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Abstract
Integrating information from many different data sources to
provide better situational awareness is an essential Navy is-
sue. Many data fusion models use statistical methods to re-
duce statistical errors. Machine learning and big data provide,
on the other hand, provides a unique framework for informa-
tion fusion through our ability to learn what added benefits
a different modality can provide. In this work, we provide a
novel data fusion method that integrates relational data, pro-
vided to us in the form of a graph, and image data. We build
an energy model that learns a representation of the data where
different data sources are assumed to be similar using a graph-
ical model. The energy model is a non-convex function which
we optimize using stochastic gradient descent with momen-
tum. The effectiveness of the model is demonstrated in an
automated target recognition example.

Introduction
Machine learning and big data applications heavily depends
on the data representation. For this reason, many machine
learning algorithms carefully preprocess and transform the
data. Machine learning analysis of large collections of data
sets build representations that facilitate downstream process-
ing such as indexing, display of information, regression, and
classification. These goals require the extraction of relevant
features that encode interesting aspects of the observed data.
Topic modeling (Blei 2012) and representation learning are
two closely related techniques to learn the content of large
data collections and these methods are the leading tech-
niques in many machine learning application areas such as
speech recognition, noise removal, and image classification.
One convenient strategy to construct a meaningful structure
is to suppose that the data can be represented in a mixed
membership model.

Consider N data samples xn ∈ R
L such as documents or

images. A simple data model assumes each sample can be
written as a linear combination of vectors, i.e.

xn =
K∑

k=1

ψkbnk + εn, (1)

where, the observed data xn is represented up to a small re-
construction error εn in terms of a set of vectorsψk (factors)

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and the coefficients bnk describe the weights of the com-
bination (factor loading). In other words, the basis vectors
capture patterns present in the data set, i.e. a good set of
features, and the learning representation task is to compute
them, together with the associated weights. In general, the
number of components in the combination, denoted by K,
characterizes the complexity of the model, so it is often set
beforehand, or its growth is limited by a regularization cri-
teria.

In this work, we explore the utilization of a graph struc-
ture as a regularizer, with the hope of driving the learning
procedure such that samples that are connected through the
graph structure have similar representations. The advantages
of using a graph are twofold. First, the graph enables the
integration of information from different sources into our
learning algorithms to influence the model priors. Second,
the graph can encode relationships between data samples
that do not come from a metric or distance function. Thus,
information such as interactions or common group member-
ships, explicitly encoded by networks of connections, or so-
cial networks, can also be incorporated as part of the learn-
ing procedure.

We apply this graph-directed strategy dictionary learning
(Mairal et al. 2009). Note that, in contrast with (Li et al.
2011), we are not trying to integrate topic modeling and dic-
tionary learning. Instead, we are trying to integrate graph
information into representation learning models. We show
that using the graph structure to encode a-priori relations be-
tween observations allow for more distinctive basis vectors
and, at the same time, lower average reconstruction errors.

To make the representation learning tractable, we build
variational energy models and embed them in a learn the
model parameters. The computations are carried out using a
stochastic gradient descent with momentum method, whose
energy-based formulation facilitates the information integra-
tion, in particular the graph encoded priors.

Previous Work
The problem of determining the vectors and vector weights
in 1 is not well-defined without extra regularization condi-
tions. The learning procedure overcomes this problem by
building more structure into the problem by exploiting the
inherent range of the data at hand or assuming some condi-
tions over the basis vectors. These different assumptions are
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the essential characteristics of the different methods. In the
factor analysis field, different assumptions are used to de-
compose the data into a few factors using sparsity priors or a
restriction on the number of basis vectors. The basic proce-
dure is to establish a stochastic generative model to describe
the data set and provide a framework for learning the param-
eters of the model.

Many early factor analysis models of integer valued data,
such as non-negative matrix factorization (Lee and Seung
1999), neglect the discrete nature of count data (Wedel,
Böckenholt, and Kamakura 2003). A case in point is the
description of a corpus of text documents. In general, the
corpus is given in terms of the times a word from the
(corpus) vocabulary appears per document, and the learn-
ing task is expressed as the construction of topic mod-
els (Blei, Ng, and Jordan 2003; Griffiths and Steyvers 2004;
Lafferty and Blei 2005; Blei and Lafferty 2006; Wallach,
Mimno, and McCallum 2009). In the language of topic mod-
eling literature, the set of basis vectors correspond to topics,
and each topic is assimilated to a probability distribution of
the words in the corpus vocabulary. Thus, more probable dis-
tributions are the ones that are compatible with the observed
count of words. In (Blei, Ng, and Jordan 2003), each doc-
ument is a mixture of topics, and the topics a distribution
of words. The priors in both cases are symmetric Dirichlet
distributions, leading to the well known Latent Dirichlet Al-
location (LDA) model. Several subsequent works have stud-
ied variants of the LDA model. These include, correlated
topic models (Lafferty and Blei 2005), where the basis ele-
ments are assumed correlated, while the words per topic are
still assumed independent and dynamic topic models (Blei
and Lafferty 2006) where the topics or topic weights are
smoothed using techniques related to Kalmen filters . The
work of Wallace et al (Wallach, Mimno, and McCallum
2009) studies the influence of stop words, number of topics
selected and Dirichlet priors have in the resulting LDA topic
model, and shows how the performance is improved when
an asymmetric Dirichlet prior is used for the document-topic
distributions. The LDA model has been extended to non-
parametric Bayesian models in (McAuliffe, Blei, and Jordan
2006).

Related methods use spatial modeling with stick breaking,
where a kind of spatial dependence of the basis vectors com-
ponent is assumed by using a similarity kernel and a stick-
breaking construction (Teh, Görür, and Ghahramani 2007;
Paisley and Carin 2009; Paisley, Blei, and Jordan 2012).

Similar in spirit are the nonnegative matrix and tensor fac-
torizations (Cichocki et al. 2009; ?).

Gaussian Markov Random Fields (Rue/Held) Use a graph
to define a Gaussian Process. Another work that tries to use
graph priors is the work of Mimno et al (Mimno, Wallach,
and McCallum 2008).

Representation Learning and Graph-Based
Models

As introduced before, we are learning representations of the
data by constructing linear combinations of appropriate set
of basis vectors. We define the task as dictionary learning

and use a sparse data representation as the mathematical
framework to learn the dictionary representation. In both
cases, we try to exploit additional information through a
graph structure. The following subsections describe each of
these model components.

Dictionary Learning
For the case of real valued data, a dictionary representation is
constructed. Hence, each of the data points xn is represented
by

xn =
K∑

k=1

ψkwnk znk + εn, (2)

where the basis vectors ψk correspond to the different dic-
tionary atoms, the coefficients bnk specify the weight asso-
ciated to dictionary atom k in signal n, znk is an indicator
variable that is equal to 1 if the dictionary atom k is used
to represent xn or 0 otherwise, and ε is a residual or mea-
surement noise (generally Gaussian), uncorrelated with the
basis. In a stochastic framework.

Consequently, the dictionary learning task involves deter-
mining the number of atoms, the atoms themselves, as well
as the atoms that intervene in a specific signal representa-
tion and the coefficients of the combination. These model
parameters can be computed by minimizing an energy func-
tional that incorporates the fidelity and sparsity goals of the
regular dictionary learning problem (2), as well as regular-
izations given by the stochastic framework and the selected
prior distributions. Further restrictions can be imposed by
using graph-based priors as described next.

Graphical Models
Graphical models are often used to describe joint probabil-
ity distributions of multiple variables (Cevher et al. 2010).
A generic graph, denoted by G(V,E), can be regarded as a
node (vertex) set V and a collection of edges E that connect
the nodes. The nodes in the graph are in one-to-one corre-
spondence to random variables in the model, while edges
in the graph encode dependency relationships between the
nodes (random variables) they connect. The graph can be
undirected, in which case the edges denote dependence be-
tween the corresponding nodes, or directed, in which case
the conditional dependence is restricted to incoming edges.

However, an alternative take on the variable dependence
representation with graphs can be constructed. Instead of
correspondence between nodes and random variables, a cor-
respondence between nodes and observations can be es-
tablished. Specifically, each element in the node set V =
{vn}Nn=1 is associated with a data sample xn and an edge
Eij between the i-th and j-th nodes exists if sample i is re-
lated to sample j and does not exist otherwise. Note that this
allows to encode known interactions between data samples.
The interactions could be simple connections, or more spe-
cific quantitative dependencies such as metric information
given in terms of a similarity measurement. The latter case
is represented by a weighted undirected graph, G(V,E,W ),
with W , the set of edge weights. The weight of edge Eij

can be given, for example, in terms of a Gaussian similarity
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function

Wij = exp

(−‖xi − xj‖22
2σ2

)
, (3)

with σ2 a positive constant value. Note that in this formula-
tion, the weight Wij measures the strength of the relation-
ship between nodes i and j (equivalently, how similar are
data points xi and xj) .

Graph Laplacian and Graph Energy Let’s define the de-
gree of node i as

di =
∑
j

Wij . (4)

Thus, by definition of Wij , di measures how strong is the
relation between sample xi and the rest of the samples in
the data set.

If W is the matrix of edge weights Wij , and D, a N ×N
diagonal matrix with diagonal elements Dii = di, the graph
Laplacian can be written as the matrix

L = D−W. (5)

A state vector φj = (φj1, . . . , φjK)T can be associated
to each of the j ∈ {1, . . . , N} nodes in the graph. The graph
Laplacian allows to define the energy of the graph using the
quadratic form

〈Φ,LΦ〉 = 1

2

N∑
i=1

N∑
j=1

Wij‖φi−φj‖2 =
1

2

K∑
k=1

N∑
i=1

N∑
j=1

Wij(φik−φjk)
2,

(6)
with matrix Φ = (φ1, . . . ,φN ), where each column corre-
sponds to the state of a node in the graph. Note that this form
of energy penalizes the differences in state for nodes that
are closely related (edge with a large weight Wij). Then, a
state of minimal energy is characterized by a homogeneous
state of strongly connected nodes. This does not exclude the
trivial case where all the nodes have the same state. Other
energy functions, based on p-Laplacian can be used (Bühler
and Hein 2009). They are similar to the quadratic form but
use an exponent p, with 1 ≤ p < 2.

As will be shown in the next section, previous information
about the relationships of data points, encoded in terms of a
weighted or unweighted graph, can be included in the com-
putations of the model parameters by incorporating a graph
energy term, expressed as a function of the graph Laplacian.

Defining the Energy Function

We use the state bn = (bn1, . . . , bnK)T for the state of node
n in the dictionary learning problem. Thus, the matrix B
corresponds to B = (b1, . . . ,bn), and the energy potential

can be written

U (ψkw, wdk) = γε

N∑
n

∥∥∥∥∥xn −
K∑
k

ψkbnk znk

∥∥∥∥∥
2

2

+ γψ

K∑
k

‖ψk‖22

−
∑
n

∑
k

znk log(πk)

− (1− znk) log(1− πk)

− (c− 1) log(πk)− (d− 1) log(1− πk)

+ 〈Φ,LΦ〉

Model Computations: Gradient Descent with
Momentum

We exploit gradient descent to find a local minimal solution,
but the problem is highly convex so we use stochastic gradi-
ent descent with momentum to find a deeper minima.

In order to define a momentum term we define the energy
as

H (ψkw, wdk, p) = U (ψkw, wdk) +
p2

2m

The parameter p is the momentum term, which we draw
from a Normal distribution with zero mean and variance m
independently for each iteration. This term allows us to get
unstuck from many local minima, but with high probability
we remain in deep local minima.

The system evolution is simulated by means of the dy-
namics,

dqi
dt

= +
∂H

∂pi
= pi,

dpi
dt

= −∂H

∂qi
= −∂U

∂qi
.

This dynamics is approximated by a leapfrog discretization
using finite time steps. A leapfrog step can be expressed as

pi

(
t+

ε

2

)
= pi(t)− ε

2

∂U

∂qi
(q(t)) (7)

qi(t+ ε) = qi(t) + ε pi

(
t+

ε

2

)
(8)

pi(t+ ε) = pi

(
t+

ε

2

)
− ε

2

∂U

∂qi
(q(t+ ε)), (9)

with ε representing the stepsize. This leapfrog update is ap-
plied for a specified number of steps L to simulate the evo-
lution of the system for a time Δt = εL.

Note that in order to compute the dynamical updates it is
necessary to compute the partial derivatives of U with re-
spect to qi.

Results
We apply the procedure to an automated target recognition
(ATR) example. This example consists of recognizing nine
different targets with several different viewing angles. Using
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1 2 3 4 5 6 7 8 9

1 454 44 0 0 0 0 2 0 0
2 43 457 0 0 0 0 0 0 0
3 0 0 493 3 2 1 1 0 0
4 2 0 5 479 4 1 0 0 9
5 0 0 6 5 482 6 0 1 0
6 0 0 1 0 3 490 5 1 0
7 3 0 3 2 2 8 482 0 0
8 0 0 0 0 0 1 0 496 3
9 0 0 0 7 0 0 0 2 491

(a) Without Graph - 96.09% Correct Classification
1 2 3 4 5 6 7 8 9

1 487 10 0 1 0 1 1 0 0
2 11 489 0 0 0 0 0 0 0
3 1 0 480 15 0 4 0 0 0
4 0 0 7 481 5 1 0 0 6
5 0 0 1 6 481 11 0 1 0
6 1 0 4 0 10 470 14 1 0
7 0 0 0 0 0 9 491 0 0
8 0 0 0 0 0 0 0 500 0
9 0 0 0 2 0 0 0 0 498

(b) With Graph - 97.27% Correct Classification

Figure 1: ATR performance is increased 1.7% by including
the graphical model.

our model, we increase our vehicle detection performance
by 1.2%, but most of the performance gain was in the truck
versus SUV class in which we gained a 7% improvement in
performance, as shown in Figure 1.

Conclusion
In the modern Navy environment, sensor and and data stor-
age technologies have advanced faster than our ability to an-
alyze the data. Furthermore, there are a multitude of differ-
ent sources of information. In this work we have demon-
strated that machine learning is a practical method to inte-
grate relational information and representations to improve
target recognition. Our approach improved target recogni-
tion by 1.7% for a simple target recognition problem.

Central to our approach are representation learning algo-
rithms. Representation learning does not require any prior
knowledge of how two data sets should be related, but
we learn how the representations of the data sets co-vary
through an integration distribution or the associated integra-
tion potential.
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