, Metacognition (Gazzaniga 
et al., 2013). Fig. 4 also utilizes the distinction of more 
direct “algorithmic” information processing (Types 1-4) 
versus this final type of “reflective” processing (Evans & 
Stanovich, 2013; Holyoak & Morrison, 2012). 
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Metacognition & Working Memory 
Regarding competition and cooperation among the differ-
ent action control systems, there is evidence for multiple 
types of mechanisms, including direct competition (espe-
cially among more closely situated systems) and more di-
rect top-down control (e.g., control of one or more below) 
(Striedter, 2005). Nonetheless, substantial evidence points 
to explicit cognitive control, especially in the highest brain 
regions, such as regions of the prefrontal cortex (e.g., ante-
rior cingulate and lateral prefrontal) (Gazzaniga et al., 
2013). To provide this control, evidence shows that these 
metacognitive or reflective processes include monitoring, 
evaluation, planning, and mental simulation, both with 
respect to knowledge (metamemory) and processing (Gaz-
zaniga et al., 2013). More specifically, there is evidence for 
explicit control of each component in the action-control 
unit: e.g., control of attention, emotion, thinking, and ac-
tion selection. Yet there is also evidence for more direct 
metacognitive influences in algorithmic-level information 
processing, and this more direct involvement appears to be 
highly mediated via working memory (Gazzaniga et al., 
2013). Fig. 4 thus represents working memory in yellow to 
signify characteristics of both reflective and algorithmic 
processes. 
 Awareness is represented in the model via background 
and foreground, with much of awareness appearing to be 
mediated by working memory, although it likely leaks into 
the highest algorithmic levels and other components of 
metacognition (Gazzaniga et al., 2013). Not only because 
of the inherent interest in consciousness, it is also im-
portant to distinguish foreground and background based on 
research that strongly suggests that much of even high-
level cognitive processing appears to take place beneath 
awareness (Holyoak & Morrison, 2012). Finally, the 
dashed line in Fig. 4 represents parallel versus relatively 
more serial processing (Kahneman, 2011; Evans & Sta-
novich, 2013; Striedter, 2005; Gazzaniga et al., 2013). 
The Actual Action Control Systems: Levels 1-9 
As stated, the level types designation represents broader 
classes of action-control systems that have been well estab-
lished. However, it is useful to provide a clearer view of 
the specific levels. Although the actual number and main 
characteristics of each are less clear, there is considerable 
pertinent evidence. And it is here, in fact, where an evolu-
tionary perspective has again provided substantial insights. 
To that end, I present my model of the main specific levels 
(Table 2). An important caveat is that I am not focusing on 
when each ability originated, but rather, when it was more 
clearly prominent.  
 As already discussed, Levels 1-3 are in fact well estab-
lished. For the 4th level, nonhuman animal cognition re-
search has shown that multiple species exhibit evidence for 
some significant degree of causal reasoning ability, at least 

with respect to self (whether self-self or self-others: i.e., 
primary & secondary relationships) (Wynne & Udell, 
2013; Tomasello & Call, 1997). At the same time, this re-
search has led to the view that a major dividing cognitive 
ability between primates (including humans) and other 
species involves causal reasoning about tertiary relation-
ships, such as between two other individuals (besides self) 
or a tool’s functional component and the object being ma-
nipulated (Tomasello & Call, 1997). Such evidence has led 
to my Levels 4 and 5.  
 For the next levels, the strongest evidence for grade 
shifts in ability between great apes and humans derives 
from an examination of the competences of our hominin 
ancestors, and in particular, the stone tool technology 
(Nowell & Davidson, 2010; Relethford, 2013; Striedter, 
2005). The major broader general change within the hom-
inin lineage is an increase in brain size (both overall and 
relatively), mostly notably neocortex, and more particular-
ly, parts of higher-order cortex such as prefrontal. This size 
increase also was chiefly driven by new cortical fields sim-
ilar to the previous ones, rather than, for example, higher 
neural density or increased number of cortical layers 
(Striedter, 2005). Additional fields in general suggest 
greater elaboration with respect to levels of abstraction, 
enabling a hierarchical organization of information and 
processing, leading to further abilities, including a greater 
time horizon, comprehension of larger event complexes 
(such as an entire foraging excursion), and subgoal or sub-
routine processing in problem-solving, language, etc., lead-
ing to recursion (Gazzaniga et al., 2013; Holyoak & Morri-
son, 2012). The greater elaboration also enables more ex-
tensive cross-referencing, providing heightened generaliza-
tion abilities as well as greater higher-level access to de-
tails. In fact, the ability to access a greater number of de-
tails appears to be a particularly important advance. This 
advance includes not only adding more perceptual dimen-
sions, but hidden and eventually truly imagined ones. More 
specifically, objects become combination of parts and the 
“glue” that holds them together. Thus, rather than 
knowledge organized around objects and their properties, a 
new orientation occurred that essentially flipped this struc-
ture such that objects may be seen more as a function of 
the glue and parts. This change appeared to solidify 
throughout the hominin lineage leading to Homo sapiens. 
Put simply, a leading continued advance across the lineage 
is best described as reductionism. Moreover, an intriguing 
and enigmatic property of the human brain’s evolutionary 
trajectory is the apparent retaining (rather than replacement 
or revision) of the prior abilities. Thus, each major grade 
shift (i.e., level) is maintained in the model. 
 Table 2 provides a summary of the major grade shifts. 
The final stage (Level 9), culminating in the cultural explo-
sion with the origin of Homo sapiens, suggests the most 
heightened degree of reductionism, including a reasonably 
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complete (yet ‘folk’) separation of the concepts of matter 
and forces, as well as a greater delineation of the similari-
ties (generalization) and differences (specialization) across 
instances. This final level of competence would provide 
the ability to comprehend, for example, analogies (i.e., 
relationships of relationships), which has been proposed as 
a critical ability separating people from other animals (Ho-
lyoak & Morrison, 2012).  
 

 
Table 2. Levels of control circuits with key cognitive ability and 
proposed evolutionary establishment via last common ancestor 

(LCA). 

 In sum, the specific levels are presented here to provide 
a more complete model based on an analysis of the litera-
ture across many relevant fields, although it is clear that 
further research is necessary to establish these specifics 
more definitively. 
 
 

 
Figure 5. Complete architectural design model, with three main 
dimensions: (1) the basic action control circuit, (2) content do-

mains (that progressively dissolve across levels), and (3) levels of 
action-control circuits; together with central brain regions impli-

cated for each system: ACC (anterior cingulate cortex), PFC 
(prefrontal cortex), PPC (posterior parietal cortex), TC (tem-
poral cortex), NAc (nucleus accumbens). 1st granular and Nth 
order PFC fields expand out from agranular PFC and motor 

cortex. Stimuli are input into every level but omitted for clarity. 
Action outcomes and subsequent learning signals are also omit-

ted. 

 

The Complete Architectural Design Model in 3D 
With the three general design dimensions described — a 
basic action control circuit (1st dimension), specific content 
domains (2nd dimension), and levels of action-control cir-
cuits (3rd dimension) — Fig. 5 assembles them into the 
complete architectural design model, together with central 
brain regions implicated. 

Discussion 
Here I briefly discuss how the model contacts the main 
design components outlined by Laird, Lebiere, and Rosen-
bloom (in press). In my model, structure derives from the 
three main dimensions (the basic circuit structure, content 
domains, and the organization of control circuits into types 
and levels). Processing is captured by the specific process 
modules represented by the boxes, as well as the arrows 
representing the sequence flow, with greater detail omitted: 
such as the submodules and subprocesses within each 
module, and the massive interconnections among them. 
Nonetheless, the architectural design is revealed once one 
sufficiently zooms out from this greater detail. 
 For memory, I have used two general classes: long-term 
and working memory. However, when further fleshed out, 
each well-known type of memory has a corresponding 
place: e.g., declarative versus procedural, semantic versus 
episodic (Gazzaniga et al., 2013). Content is in fact a main 
feature of the model, providing a basic organizational 
structure (i.e., the 2nd dimension as ontologies based on the 
fundamental functions of the organism). The evolutionary 
life cycle of organisms (and corresponding hypothalamic 
mediation) underpins this organizing principle.   
 For learning, I have focused on associative processes 
(Pavlovian and instrumental reinforcement learning), how-
ever, other types of learning fit readily into the model, such 
as more general statistical learning and higher-level learn-
ing such as via instruction (Gazzaniga et al., 2013).  
 The details of perceptual and motor processing reside 
within the general modules, as the model has been devel-
oped to be consistent with them. Regarding details, the 
same is true for all of the main processes represented in the 
model (such as memory and affective processing). 

Conclusion 
Progress accelerates when overarching theory guides in-
vestigation. It is my hope that the architectural model of 
mind and brain presented here will provide a complemen-
tary perspective and additional information to help in the 
development of a common standard model. 
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