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Abstract

Proactive Decision Support (PDS) aims at improving the de-
cision making experience of human decision makers by en-
hancing both the quality of the decisions and the ease of mak-
ing them. In this paper, we ask the question what role auto-
mated decision making technologies can play in the deliber-
ative process of the human decision maker. Specifically, we
focus on expert humans in the loop who now share a detailed,
if not complete, model of the domain with the assistant, but
may still be unable to compute plans due to cognitive over-
load. To this end, we propose a PDS framework RADAR based
on research in the automated planning community that aids
the human decision maker in constructing plans. We will sit-
uate our discussion on principles of interface design laid out
in the literature on the degrees of automation and its effect on
the collaborative decision making process. Also, at the heart
of our design is the principle of naturalistic decision mak-
ing which has been shown to be a necessary requirement of
such systems, thus focusing more on providing suggestions
rather than enforcing decisions and executing actions. We will
demonstrate the different properties of such a system through
examples in a fire-fighting domain, where human comman-
ders are involved in building response strategies to mitigate a
fire outbreak. The paper is written to serve both as a position
paper by motivating requirements of an effective proactive
decision support system, and also an emerging application of
these ideas in the context of the role of an automated planner
in human decision making, in a platform that can prove to be
a valuable test bed for research on the same.

Human-in-the-loop planning or HILP (Kambhampati and
Talamadupula 2015) is a necessary requirement today in
many complex decision making or planning environments.
In this paper, we consider the case of HILP where the human
responsible for making the decisions in complex scenarios is
supported by an automated planning system. High-level in-
formation fusion that characterizes complex long-term situ-
ations and support planning of effective responses is consid-
ered the greatest need in crisis-response situations (Laskey,
Marques, and da Costa 2016). Indeed, automated planning
based proactive support was shown to be preferred by hu-
mans involved in teaming with robots (Zhang et al. 2015)
and the cognitive load of the subjects involved was observed
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Figure 1: Planning for decision support must consider dif-
ference in models between the planner and the human.

to have been reduced (Narayanan et al. 2015).
Here we investigate the extent to which an automated

planner can support the humans’ decision making process,
despite not having access to the complete domain and pref-
erence models, while the humans remain in charge of the
process. This is appropriate in many cases, where the hu-
man in the loop is ultimately held responsible for the plan
under execution and its results. This is in contrast to earlier
work on systems such as TRAINS (Allen 1994), MAPGEN
(Ai-Chang et al. 2004) and (Kim, Banks, and Shah 2017)
where the planner is in the drivers seat, with the humans
“advising” the planner. This is distinct from earlier work on
mixed-initiative planning where humans enter the land of au-
tomated planners, manipulating their internal search process
– here, the planners enter the land of humans.

An important complication arises due to the fact that the
planner and the human can have different (possibly comple-
mentary) models of the same domain or knowledge of the
problem at hand (as shown in Figure 1). In particular, hu-
mans might have additional knowledge about the domain as
well as the plan preferences that the automated planner is not
privy to. This means that plan suggestions made by the au-
tomated planner may not always make sense to the human
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Figure 2: Degrees of automation of the various stages of decision support, and the role of RADAR in it.

in the loop, i.e. appear as suboptimal in her domain. This
can occur either when the human or the planner has a faulty
model of the world. This is an ideal opportunity to provide
model updates or explanations and reconcile this model dif-
ference through iterative feedback from the human.

Though having to deal with an incomplete model is the
usual case in many mixed initiative settings, i.e. an auto-
mated support component, without a full model, cannot ac-
tually generate entire plans from scratch but can sometimes
complete or critique existing ones (Manikonda et al. 2017).
The extent to which a planner can be of help is largely de-
pendent on the nature of the model that is available. Keep-
ing this in mind, in the current paper we focus on scenar-
ios which come with more well-defined protocols or domain
models, and illustrate how off-the-shelf planning techniques
may be leveraged to provide more sophisticated decision
support. Such technologies can be helpful in complex tasks
such as disaster response, where the mental overload of the
human can affect the quality of decision making.

Earlier works have applied the principles of Human-
Human Interaction (HHI) for designing a collaborative dis-
closure interface (Lesh 2004), rather than motivating the
design of automated software interfaces with principles in
Human-Computer Interaction (HCI) directly. This work, to
our knowledge, is the first to propose a proactive decision
support (PDS) system RADAR following some of the design
principles laid out in the literature in the (HCI) community,
to demonstrate possible roles that existing automated plan-
ning technologies can play in the deliberative process of the
human decision maker in terms of the degree of automation
of the planning process.

Naturalistic Decision Making The proposed proactive
decision support system supports naturalistic decision mak-
ing (NDM), which is a model that aims at formulating how
humans make decisions is complex time-critical scenarios
(Klein 2008). It is acknowledged as a necessary element in
PDS systems (Morrison et al. 2013). Systems which do not
support NDM have been found to have detrimental impact
on work flow causing frustration to decision makers (Feigh
et al. ). At the heart of this concept lies, as we discussed

before, the requirement of letting the human be in control.
This motivates us to build a proactive decision support sys-
tem, which focuses on aiding and alerting the human in the
loop with his/her decisions rather than generate a static plan
that may not work in the dynamic worlds that the plan has
to execute in. In cases when the human wants the planner
to generate complete plans, (s)he still has the authority to
ask RADAR to explain its plan when it finds it to be inex-
plicable (Chakraborti et al. 2017a). We postulate that such a
system must be augmentable, context sensitive, controllable
and adaptive to the humans decisions. Various elements of
human-automation interaction such as adaptive nature and
context sensitivity are presented in (Sheridan and Parasura-
man 2005). (Warm, Parasuraman, and Matthews 2008) show
that vigilance requires hard mental work and is stressful via
converging evidence from behavioral, neural and subjective
measures. Our system may be considered as a part of such
vigilance support thereby reducing the stress for the human.

Degrees of Automation One of the seminal works by
(Sheridan and Verplank 1978) builds a model that enumer-
ates ten levels of automation in software systems depending
on the autonomy of the automated component. Later, in the
study of mental workload and situational awareness of hu-
mans performing alongside automation software, (Parasura-
man 2000) separates automation into four parts- Information
Acquisition, Information Analysis, Decision Selection and
Action Implementation (see Figure 2). We use this system
as an objective basis for deciding which functions for our
system should be automated and to what extent so as to re-
duce human’s mental overload while supporting Naturalistic
Decision making. (Parasuraman and Manzey 2010) shows
that human use of automation may result in automation bias
leading to omission and commission errors, which under-
lines the importance of reliability of the automation (Para-
suraman and Riley 1997). Indeed, it is well known (Wickens
et al. 2010), that climbing the automation ladder in Figure
2 might well improve operative performance but drastically
reduce response quality when failures occur. Hence, to meet
the requirement of naturalistic decision making, we observe
a downward trend in automation levels (in Figure 2) as we
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Figure 3: RADAR interface showing decision support for the human commander making plans in response to a fire.

progress from data acquisition and analysis (which machines
are traditionally better at) to decision making and execution.

Interpretation & Steering For the system to collaborate
with the commanders effectively, in the context of a mixed-
initiative setting, where the planner helps the human, it
must have two broad capabilities - Interpretation and Steer-
ing (Manikonda et al. 2017). Interpretation means under-
standing the actions done by the commanders (eg. sub-goal
extraction, plan and goal recognition), while Steering in-
volves helping the commanders to do their actions (eg. ac-
tion suggestion, plan critiques). The current system mainly
addresses the decision making aspect, which requires the
ability to both interpret as well as steer effectively, even as it
situates itself in the level of automation it can provide in the
context of naturalistic decision making.

RADAR
We will now go into details of the RADAR interface and its
integration with planning technologies to enable different
forms of proactive decision support. A video walkthrough
demonstrating the different capabilities of the system is
available at https://goo.gl/c8kk3X.

The Fire-fighting Domain For the remainder of the dis-
cussion, we will use a fire-fighting scenario to illustrate our
ideas. The domain model used by the system (assumed to be
known and available for a well-defined task such as this) is
represented in PDDL and is assumed to be very close, if not
identical, to that of the expert in the loop. The scenario plays
out in a particular location (we use Tempe as a running ex-
ample) and involves the local fire-fighting chief, who along
with the local police, medical and transport authorities, is
trying to build a plan in response to the fire using the given
platform augmented with decision support capabilities.
Overview of the Interface - This interface, as shown in Fig-
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Figure 4: (1) RADAR knows that in the environment, the commander needs to inform the Fire Station’s Fire chief before
deploying big engines and rescuers. In green, Adminfire’s Fire Chief is alerted to deploy big engines from Admin Fire Station.
In red, Mesa fire stations’ Fire Chief is alerted to deploy rescuers from Mesa Fire Station. (2) The human’s model believes that
there is no need to inform Fire Chiefs and questions RADAR to explain his plan. RADAR finds these differences in the domain
model and reports it to the human. The human acknowledges that before deploying rescuers one might need to alert the Fire
Chief and rejects the update the Fire Chief needs to be alerted before deploying big engines. (3) In the alternative plan suggested
by RADAR, it takes into account the humans knowledge and plans with the updated model. (4) Clicking on ‘Explain This Plan’
generates no explanations as there are none (with respect to the current plan) after the models were updated.

ure 3, consists of four main components. This includes -
1. Planning Panel - This is the most critical part of the sys-
tem. It displays the plan under construction, and provides the
human with abilities to reorder / add / delete actions in the
plan, validate a partial plan, fix a broken plan, suggest new
better ones, provide explanation on the current one, etc. by
accessing the options at the top of the panel. This will be the
primary focus for our discussion in the upcoming sections.
2. Goal Selection Panel - This lets the user set high level
goals or tasks to be accomplished. Once a goal is selected,
the system sets up a planning problem instance given its
knowledge of the initial state of the world. It also summa-
rizes this task to the user by displaying the necessary land-
marks to be attained in order to achieve the goal.
3. Map Panel - This provides visual guidance to the decision
making process, thereby reducing the information overload
and improving the situational awareness of the human. The
map can be used to point of areas of interest, location and
availability of resources, routes, etc. Note that due to mod-
ular design, this part of the User Interface can be used to
display other relevant information for different domains by
simply changing a template file.
4. Resource Panel - The human commanders have access to
resources as seen in the tables on the right in Figure 3. For
example, the police can deploy police cars and policemen,

and the fire chief can deploy fire engines, ladders, rescuers,
etc. They can also acquire or update the availability of these
on the go by clicking on the red crosses or green tick respec-
tively, if the system’s data is stale. The system highlights
parts of the table that are relevant to the plan currently under
construction – an example of decision-driven data support.

In the following sections, we show how RADAR can help
a commander in a disaster response scenario highlighting
the degree of automation the software demonstrates in the
different stages of the decision support process. The PDDL
files can be accessed at https://goo.gl/htrmLQ.

Information Acquisition

For effective decision support, the importance of data cannot
be understated. While on one hand it must support proactive
data retrieval and integration capabilities, it must also have
abilities to generate and recognize plans, and support the
decision-making tasks of the commanders, with the help of
this data. Thus, PDS can be seen to consist of two main ca-
pabilities, data driven decision-making and decision driven
data-gathering. We call this the Data-Decision Loop.

In the current version, we assume that RADAR acquires
relevant information regarding the availability of resources
pertaining to the task at hand. We will also assume that the
system can keep track of drifting models (Bryce, Benton,
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and Boldt 2016) in the background, placing it in Degree 7
of automation. While we cannot expect the human to gather
data for the system, designing a system that can choose to
acquire and not display information (it thinks is irrelevant),
climbing up to Degree 10, is contradictory to good design
principles in automation agent design for Naturalistic Deci-
sion Making scenarios, as stated before. In the current ver-
sion of our system, we do not integrate any data sources yet,
but instead only focus on the decision making aspect.

Information Analysis

Now, we will present details on how the proposed system
can leverage planning technologies to provide relevant sug-
gestions and alerts to the human decision maker with regards
to the information needed to solve the problem. The plan-
ning problem itself is given by Π = 〈M, I,G〉 where M
is the action model, and I,G are the current and goal states
representing the current context and task description respec-
tively. Finally the plan π = πe ◦πh ◦πs is the solution to the
planning problem, which is represented as concatenation of
three sub-plans - πe is the plan fragment that the comman-
der has already deployed for execution, and πh is the set of
actions being proposed going forward. Of course, these two
parts by themselves might not achieve the goal, and this is
the role of the plan suffix πs that is yet to be decided upon.
We will demonstrate below how planning technology may
be used to shape each of these plan fragments for the better.

Model Updates. As an augmentable system, the system
must support update to the rules that govern its decision sup-
port capabilities, as required by the user, or by itself as it
interacts with the environment. Of course, such models may
also be learned (Zhuo, Nguyen, and Kambhampati 2013) or
updated (Bryce, Benton, and Boldt 2016) on the fly in cases
of failures during execution of πh or actions of the human in
response to excuses generated from the system, or to account
for model divergence due to slowly evolving conditions in
the environment. Further, the system should be, if possible,
act in a fashion that is easily understandable to the human in
the loop (Zhang et al. 2017), or be able to explain the ratio-
nale behind its suggestions if required (Kambhampati 1990;
Sohrabi, Baier, and McIlraith 2011) in a fashion easily un-
derstood by the human user (Perera et al. 2016).

Often a key factor in these settings is the difference in
the planner’s model of the domain, and the human expecta-
tion of it. Thus, a valid or satisfactory explanation may re-
quire a model reconciliation process where the human model
needs to be updated, as shown in Figure 4, in order to ex-
plain a suggestion. Here the system performs model-space
search to come up with minimal explanations to explain the
plan being suggested while at the same time not overload-
ing the human with information not relevant to the task at
hand (Chakraborti et al. 2017a). Note that here the human
has the power to veto the model update if (s)he believes that
the planner’s model is the one which is faulty, by choosing to
approve or not approve individual parts of the explanation.
Thus, the system here displays Degree 5 of automation.

Plan Summarization. As we mentioned before, when a
task or high level goal is selected by the human, RADAR au-

Figure 5: Once a goal is selected, the problem file is gener-
ated and the landmarks are computed to help the commander
be on track to achieve the goal.

tomatically generates the corresponding planning problem
in the background, analyses the possible solution to it, and
highlights resources required for it to give the human an
early heads-up. It can, however, do even more by using land-
mark analysis of the task at hand to find bottlenecks in the
future. Briefly, landmarks (Hoffmann, Porteous, and Sebas-
tia 2004) are (partial) states such that all plans that can ac-
complish the tasks from the current state must go through it
during their execution, or actions that must be executed in
order to reach the goal. These are referred to as state land-
marks and action landmarks respectively. Clearly, this can be
a valuable source of guidance in terms of figuring out what
resources and actions would be required in future, and may
be used to increase the decision maker’s situational aware-
ness by summarizing the task at hand and possible solutions
to it in terms of these landmarks. In the current system, we
use the approach of (Zhu and Givan 2003) for this purpose.
Figure 5 illustrates one such use case, where the system au-
tomatically computes and displays the landmarks after the
human selects the goal, thus exhibiting characteristics of De-
gree 7 automation of information analysis.

Plan Validation Plan failure occurs when the plan frag-
ment πe that has already been dispatched for execution
and/or the sub-plan πh currently under construction are not
valid plans, i.e. δ(I, πe ◦ πh) |= ⊥. From the point of view
of planning, this can occur due to several reasons, ranging
from unsatisfied preconditions to incorrect parameters, to
the model itself being incorrect or incomplete. Errors made
in πh that can be explained by the model can be easily
identified using plan validators like VAL (Fox, Howey, and
Long 2005) , while errors in πe should be used as feedback
(context-sensitive) so that the system, in looking forward,
may have to re-plan (adaptive) from a state s �= δ(I, πe).

Of course, the goal may be unreachable given the current
state (for example, due to insufficient resources). This can
be readily detected via reachability analysis using planning
graph techniques. This is supported by most planners, in-
cluding Fast-Downward (Helmert 2006). Once the sys-
tem detects a state with no solution to the planning problem,
apart from alerting the human to this situation itself, it can
choose to suggest an alternative state I∗ where a solution
does exist, i.e. ∃π s.t. δ(I∗, π) |= G. This can provide guid-
ance to the human in how to fix the problem in situations be-
yond the system’s control/knowledge, and may be achieved
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Figure 6: The lack of big engines at all the fire stations results in an initial state for the planning problem from which no plan is
possible to achieve the goal of Extinguishing Big Fire at BYENG. RADAR reports this as a warning and suggests the minimal
number of resources the commander needs to gather to arrive at a start state from which a plan is actually possible.

using excuse generation techniques studied in (Göbelbecker
et al. 2010) and plan revision problems (Herzig et al. 2014).
We achieved this using a slightly modified version of the
model-space search technique introduced by (Chakraborti et
al. 2017a) - where we create a new model with an initial
state that has all the resources available and then find the
minimum set of changes in our (current) faulty model which
are consistent with the new model to guarantee feasibility.

Decision Selection

The decision selection process is perhaps closest to home
for the planning community. Referring back to our discus-
sion on naturalistic decision making, and the need for on-
demand support, we note that the system is mostly restricted
to Degree 3 and 4 of automation with respect to decision
selection. We will go through some salient use cases below.

Plan Correction or Repair In the event πh is invalid and
may be repaired with additional actions, we can leverage the
compilation pr2plan from (Ramı́rez and Geffner 2010)
for a slightly different outcome. The compilation, originally
used for plan recognition, updates the current planning prob-
lem Π to Π∗ = 〈M∗, I∗,G∗〉 using πh as a set of observa-
tions such that ∀a ∈ πh is preserved in order in the (optimal)
solution π of Π∗. The actions that occur in between such ac-
tions in the solution π to the compilation may then be used as
suggestions to the user to fix the currently proposed plan πh.
Figure 7 illustrates one such use case, demonstrating Degree
3 of automation - i.e. the system only complements the deci-
sion process when asked, and provides the human an option
to undo these fixes at all times. Note that since the deployed

actions are required to be preserved (and the suggested ac-
tions preferably so) when looking ahead in the plan genera-
tion process, we will use Π∗ for all purposes going forward.

Action Suggestions The most basic mode of action sug-
gestion would be to solve the current planning problem
Π∗ using an optimal planner such as Fast-Downward
(Helmert 2006) and suggest the plan suffix πs as the best
course of action. Of course, the actions suggested by the
commander in πh may themselves be part of a sub-optimal
plan and may thus be improved upon. Here we again use an
existing compilation from (Ramı́rez and Geffner 2010) for a
slightly different purpose than originally intended. Given a
known goal, we find out if the choice a ∈ πh is sub-optimal
using the difference in cost Δ = C(π̂) − C(π) where π̂ is
the solution to the planning problem 〈M∗, I∗,G∗ + a〉 as
given by pr2plan. This is again shown in Figure 7.

Monitoring Plan Generation In cases where there are
multiple ways to achieve the goal, and the system is not
aware of the user’s implicit preferences P , (Ramı́rez and
Geffner 2010) can be used to compile the goal into G∗ ←
G +P and check for correctness or likelihood of P (G∗|πe ◦
πh), the current hypothesis. This is used by RADAR in deter-
mining the response to suggest or fix any hypothesis.

Plan Suggestions One useful way of increasing the sit-
uational awareness of the human decision maker is to
make him/her aware of the different, often diverse, choices
available. Currently, when asked for alternative plans,
RADAR provides an optimal plan as a suggestion. This may
not be always desired. Moreover, if landmarks are disjunc-
tive, just alerting the commander of these landmarks may
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Figure 7: RADAR’s ‘Fix’ button does plan correction, provid-
ing action suggestions. The ‘Suggest’ provides actions and
plan suggestions to help achieve the goal.

not be enough to tell how they contribute to the planning
choices. In such cases, the concept of diverse (Nguyen et al.
2012) and top-K plans (Riabov, Sohrabi, and Udrea 2014)
become useful. We are exploring avenues of integrating
these techniques into our current system.

Action Implementation

The current system does not provide any endpoints to ex-
ternal facilities and thus lies at Degree 1 of automation in
the Action Implementation phase. Some of these tasks can
however be automated - e.g. in our fire-fighting domain the
human can delegate the tasks for alerting police-stations and
fire-stations to be auto-completed. Thus, RADAR can poten-
tially range from Degrees 1 to 6 in this phase. However,
given how such systems are known for failing to capture the
complexity of these scenarios, including some of the mixed
initiative schedulers from NASA, the execution phase is of-
ten just left to the human operators completely, or firmly
at the lower spectrum of the automation scale. Recent at-
tempts (Gombolay et al. 2015; Chakraborti et al. 2017b)

Figure 8: RADAR does plan validation of a partial plan made
by the user and shows reasons as to why it is invalid.

at learning such action models and preferences in mixed-
initiative schedulers and automated technical supports set-
tings might provide interesting insights into climbing the
automation levels at the final stage of decision support for
planning, without significant loss of control.

Conclusion and Future Work

In conclusion, we motivated the use of automated planning
techniques in the role of an assistant in the deliberative pro-
cess of an expert human decision maker providing a detailed
overview of our platform RADAR. We also showed how these
capabilities complement the design principles laid out in the
Human Computer Interface (HCI) community for such soft-
wares. We look forward to conducting human studies with
domain experts to evaluate RADAR’s effectiveness in provid-
ing data-driven decision support and learning useful metrics
to improve its decision-based data gathering aspect.
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