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Abstract

It is argued that any real-world, limited-resources general in-
telligence is going to manifest a mixture of general principles
such as Solomonoff induction and complex self-organizing
adaptation, with specific structures and dynamics that reflect
corresponding structures and dynamics in the tasks and en-
vironments in whose context it was created. This interplay
between the general and the specific will play out differently
in each type of intelligent system. A number of ideas drawn
from previous publications are reviewed here – e.g. cognitive
synergy, PGMC and the Mind-World Correspondence Princi-
ple – which formalize aspects of this perspective, and provide
guidance on how to use it to analyze and create general intel-
ligences.

Introduction

What is general intelligence? And what, specifically, charac-
terizes human-like general intelligence? What are the neces-
sary and/or sufficient structures and dynamics and properties
of general intelligence in general, and/or of the sort of gen-
eral intelligence that human beings display?

It is not clear how fully we need to understand these ques-
tions in order to build working AGI systems. Often, in his-
tory, people have built artifacts that worked perfectly well,
long before the underlying principles were well understood.
However, there seems little doubt that more fully under-
standing the principles of general intelligence would help
with building AGI systems; and of course, understanding the
nature of intelligence is a valuable intellectual pursuit in its
own right.

During the last decade or so, the author has published a
series of books and papers exploring the notion of a “gen-
eral theory of general intelligence” in its various aspects.
This brief paper comprises an extended abstract summariz-
ing some of the key points made in this body of work, and
giving the relevant references for the reader who wishes to
dig deeper.

Many of the ideas presented here were developed in the
course of work on the OpenCog AGI architecture (Goertzel,
Pennachin, and Geisweiller 2013a) (Goertzel, Pennachin,
and Geisweiller 2013b); however, as theoretical notions they

are not restricted to OpenCog, and indeed among their impli-
cations is that there are many different workable approaches
to AGI, all of which are likely to manifest some similar
emergent structures and dynamics.

Cognitive Systems As Self-Organizing,

Complex Adaptive Systems

”Artificial General Intelligence” is a valuable concept soci-
ologically due to the emphasis it places on systems that can
generalize and carry out a wide variety of tasks, rather than
being narrowly constrained to individual tasks or contexts.
However, as argued in(Goertzel. 2015), the three concepts
of ”artificial”, ”general” and ”intelligence” are all somewhat
problematic. As hybrid bio-cybernetic systems are explored,
and self-modifying machines are constructed, the ”artificial”
nature of engineered intelligent systems will become fuzzier.
Generality of intelligence is also quite fuzzy; for instance
we humans are much smarter in 3D space than we would be
in 17D space, and most of us are much cleverer at seducing
members of the opposite sex than at factoring large numbers.
And ”intelligence” itself, with its focus on problem-solving
and goal-achievement, arguably captures only part of what is
interesting about clever systems like, say, humans, dolphins
and crows.

An alternative is to think about humans as a particular sort
of Self-Organizing, Complex Adaptive System (SCADS).
This ties in with Weaver and Veitas’ notion of ”Open-Ended
Intelligence” (Weinbaum and Veitas 2015) – in which intel-
ligence is conceived as a capability for self-transcendence
via coupling with the wider world. In this view, the crux of
intelligence is not striving and succeeding to achieve known
goals, but rather fundamentally self-modifying so that one
comes to understand the world in whole new ways, includ-
ing new goals and new vistas.

In (Goertzel 2017b) this perspective is explored math-
ematically; a hierarchy of increasingly specialized mod-
els is created, beginning with a quite generic model of
a self-modifying system comprising elements that modify
each other to produce new elements, and culminating with
more specific self-modifying system models consisting of
hypergraphs some of whose subhypergraphs encode rules
for mapping subhypergraphs into subhypergraphs. These
hypergraph-based models have close connections to prob-
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abilistic and category-theoretic models of intelligence, and
also to hypergraph-based AGI systems such as OpenCog.

Cognition as Composed of Forward and Backward
Growth Processes and Diffusion Processes

An extension of this line of thinking is to model cognitive
processes as forward and backward growth processes, and
diffusion processes (Goertzel 2006). A forward growth pro-
cess is one in which elements of a system combine with each
other to produce new elements – and so on recursively. A
backward growth process is one in which an element x of a
system elicits the creation of other elements y and z of the
system so that the combination of y and z can produce x –
and so on recursively. A diffusion process is one in which
some quantity or dynamic spreads from system elements to
neighboring elements, and so on recursively.

These sorts of processes exist throughout nature and in
the human body and in the human mind. We can easily see
them in common AI algorithms as well: in logic we have
forward and backward chaining inference; in neural nets we
have backpropagation (which is a backward growth process
on connection weights) and activation spreading (which is
a diffusion process), and in some neural nets we have Heb-
bian learning or neurogenesis or synaptogenesis as forward
growth processes.

One can view these as processes that occur in complex,
self-organizing systems and help them to adapt to their en-
vironments.

Modeling Cognition as Reinforcement and

Optimization

There is a robust tradition modeling intelligence as opti-
mization of utility functions defined over computable envi-
ronments (Hutter 2005). The core ideas here are extensions
of Solomonoff induction – of the notion that the best way
to predict the future is to use the simplest accurate model of
the past. This idea can be used to guide an intelligent sys-
tem’s actions, because action selection can be done by fig-
uring out which action would give the most reward in the
future, based on simple probabilistic extrapolation from the
simplest accurate model of the past.

This approach leads to some elegant mathematics; for in-
stance one can show that, given near-infinite computing re-
sources, one can make a nearly-optimally-intelligent agent
using a very brief computer program. The relation of this
mathematics to general intelligence or complex system dy-
namics in the real world remains a subject of debate.

Shane Legg and Marcus Hutter define general intelligence
as, roughly speaking, the average complexity of the utility
functions that a system can optimize, averaged over com-
putable environments (Legg and Hutter 2007). They mea-
sure complexity in terms of the Solomonoff universal prior,
which says that shorter programs (in some assumed univer-
sal programming language) are less complex. In (Goertzel
2010) I modified this definition to look at more general com-
plexity measures (not just the Solomonoff prior, which al-
ways exponentially decays in the large), and to look at both

the complexity of the goal and the complexity of the envi-
ronment in a more balanced way.

One weakness of this sort of approach, though, is that is
always depends on who is defining the complexity measure.
In the large, the specifics of the complexity measure don’t
matter; but intelligence in the real world is always dealing
with the medium scale. One could argue that much of intel-
ligence is actually about figuring out what is the right lan-
guage to use to model reality, and what is the right way to
measure complexity – and that then optimizing things rel-
ative to a given language and complexity measure is just a
”mathematical crunching” problem rather than the cruz of
intelligence.

The Specific Evolutionary and Ecological

Pressures Shaping Human-Like Minds

Any system with finite resources is going to be better at do-
ing some things than others. And if current physics is at all
on target, any real system is going to have finite resources
(due to quantum theory, special relativity, and so forth plac-
ing limitations on the amount of information processing that
can be done with a given amount of space, time and energy).
In this sense, a totally generally intelligent system is a fiction
(though perhaps a useful mathematical fiction).

Human beings, as specific types of systems with very fi-
nite resources, are especially biased to be good at doing cer-
tain sorts of things. In (Goertzel 2009b) it is argued that hu-
man intelligence evolved largely out of the need for humans
to interact socially with other humans in a shared perceptual
and motoric context. It is argued that the prior distribution
over ”program space” implied by this sort of focus on em-
bodied communication and interaction within a community,
naturally assigns a high degree of simplicity to programs that
deal with episodic memory, declarative memory, procedural
memory and sensorimotor memory in a roughly humanlike
way.

In (Goertzel, Ikle’, and Wigmore 2012), I attempted to
draw a sort of ”unified cognitive architecture diagram”, with
boxes for the standard types of memory and standard cog-
nitive processes as reviewed in cognitive psychology and
cognitive science textbooks. I connected this with a variety
of different AGI architectures. According to the ”embodied
communication prior” idea, this sort of breakdown into types
of memory and processes constitutes a computational model
that assigns the greatest simplicity to those processes that
happen to be useful for survival as an agent with needs to
communicate with other agents in a community with which
a sensorimotor environment is shared.

Probability and Intelligence

Probability theory has played an increasingly prominent role
in AI in recent decades; it also plays a significant role in neu-
roscience via concepts like probabilistic population coding.
There is reason to believe this has fundamental explanations
rather than just being a trend.
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Logic, Probability, and Emergent Symmetries in
Cognitive Systems

When one digs deep into the foundations of probability the-
ory as e.g. Knuth and Skilling (Knuth and Skilling 2012)
have done, one sees that probability theory is a reflection of
certain basic mathematical symmetries. These symmetries
are present in the physical universe in various ways, and they
also arguably are present in the nature of many communica-
tion processes, even viewed on an abstract level. It seems
likely that, in order to survive effectively in a universe that
is simply described in terms of the symmetries from which
probability theory derives, a system should manifest some of
these same symmetries; and carrying out probabilistic rea-
soning is one way of doing this.

It also seems possible that standard Kolmogorovian prob-
ability theory is not the best model of probability theory as
carried out in real-world intelligent systems. In (Goertzel
2017a) I have given an argument for intuitionistic probabil-
ity theory instead, which seems to emerge more naturally
from hypergraphs which are natural models of many aspects
of intelligent systems. One is then led into fairly subtle is-
sues of exactly what are the relevant symmetries of the per-
ceived and enacted world as well as of the inferring mind.

Cognitive Processes as Probabilistic Growth and
Mining of Combinations

The general notion of forward and backward growth pro-
cesses as summarized above may also be modeled proba-
bilistically. One can view a growth process as a series of
choices: which among many pathways for growth to take
next? Each of these choices may be considered as sampling
from a probability distribution. This leads to a model of cog-
nitive processes in terms of Probabilistic Growth and Min-
ing of Combinations or PGMC ((Goertzel 2016b)). With a
bit of effort, for instance, all the key cognitive processes in
the OpenCog AI system can be expressed either as forward
or backward PGMC processes or as diffusion processes (Go-
ertzel 2016a).

Cognitive Synergies

A hallmark of complex, self-organizing systems is the phe-
nomenon of ”emergence” – static or dynamic properties of
a whole system that are very hard to deduce from proper-
ties of the parts. Cognitive systems display these in spades;
and they are especially prone to display a particular kind
of emergence I have labeled ”cognitive synergy” (Goertzel
2009a). This is a phenomenon in which, within a set of cog-
nitive processes, whenever one of them tends to get plagued
with combinatorial explosions (meaning, high entropy in the
probability distribution among choices at its disposal), oth-
ers are generally able to come in and solve the problem at
hand without combinatorially exploding. This can be formu-
lated mathematically in an abstract way (Goertzel 2017b);
and prior papers have explored its manifestations in specific
aspects of cognition, such as the synergy between procedu-
ral and declarative learning (Goertzel et al. 2011) , and the
synergy between probabilistic logic and attentional diffusion
(Harrigan et al. 2014).

It has also been argued that ”cognitive synergy is tricky,”
in the sense that a highly synergetic set of 10 processes may
not have any highly synergetic subset of, say, 5 processes
(Goertzel and Wigmore 2011).

The Mind-World Correspondence Principle

Pulling together a number of these ideas, in (Goertzel
2011b) I have argued for a ”Mind-World Correspondence
Principle,” according to which: For a complex system with
limited resources to display general intelligence in a certain
complex environment, the internal dynamics of the system
must display many of the same high-level dynamical pat-
terns as the environment does. This is modeled using cate-
gory theory, but in many ways is a very simple concept. The
prominence of hierarchy in the human mind-brain is one ex-
ample; these hierarchical dynamics are useful to the human
mind-brain because our region of the physical universe is
marked by so many hierarchical structures and dynamics.
The ”Embodied Communication Prior” mentioned above is
a subtler example of the same principle.

Hypergraphs as a General Cognitive Modeling

Framework

To get beyond highly general and abstract principles, one
needs to make some specific formal assumptions about what
kind of intelligent system one is going to explore. Linas
Vepstas, who for many years has been the lead AI engi-
neer on the OpenCog AI system, has argued that modeling
intelligent systems in terms of hypergraphs is a generally
valuable strategy (Brainwave 2013). Declarative, procedu-
ral and episodic knowledge can all be expressed elegantly in
terms of hypergraphs, as can goals and many other aspects
of human-like intelligence.

Whether hypergraphs form a valuable way to model all
human-like intelligent systems is not yet clear, but they are
certainly a useful way to model OpenCog whose Atomspace
knowledge store is explicitly constructed as a weighted, la-
beled hypergraph. In OpenCog, cognitive synergy is mani-
fested via multiple cognitive processes that are implemented
as dynamics for hypergraph rewriting (and many of these dy-
namics are implemented themselves as hypergraphs within
the same Atomspace).

It is especially unclear whether hypergraphs are a good
way to model sensorimotor knowledge; however, one can
handle this case via hybridizing hypergraphs with hierarchi-
cal continuous-valued functions such as deep neural nets. In
(Goertzel 2017c) (Goertzel 2011a) and other recent work I
have taken a neural-symbolic approach to perception pro-
cessing, in which surprising patterns in the structure of
deep neural nets are represented in a symbolic hypergraph,
where they can be reasoned on and can then feed back into
the neural nets providing symbolic guidance. This may re-
flect a more general mathematical approach in which hyper-
graphs are linked to hierarchical constructs built on spaces of
continuous functions. From a Mind-World Correspondence
Principle perspective, one might view this sort of mathemat-
ical hybridization as corresponding to an exploration of the
intersections and interactions between different aspects of
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the tasks and environments with which human-like minds
are confronted.

Conclusion

A comprehensive, detailed model of general intelligence, or
human-like general intelligence, is not yet at hand; but nor
are we completely clueless. It is clear that any real-world,
limited-resources general intelligence is going to manifest a
mixture of general principles such as Solomonoff induction
and complex self-organizing adaptation, with specific struc-
tures and dynamics that reflect corresponding structures and
dynamics in the tasks and environments in whose context it
was created. Exactly how this interplay between the general
and the specific plays out in the human mind, and exactly
how it should or must play out in roughly but not exactly
human-like AGI systems that we may create, is something
we are in the midst of discovering. Ideas reviewed here such
as cognitive synergy, PGMC and the Mind-World Corre-
spondence Principle may perhaps be of aid in this discovery
process.
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