
Spyglass: A System for Ontology Based Document Retrieval and Visualization

John Rushing, Todd Berendes, Hong Lin, Cody Buntain and Sara Graves
Information Technology and Systems Center

University of Alabama in Huntsville
Huntsville, AL 35899

{jrushing, tberendes, alin, cbuntain, sgraves}@itsc.uah.edu

Abstract

This paper describes the Spyglass tool, which is designed to
help analysts explore very large collections of unstructured
text documents. Spyglass uses a domain ontology to index
documents, and provides retrieval and visualization services
based on the ontology and the resulting index. The ontol-
ogy based approach allows analysts to share information and
helps to ensure consistency of results. The approach is also
scalable and lends itself very well to parallel computation.
The Spyglass system is described in detail and indexing and
query results using a large set of sample documents are pre-
sented.

Introduction

Many enterprises have large collections of documents that
they need to manage, search and analyze. Documents vary
in the amount of structural metadata that is associated with
them, from purely unstructured text, to text annotated with
semantic metadata tags, to highly structured forms where
each field has a specific well known meaning. In general,
unstructured text documents present the greatest challenge
because all information used to index, search and analyze
the documents must be derived from the documents them-
selves. A wide variety of approaches have been used for re-
trieval and analysis of unstructured text documents, includ-
ing keyword search, clustering (Zhao and Karypis 2005),
supervised classification (Joachims 1998), ontology based
approaches (Castells, Fernandez, and Vallet 2007) (Fluit,
Sabou, and van Harmelen 2005), and others.

Ontological approaches to document retrieval have key
advantages over pure keyword based searches. Keyword
based systems leave it up to the users to define every possi-
ble term needed to find the entities of interest, with the result
that analysts end up duplicating effort and possibly miss-
ing important terms. Consider for example an analyst that
wishes to find all documents that refer to energy companies.
There are hundreds of such companies, and each has a name,
stock symbol, address, president and so on. Constructing a
keyword query that includes all of those names (including
singular and plural forms and common misspellings) would
be quite cumbersome.

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Ontological approaches solve this problem by providing a
structure and vocabulary that is used to describe the domain
of interest. Ontologies consist of classes (general categories
of things), and instances (the things themselves). The enti-
ties in the ontology have properties that describe their char-
acteristics, and links to other entities in the ontology. On-
tologies are typically created by domain experts, sometimes
with the assistance of knowledge engineers. Using an on-
tology based approach, the required information is specified
once, and then that information is available for use in all sub-
sequent queries. The ontology provides a means for analysts
to share their knowledge about their domain of interest.

Ontological approaches also have advantages over black
box analysis methods such as clustering and classification.
The primary disadvantage of these methods is that the an-
alyst does not have any understanding of how the system
is functioning, and if they notice that it is making mistakes
it is hard for them to fix it. The similarity measures cho-
sen by the machine learning methods may be statistically
relevant, but may be of no interest to the analysts. Ontol-
ogy based systems on the other hand are easy for the an-
alysts to understand because the information used to index
and retrieve documents is explicitly specified, and can be
updated and changed as needed. Another disadvantage of
clustering and classification methods is that they are typi-
cally based on TF/IDF features. Although efficient parallel
methods for computing these features exist (Rushing, Beren-
des, and Graves 2007), the dictionaries and indexes required
by these methods are far larger than those generated for on-
tology based methods since they include every term that ap-
pears in the corpus rather than only those of interest.

The main disadvantage of ontology based approaches is
the amount of effort required to create the ontology. Ontol-
ogy based systems have been very successful in focused do-
mains such as medicine (Loganantharaj and Narayan 2006),
but may be difficult to employ in other areas where the num-
ber of potential entities of interest is too large to specify. In
those cases, it is possible to partially automate the ontology
construction process by using the relationships present in the
documents themselves to learn ontological structures (Bloe-
hdorn, Cimiano, and Hotho 2005). However, even when au-
tomated methods are used work is still required to ensure
quality and correct errors.

Spyglass is an ontology based document indexing and

93

Proceedings of the Twenty-Second International FLAIRS Conference (2009)



Figure 1: Spyglass Client User Interface

retrieval system with associated visualization capabilities
designed to facilitate analysis of unstructured textual data.
Spyglass allows analysts to visually explore potential rela-
tionships between ontology entities in the document sets of
interest, and quickly access documents or contexts contain-
ing those relationships. Both indexing and query perfor-
mance are primary concerns and the system is designed to
scale well to very large document repositories.

Spyglass consists of two components: a client side graphi-
cal user interface and a server side indexing component. The
server consists of an indexer and a web-based query service
that supports both retrieval of documents and visualization.
The indexer is capable of running both in single processor
environments and on computing clusters using the Message
Passing Interface (MPI) for communication between nodes.
The Spyglass client is implemented as a Java application
and has been tested on a variety of platforms including Mi-
crosoft Windows XP and Vista, RedHat and SUSE Linux
and Mac OS X. A Spyglass demo is available for download
at http://www.itsc.uah.edu/spyglass.

Spyglass Client

The Spyglass user interface is designed for ontology based
document search and retrieval. The Spyglass user interface
is shown in Figure 1. The interface consists of several com-
ponents: an ontology tree browser (upper left), a title and
document browser (right), a set of document filters (lower
left), and a set of visualization panes (center). The tree
browser shows the structure of the ontology and is used to
select ontology items. The title and document browser is
used to show the results of searches and to select and view
documents. The document filters limit the scope of searches
and visualizations, allowing the user to constrain the search
by date, classification level and matching distance for in-
tersection queries. The visualization panes show different
views of the structure of the ontology and the relationships
between ontology items and the document set.

The views interact with one another via ontology item se-
lections. When a class or instance is selected in one view,
it shifts the focus of the other views to the same item when-
ever that is possible. The primary way to select items is by

Figure 2: Ontology Tree View

double clicking on them in the tree view. Some of the visual-
izations also support selection while others are there merely
to provide information.

Ontology Exploration

Spyglass includes several views of the ontology, each of
which may be used to select classes and instances for vi-
sualization and retrieval. The ontology views show both the
structure of the ontology and how the documents in the col-
lection map onto the ontology. These views allow the ana-
lyst to see what information is available and also to identify
gaps or errors in the ontology.

Ontology Tree View The ontology tree view shows the
ontology in a traditional hierarchical fashion. Classes are
distinguished by a yellow circle, while instances are shown
with purple diamonds. Classes may be expanded to show
their subclasses or component instances. The ontology tree
view is the primary means of selecting ontology items. Dou-
ble clicking on any item in the tree view selects that item in
the remainder of the user interface. The selected class or in-
stance is the object of focus in the visualization panes, and
a list of documents ranked by relevance to the selected item
is shown in the title browser. An example of the tree view is
shown in Figure 2.

3D Structural View The 3D View pane is designed to fa-
cilitate a user’s better understanding and intuitive feeling of
the ontology displayed in the tree browser. To this end, the

94



Figure 3: 3D View of the Corporation Class

scene displays the selected class or instance from the Tree
Browser in the center of the view and connects that central
instance with all other classes or instances to which it is re-
lated. As shown in Figure 3, the hierarchy of specialization
and inheritance is shown by the “isA” relationships above
the central object. Further specializations of the central ob-
ject are also visible as “isA” relationships below the cen-
tral object. The relations between the central object (in this
case, the “Corporation” class) and other classes are denoted
by the horizontal radial connections spanning out from the
central object. Lastly, when the scene is focused on a class
object, the instances of that class are contained within the
small, purple sphere (representing composite objects) con-
nected to the central object by the “instanceOf” relationship.
This view and two other 3D views available in Spyglass are
described in more detail in (Buntain 2008) and are docu-
mented in the Spyglass User Guide.

Size View The size view is designed to show at a glance
how the documents in the collection map onto the ontology.
The size view pane shows the number of documents asso-
ciated with each class and instance in the ontology in a hi-
erarchical fashion. Each class is displayed as a yellow box,
and each instance is displayed as a green box. The struc-
ture of the layout mirrors the structure of the ontology, so
the box for each class includes all of its subclasses and in-
stances. The boxes are sized so that the size of the box on the
screen is roughly proportional to the number of documents
associated with the class or instance that the box represents.
It is possible to zoom in or out to focus on a specific class
or instance. The selections made in the filter pane limit the
number of documents included in the counts, so it is possi-
ble to see the document mapping for a specific date range.
An example of the size view is shown in Figure 4.

Document Browse and Retrieval

The document browse pane shows the lists of documents as-
sociated with the selected class or instance, and the results
of intersection queries. A tab is created for each class or
instance selection or each intersection query. Each tab con-

Figure 4: Size view with focus on corporation class

tains a sorted list of document headers, where each header
contains the document id, document title, and score for the
document with respect to the selected item. The docu-
ment filters limit which documents appear in the list, so the
searches can be limited by date or classification level.

Clicking on a title in a list displays the contents of the
document in the document pane directly below the title list.
There are several options for highlighting terms in the se-
lected document and navigating within the document. The
user can highlight the terms associated with the selected
class or instance, highlight all ontology terms, or search the
document for a text string by keying it in. By using the
“First”, “Next”, “Prev”, and “Last” buttons, the user can
jump directly to the first, next, previous, and last highlighted
terms in the text. Additionally, the arrow keys, page up, page
down, home, and end keys can be used to navigate the text
highlighting. An example of the document browse pane is
shown in Figure 5.
Document Fingerprint View Once a document has been
selected, it is possible to see its contents at a glance using
the document fingerprint view. The view contains one line
for every instance in the ontology that occurs in the doc-
ument, sorted by the number of times the instances occur.
The instances are color coded based on the class that the in-

95



Figure 5: Document Browse Pane

stances belong to. A histogram is shown on the right side of
the view that shows the relative frequency of occurrence of
the instances in a graphical fashion. Other researchers have
used similar views for literary analysis (Keim and Oelke
2007), mapping contents of a document onto a a color coded
grid. These views allow the user to quickly compare doc-
ument contents visually without having to read the entire
document. An example of the document fingerprint view is
shown in Figure 6.

Exploring Relationships Between Entities

Spyglass has several views dedicated to exploring relation-
ships between ontology entities. One purpose of these views
is to help the analyst identify places where different topics of
interest appear in the same context. The views can also give
an indication of which entities may be related to one another
by showing how often the entities co-occur in the document
repository.

Figure 6: Fingerprint View

Intersection View The purpose of the intersection view is
to locate documents that contain multiple entities of interest,
and to see which instances occur together in one or more
documents. When an instance is selected, the view shows
the number of documents associated with that instance. In
addition, the view shows the number of documents that con-
tain both the selected instance and every other instance in the
ontology. The other instances are sorted by the frequency
of cooccurrence with the selected instance. When multiple
instances are selected, the view shows the number of docu-
ments that contain both all of the selected instances and any
of the other instances in the ontology.

Selected instances are denoted by filled boxes to the left
of the instance name. Instances can be added to the inter-
section or removed from it by clicking on the box. When
instances are selected in the intersection view, a list of doc-
uments containing those instances is displayed in the inter-
section tab on the document browse pane. It is possible to
limit the scope of the intersection search by date range and
by granularity using the options set in the filter pane. If a
date range is specified, only those documents that match the
date range will be returned. The granularity slider can be
used to control the size of the context in which to search
for intersections. The granularity can be set from document
level (default) down to a context of a few words. This is
useful especially when the corpus has large documents that
may have multiple topics.

An example of the intersection view is shown in Figure
7. In this view, the instances “United States of America”,
“ExxonMobil” and “General Motors” are selected. A total
of 64 documents in the repository contain references to all
three of those instances. On the next line down the entry
for “Ford” indicates that 36 documents contain references to
“Ford” and the three selected instances. The view shows all
the possible candidates for narrowing the search.

96



Figure 7: Intersection View

Information Molecule View The information molecule
view provides a visual means of exploring how ontology in-
stances are related in the document set. The view shows a
circle for each selected instance where the size of the cir-
cle is proportional to the log of the number of documents
related to that instance. A line is drawn between each pair
of selected instances where the thickness of the line is pro-
portional to the log of the number of times the instances co-
occur. As in the intersection view, the granularity slider is
used to determine the distance in the document used to check
for matches.

Instances can be added to the view by selecting those in-
stances from the tree browser on the left hand side of the
interface. In addition, there are several shortcuts that can be
used to construct the view. If a class is selected, all instances
of that class are added to the view. There is an “Expand”
feature that adds to the view all instances that have cooccur-
rences with the selected instance. There is also a “Purge”
feature that removes from the view all instances that do not
have any cooccurrences with the selected instance. These
features serve a similar purpose to the interactive list view
of the Jigsaw tool (Stasko et al. 2007), allowing users to it-
erate through multiple related entities or concepts to find the
topics of interest.

When instances are added they are placed relative to the
instances already in the view. The placer puts instances close
together if they share documents, and also tries to spread the
view out so that no instances overlap. The view can be au-
tomatically replaced with the selected instance in the center
by right clicking anywhere in the view. An example of the
information molecule view is shown in Figure 8.

Figure 8: Information Molecule View

Spyglass Server

The Spyglass server is a web based service that accepts
queries from the client and returns documents and other in-
formation used for the visualizations. The server comes with
a set of utilities to read an ontology and index a collec-
tion of unstructured text documents. The documents must
be packaged and indexed before the server can make them
available to the client. The server components are all imple-
mented in C++ and have been built and tested on a variety
of UNIX-like environments including RedHat Linux, SUSE
Linux and Mac OS X.

Ontology Based Indexing

The Spyglass server begins by packaging the input text files
into binary packages, typically with about 10000 documents
per package. This is done for performance reasons, as most
file systems do not handle large numbers of files very well.
For example, the news data set typically used to test the Spy-
glass application has just over 4.5 million documents in it,
and it takes about 10 hours to read the documents and cre-
ate the text packages. Once the packages are created, the
indexer is able to read and index the entire document col-
lection in less than ten minutes. The packaging takes place
once as the documents are added to the system.

Once the binary text packages are created, the ontology is
used to index the packages. Spyglass currently works with
ontologies created by the Protege tool (Protege 2007), al-
though ontologies in other formats may be supported in the
future. The indexer constructs a state based parser directly
from the terms in the ontology. All of the instance and class
names are incorporated directly. In addition, the indexer

97



looks for a special slot labeled “aliases” that contains addi-
tional names for the instance or class. Typically, the aliases
would contain alternate names, nicknames, acronyms, com-
mon misspellings and any other terms that could by used to
identify the object in question.

The state based parser used by the indexer requires only
one pass through the text no matter how many terms are in
the ontology. For each term match, the indexer writes the
document id, term id, and offset within the document to a
binary file. The indexer produces a file containing all the
hits ordered by document, and then uses that to produce ad-
ditional indexes ordered by instance and by class. If new
documents are added to the repository, the indexer will work
incremntally, running only on those documents that have not
already been indexed.

Web Based Services and Queries

The Spyglass server is implemented as a web based ser-
vice. Initial versions of the server were based on relational
databases, but the queries required by the intersection and
molecule views required custom services to achieve suitable
performance. The intersection view requires the counts for
the number of documents or contexts shared by the selected
instances and every other instance in the ontology. The
molecule view requires the intersection counts for every pair
of instances in the ontology. These values cannot be precom-
puted because they are different for any combination of filter
parameters (date range and granularity) required. The cur-
rent implementation is based on shared memory. The table
required for the molecule and intersection queries is loaded
into a shared memory segment on the first invocation of the
server. The table remains in shared memory for all subse-
quent invocations. Some of the queries supported by the
server include:

• Retrieve the files for an ontology
• Retrieve the text for a document by document id
• Get scores for each instance and class for a document
• Get a sorted list of documents associated with a class
• Get a sorted list of documents associated with an instance
• Get the number of common documents or contexts for ev-

ery pair of instances
• Get the number of common documents or contexts for a

set of instances intersected with every other instance

For the test document set of 4.5 million documents in-
dexed with an ontology containing 1882 terms the server is
able to perform all but the pairwise intersection queries in
one second or less. The pairwise intersection query takes
about three seconds on average, but it is required only when
the filter parameters change, as the pairwise intersection
counts are cached on the client. The results were achieved
using a server running on an iMac with an Intel Core 2 Duo
processor running at 2.16 GHz and 2 GB of RAM.

Conclusions

The Spyglass system for indexing, retrieval and visual analy-
sis of unstructured text documents has been described. Spy-

glass is a scalable platform independent software tool ca-
pable of indexing millions of documents and supporting in-
teractive query response for visualization. Spyglass is based
on domain specific ontologies, which allow analysts to spec-
ify entities of interest and share information with one an-
other. The use of ontological indexing allows the system to
scale better than products based on TF/IDF features or other
similar structures because only terms of interest are indexed
rather than all terms. The ontological structure also provides
a starting point for visualization, and when the documents
are mapped onto the ontology it is possible to see relation-
ships among the entities that are revealed by the cooccur-
rence of those entities within the document set. Spyglass
has a rich set of visualization tools that help analysts iden-
tify and explore these relationships.

References

Bloehdorn, S.; Cimiano, P.; and Hotho, A. 2005. Learning
ontologies to improve text clustering and classification. In
Proceedings of the 29th Annual Conference of the German
Classification Society (GfKl). Springer.
Buntain, C. 2008. 3d ontology visualization in semantic
search. In The 46th ACM Southeast Conference.
Castells, P.; Fernandez, M.; and Vallet, D. 2007. An adap-
tation of the vector-space model for ontology-based infor-
mation retrieval. IEEE Transactions on Knowledge and
Data Engineering 19(2):261–272.
Fluit, C.; Sabou, M.; and van Harmelen, F. 2005.
Ontology-based information visualization: towards seman-
tic web applications. In Chen, C., and Geroimenko, V.,
eds., Visualizing the Semantic Web. Springer-Verlag.
Joachims, T. 1998. Text categorization with support vec-
tor machines: Learning with many relevant features. In
Proceedings of ECML-98, 10th European Conference on
Machine Learning, 137–142.
Keim, D. A., and Oelke, D. 2007. Literature fingerprint-
ing: A new method for visual literary analysis. In IEEE
Symposium on Visual Analytics Science and Technology,
115–122.
Loganantharaj, R., and Narayan, V. B. 2006. Sempub:
An ontology based semantic literature retrieval system. In
Proceedings of the 19th IEEE Symposium on Computer-
Based Medical Systems, 875–880.
Protege Project: Stanford University. 2007.
http://protege.stanford.edu.
Rushing, J.; Berendes, T.; and Graves, S. 2007. Efficient
parallel computation of inverse document frequency fea-
tures for text mining. In The 2007 International Confer-
ence on Data Mining.
Stasko, J.; Gorg, C.; Liu, Z.; and Singhal, K. 2007. Jigsaw:
Supporting investigative analysis through interactive visu-
alization. In IEEE Symposium on Visual Analytics Science
and Technology, 131–138.
Zhao, Y., and Karypis, G. 2005. Hierarchical clustering al-
gorithms for document datasets. Data Mining and Knowl-
edge Discovery 10(2):141–168.

98




