
Learning Behavior from Limited
Demonstrations in the Context of Games

Brandon Packard,Santiago Ontañón
Drexel University

Philadelphia, PA, USA
{btp36,so367}@drexel.edu

Abstract

A significant amount of work has advocated that Learning
from Demonstration (LfD) is a promising approach to allow
end-users to create behaviors for in-game characters with-
out requiring programming. However, one major problem
with this approach is that many LfD algorithms require large
amounts of training data, and thus are not practical. In this pa-
per, we focus on LfD with limited training data, and specif-
ically on the problem of Active Learning from Demonstra-
tion in settings where the amount of data that can be queried
from the demonstrator is limited by a predefined budget. We
extend our novel Active Learning from Demonstration ap-
proach, SALT , and compare it to related LfD algorithms in
both task performance (reward) and similarity to the demon-
strator’s behavior, when used with relatively small amounts of
training data. We use Super Mario Bros. and two variations of
the Thermometers puzzle game as our evaluation domains.

Introduction

This paper focuses on Learning from Demonstration (LfD),
also known as Learning from Observation, Behavioral
Cloning, Imitation Learning or Apprenticeship Learning.
LfD is the problem an agent faces when learning to per-
form a task by watching the performance of a demonstra-
tor. LfD has been proposed many times as a solution to the
problem of behavior authoring (and often within the context
of games, employing tactics such as Inverse Reinforcement
Learning (Tastan and Sukthankar 2011), Neural Networks
(Stanley et al. 2005), or C4.5 decision trees (Young and
Hawes 2014), to name a few). However, most current LfD
approaches assume access to a large amount of training data,
which is not always feasible. If LfD is to be used to solve be-
havior authoring, this would imply the human author would
have to demonstrate the desired behavior an unreasonable
number of times in order to generate enough training data.

In order to address this problem, this paper presents a new
LfD setting for SALT : LfD with a maximum demonstra-
tor query budget. We extend the SALT framework intro-
duced in our previous work (Packard and Ontañón 2017) to
this setting via defining a collection of new SALT strategies
which accept a predefined budget. In this context, we define
“demonstrator query budget” as the amount of training data

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the learning agent is allowed to request from the demonstra-
tor. We compare SALT to existing LfD algorithms (includ-
ing DAgger (Ross et al. 2010), SafeDAgger (Zhang and
Cho 2016), and a standard supervised approach).

The rest of this paper is organized as follows. After briefly
describing some background, our algorithm and experimen-
tal setup are described. Our experimental results are then de-
tailed, followed by related work. The paper then concludes
with conclusions and future work.

Background

Learning from Demonstration (LfD) is a type of machine
learning that focuses on learning to perform a task by ob-
serving the actions of a demonstrator. LfD is very common
in humans (Schaal 1997; Heyes and Foster 2002), who of-
ten look to a teacher for information on how to perform a
task. The overall goal of LfD is, given training data consist-
ing of a set of trajectories gotten from a demonstrator, derive
a policy which allows the learner to choose an action based
on a current observed world state (and which will match the
demonstrator’s policy as closely as possible). The reader is
referred to Argall et al. (2009) for a formal definition of LfD.

Many LfD approaches in the literature today are based on
supervised learning, and therefore ignore the fact that LfD
violates the i.i.d. assumption1. Some existing algorithms at-
tempt to account for this violation, such as DAgger (Ross
et al. 2010) and SMILe (Ross and Bagnell 2010). However,
these have limitations for human demonstrators.

One of those limitations is that existing LfD algorithms
often require too much training data to be practical for hu-
man demonstrators, as they tend to require the demonstrator
to provide a large number of training instances in order to
have enough training data to effectively train a learner. Ac-
tive LfD approaches tend to exacerbate the problem further
– not only does the demonstrator need to provide demon-
strations, but they also need to be able to respond to queries
that the learner makes. For example, a human demonstrator
might have to play or relabel as many as 660 levels of Super
Mario in order to effectively train an agent using DAgger
(Ross et al. 2010). DAgger , proposed by Ross et al., is an-
other active Learning from Demonstration algorithm that at-

1That instances from the training and test set are independently
and identically distributed.

The Thirty-First International Florida
Artificial Intelligence Research Society Conference (FLAIRS-31)

86

tempts to account for the violation of the i.i.d. assumption
(Ross et al. 2010). The idea behind DAgger is to take learn-
ing data from a series of traces of the demonstrator perform-
ing a task, and train a learner on that data. The algorithm
then repeats the process, but reduces how often the demon-
strator is used more and more in each iteration (replacing it
more and more with the learner), still storing the states that
are encountered as well as the actions that the demonstrator
would have taken (regardless of who is controlling). After
a set number of iterations, the version of the learner which
performs the best in validation is chosen as the final policy.

Selective Active Learning from Traces

This section briefly introduces SALT (Selective Active
Learning from Traces), designed to reduce the cognitive
burden of the demonstrator in LfD.The reader is referred
to (Packard and Ontañón 2017) for a more in-depth descrip-
tion of SALT .

The overall idea of SALT is the following: Let Dl be the
distribution of states in the training set from which the agent
has learned and Dt the distribution of states the agent would
encounter when executing the learned policy. Due to LfD’s
violation of the i.i.d. principle, small errors in trained strate-
gies can compound when testing (Ross and Bagnell 2010).
This can cause Dt to be potentially very different from Dl.
SALT is an iterative algorithm (like DAgger) which at-
tempts to collect training data which will make Dt and Dl

as similar as possible by letting the demonstrator and the
learning agent take turns in performing the task. The main
difference with respect to DAgger is in how the learner and
the demonstrator share control. SALT monitors whether the
current state the learner is in is within Dl. If the learner
leaves Dl, the demonstrator is given control until the state
is back in Dl. This means that control between the learner
and demonstrator is not done stochastically, as in DAgger .
Training data is generated only when the demonstrator is in
control, so the demonstrator does not need to provide actions
for states encountered when not in control. These qualities
help reduce the cognitive burden on human demonstrators.

The key to make SALT work is determining when to give
control to the demonstrator, and when to give it back to the
learner. Three strategies are used to make these decisions:

• ρs: determines when the learner has moved out of Dl.

• ρb: when control is given to the demonstrator, it might be
interesting to back-up the world for a few time instants,
to collect training data on the sequence of states that led
to the learning agent falling outside of Dl. This strategy
determines how far the world state should be backed up
before allowing the demonstrator to perform the task.

• ρd: determines how long the demonstrator should perform
the task before the learner is given back control.

In the experiments reported in this paper, we tested several
different variants for ρs, which offer different ways of de-
tecting when the learner has moved out of Dl based on how
well the task is being performed or the actions the demon-
strator would have made. We experimented with a single
variant for ρb, which never backs up the world state. Finally,

two variants were used for ρd, which determine whether
control should be given back to the learner based on either
how far along performing the task the learner should have
been when it moved out of Dl or the completion of a sin-
gle trajectory. Detailed descriptions of the variants of these
three strategies used in our experiments are provided below.

The training data used by SALT is in the form of demon-
strations or trajectories, where a “trajectory” is defined as
one run of the game (playing one level, solving one board,
etc). Moreover, SALT is an iterative algorithm where at
each iteration a set of C trajectories are collected. At the end
of each iteration, SALT re-trains the learning agent with all
the training data collected so far. In the experiments below,
we executed SALT for a fixed number of iterations, N . For
each of the N iterations excluding the first, the learner per-
forms the task until strategy ρs determines that the learner
has moved out of Dt. The state is then backed up a num-
ber of ticks, as determined by ρb, and then the demonstrator
is given control until ρd determines the state is back in Dt.
States the demonstrator encounters while controlling and its
actions are added to the training data for the next iteration
(See Algorithms 1 and 2 for the detailed procedure).

Moreover, several variants of SALT strategies used in this
work assume the existence of a reward function R. R is as-
sumed to be a function that gives a numeric accumulated
reward to the agent at each time step representing how well
the agent is doing overall, not just in the current state or last
action (for example, in the context of video games the scor-
ing mechanism of the game could be the reward function).

LfD with a Demonstrator Query Budget

In order to reduce the amount of training data that a hu-
man demonstrator would have to provide, this paper intro-
duces the idea of a demonstrator query budget. As described
above, the operation of active learning from demonstration
algorithms (such as SALT or DAgger) can be divided into
two separate steps: in a first step the demonstrator just per-
forms the task at hand to generate an initial set of training
data (the first iteration of SALT or DAgger). During the
second step (the remaining iterations), the learning agent is
the one performing the task, but can query the demonstra-
tor for additional training data. We define the demonstrator
query budget, B, as the limit of the number of training in-
stances that the learning agent can request from the demon-
strator during this second step. Once the budget is reached,
the learner cannot obtain any more data from the demonstra-
tor. This reduces the amount of training data and rewards
methods that query the demonstrator most effectively.

We experimented with two different scenarios: (a) global
demonstrator query budget, where the budget B is given to
the learner at once, with the learner deciding how to split
the budget over iterations; and (b) per-iteration demonstra-
tor query budget, where the learning agent is given a budget
B/(N −1) for each iteration of SALT (except for the first).

Budget-Aware SALT Strategies

Specifically, in this work we examined seven possible vari-
ants of ρs, which determines when the learner has moved
out of Dl, and thus the demonstrator is asked to take over:

87

• ρSS
s (Simple Stochastic): signal the learner has exited Dl

with probability P = |ERt−Rt|
max , where ERt is the ex-

pected demonstrator reward at the current time t (esti-
mated from the data collected during the first iteration of
SALT), Rt is the learner’s reward at the current time, and
max is the maximum possible reward for the domain.

• ρ≤s (Reward Doesn’t Increase): signal the learner has ex-
ited Dl if the learner’s reward has not increased compared
to the previous time step (i.e., if Rt ≤ Rt−1).

• ρMD
s (Minimum Distance): using Euclidean distance, the

most similar game state s∗ from the set of states the
demonstrator visited during the first iteration of SALT
to the current game state st is found. If the distance be-
tween st and s∗ is higher than a threshold value α, signal
the learner has exited Dl. In our experiments, α was cal-
culated by averaging the minimum distances from each
state the demonstrator visited during the first iteration of
SALT to any other state visited during that iteration.

• ρPseudo
s (PseudoDAgger): signal the learner has ex-

ited Dl with probability RemainingBudget
B , where

RemainingBudget is the query budget left.

• ρW.SS
s , ρW.≤

s , and ρW.MD
s : These strategies are the same

as ρSS
s , ρ≤s , and ρMD

s respectively, but with their chance
to signal multiplied by RemainingBudget

B .

We also examined two possible variants of ρd, which de-
termines for how long to give control to the demonstrator:

• ρRG
d (Reward Goal): Signals to give control back to the

learner when the learner’s accumulated reward reaches
the demonstrator’s expected accumulated reward for the
time step at which the demonstrator took control.

• ρEOT
d (End of Trajectory): Signals to not give control

back to the learner until the end of the current trajectory.

Finally, only one variant of ρb was used:

• ρ0b (Back-0): Does not back up the world state when the
demonstrator is given control.

Algorithm 1 SALT (ρs, ρb, ρd, C, N)

1: Sample C-step trajectories using π∗ (the demonstrator’s
policy)

2: Initialize D ← {(s, π∗(s))} - all states visited by the
demonstrator and the actions it took

3: Train classifier π1 on D
4: for i = 1 to N do
5: Initialize Di ← ∅
6: for j = 1 to C do
7: Di = Di ∪ runOneTrajectory(πi, ρs, ρb, ρd)
8: end for
9: Aggregate datasets: D ← D ∪Di

10: Train classifier πi+1 on D
11: end for
12: return best πi on validation data

Algorithm 2 runOneTrajectory(π, ρs, ρb, ρd)

while The task has not stopped nor been completed do
if not outside of Dl according to ρs then

sample using π
else

back up world according to ρb
sample using π∗ according to ρd

end if
end while
return {(s, π∗(s))|s ∈ S∗}, where S∗ is the set of all
states where π∗ was used.

Experimental Evaluation

In order to evaluate our approach, we used two application
domains. The first is the classic Super Mario platform game
(Figure 2 left), a platformer game where the player has to
reach the end of a level while avoiding enemies. The second
is a puzzle game known as Thermometers (Figure 2 right),
where the player sees a board with overlaid with thermome-
ters of different lengths and orientations, and needs to de-
termine how full or empty each thermometer is based on a
set of row/column constraints. Boards in the Thermometers
domain were of size 5x5. Any supervised learning method
could be used as an underlying learner for SALT , but in our
experiments WEKA’s J48 was used (Witten et al. 2016).

For the Super Mario domain, we used the Super Mario
implementation from the 2012 Mario AI Championship2.
World states in Super Mario are represented by a collec-
tion of 1083 features representing the surroundings of Mario
(walls, enemies, etc.). The action space Y of Super Mario
consists of 5 boolean features corresponding to what but-
tons the agent is pressing in the game (left, right, down,
fire/speed, and jump). For Thermometers, two versions were
used. Complex-Thermometers represents the board and the
constraints imposed on each row and column of the board as
a vector of 245 features. The action space Y consists of 75
actions, 3 actions for each tile on the grid (set to “full”, set to
“empty”, and “clear”). States in Simple-Thermometers are a
vector of 14 features representing a single row or column of
the board, and the actions are to fill a tile, empty a tile, move
to the next row/column, or set all tiles in the row/column to
undetermined and move to the next one.

Experiments for Super Mario were performed using N =
1 trajectories and C = 25 iterations. Each trajectory has a
time limit of 30 seconds, and data is taken every tick (where
the game runs at 20 ticks per second), with a maximum tra-
jectory length of 450 training instances. Strategy ρRG

d was
used to give control back to the learner. The reward function
used is simply Mario’s X-coordinate in pixels plus 500 if he
is Fire Mario or 250 if he is Large Mario (Mario starts off as
Fire Mario, and drops to Large Mario and then Small Mario
when he takes one or two hits from enemies, respectively).

For the Complex-Thermometers domain, experiments
were performed using N = 1 trajectories and C = 50 itera-
tions, also with strategy ρRG

d . For the Simple-Thermometers

2http://www.marioai.org/home

88

StandardSupervised

DAgger

PseudoSafeDAgger

PseudoDAgger

SALTn(ρPseudos)

SALTn(ρSSs)

SALTn(ρW.SSs)

SALTn(ρ
≤
s)

SALTn(ρ
W.≤
s)

SALTn(ρMD
s)

SALTn(ρW.MD
s)

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

0 200 400 600 800 1000

Complex Thermometers Global Budget

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

0 200 400 600 800 1000

Complex Thermometers Iteration Budget

300

400

500

600

700

800

900

1000

1100

1200

0 500 1000 1500 2000 2500

Mario Global Budget

300

400

500

600

700

800

900

1000

1100

1200

0 500 1000 1500 2000 2500

Mario Iteration Budget

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

55%

0 100 200 300 400 500 600 700 800 900 1000

Simple Thermometers Global Budget

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

55%

0 100 200 300 400 500 600 700 800 900 1000

Simple Thermometers Iteration Budget

Figure 1: Reward gained in each domain as a function of the amount of training data, for various strategies and baselines. The
vertical axis represents the amount of reward gained and the horizontal axis represents the amount of training data. The top row
are results gained using a global budget, and the bottom row are results gained splitting the budget up evenly over iterations.

Figure 2: A screenshot of Super Mario (left) and the Ther-
mometers puzzle game (right).

domain, experiments were performed using N = 1 trajecto-
ries and C = 25 iterations, using strategy ρEOT

d (note that
we used a different ρd here due to it obtaining much better
results in this domain based on empirical observation). Both
Thermometers domains have a limit of 100 moves per board,
and therefore a maximum length of 100 training states per
trajectory. The reward function for both is the overall per-
centage of constraints satisfied for the puzzle, where there
are two kinds of constraints: The number of filled pieces in
a row or column matches the number for that row or col-
umn, and each thermometer has a legal configuration (filled
starting from the round bulb, with all filled pieces adjacent).

Two metrics were used in this paper: task reward (R), and
similarity between the learner and demonstrator (the per-
centage of times the learner predicted the same move as the
demonstrator in a set of validation levels).

Baselines

We report the performance of SALT and four baselines:

• Supervised: we evaluate the performance of the base su-
pervised learner. This is done by having the demonstrator

perform the task until we have the same amount of train-
ing data as for the other methods, then training the learner.

• DAgger (Ross et al. 2010).

• PseudoSafeDAgger (Zhang and Cho 2016): to emulate
the behavior of SafeDAgger , we use ρDCA

s (Packard and
Ontañón 2017), which signals that the learner has moved
out of Dl if the learner’s action differs from the demon-
strator’s action more than a threshold value β according to
a modified edit distance, having the demonstrator control
for a single frame as SafeDAgger would. Note our emu-
lation of SafeDAgger calls the demonstrator at each time
step, while SafeDAgger would try to learn a function to
compare them without calling the demonstrator.

• PseudoDAgger : a DAgger inspired algorithm – queries
the demonstrator with probability of RemainingBudget

TotalBudget .
This is the same as using ρPseudo

s in SALT , but only hav-
ing the demonstrator control for a single frame.

Results

Task Reward

Figure 1 shows the accumulated reward (as a function of
the amount of training data) obtained by all of the meth-
ods tested in our experiments. Notice not all lines are of the
same length, since some methods collect more data than oth-
ers. The first thing that we can observe is that many active
learning performs better than just using supervised learn-
ing overall. In the Simple Thermometers domain, there are
many active learning methods that both train faster and gain
higher reward than Standard Supervised. In the Complex
Thermometers domain there are two active learning meth-
ods which train much faster than Standard Supervised and
gain comparable reward (ρW.SS

s and ρSS
s), and in the Super

89

StandardSupervised

DAgger

PseudoSafeDAgger

PseudoDAgger

SALTn(ρPseudos)

SALTn(ρSSs)

SALTn(ρW.SSs)

SALTn(ρ
≤
s)

SALTn(ρ
W.≤
s)

SALTn(ρMD
s)

SALTn(ρW.MD
s)

0%

5%

10%

15%

20%

25%

0 200 400 600 800 1000

Complex Thermometers Global Budget (Sim)

0%

5%

10%

15%

20%

25%

0 200 400 600 800 1000

Complex Thermometers Iteration Budget (Sim)

15%

20%

25%

30%

35%

40%

45%

50%

0 500 1000 1500 2000 2500

Mario Global Budget (Sim)

15%

20%

25%

30%

35%

40%

45%

50%

0 500 1000 1500 2000 2500

Mario Iteration Budget (Sim)

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

0 100 200 300 400 500 600 700 800 900 1000

Simple Thermometers Global Budget (Sim)

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

0 100 200 300 400 500 600 700 800 900 1000

Simple Thermometers Iteration Budget (Sim)

Figure 3: Percentage of time that the learner’s chosen move matched the move the demonstrator would of made during validation
(vertical axis) as a function of the amount of training data (horizontal axis) for various strategies and baselines.

Mario domain there are a couple methods that reach a much
higher reward (ρ≤s and PseudoDAgger).

Similarly, SALT outperforms the baselines in every
domain – in both Thermometers domains, DAgger and
SafeDAgger perform the most poorly of all of the exam-
ined methods, reaching a very low reward for the amounts
of training data examined. In the Super Mario domain, these
methods offer moderate performance, but are below that of
the best SALT variants. As for PseudoDAgger , it performs
worse than most of the SALT methods in both Thermome-
ters domains, and is not a contender for the best method in
either domain. In the Super Mario domain, PseudoDAgger
with a global budget is actually the second best method, but
is much worse than the best method, SALT with ρ≤s .

It can also be readily seen that, in all three domains, meth-
ods using an iterative budget tend to train faster than those
which use a global budget. Additionally, in two of the do-
mains (Simple Thermometers and Super Mario), the former
also tend to receive a higher reward. For example, in the
Simple Thermometers domain, methods using an iterative
budget instead of a global budget generally reach a higher re-
ward and train faster than those that do not (for example, the
best method using an iterative budget hits 50% of constraints
satisfied compared to about 47.5%, and the fastest training
methods reach 45% of constraints satisfied at about 600 in-
stances instead of around 800). We also see that weighted
versions of SALT strategies do not seem to improve results
(a glaring example of this being ρ≤s compared to ρW.≤

s when
using an iterative budget in Super Mario).

Demonstrator Similarity

Figure 3 shows the demonstrator similarity obtained (as a
function of the amount of training data) by all of the meth-
ods tested in our experiments. We can easily observe that
active learning performs better than just using supervised
learning in two of the three domains. In both Thermome-

ters domains, there are multiple active learning methods that
both train faster and receive a higher similarity score than
Standard Supervised. In the Super Mario domain, Standard
Supervised quickly receives the highest similarity, but de-
creases as more training data is added. We theorize this is
due to the agent learning to press “right” and “speed” al-
most every frame at the start, which yields a high similarity
because the demonstrator presses these buttons a large pro-
portion of the time. As the agent learns it performs these
actions less so its similarity falls, and then eventually rises
again as it begins to more closely emulate the demonstrator.

SALT also performs very well compared to the baselines
in terms of demonstrator similarity. In both Thermometers
domains, SALT variants train faster and receive an overall
equal or higher similarity than any of the four baselines, with
PseudoDAgger in the Simple Thermometers domain being
the only competitive baseline (it trains almost as fast when
using an iterative budget, and receives the highest reward).
SALT also outperforms three of the baselines in the Super
Mario domain, (all but Standard Supervised).

Finally, we can see again that most of the methods using
an iteration-based budget train faster and receive the same
or higher reward than those using a global budget (the most
notable example of this is SALT with ρSS

s in Super Mario,
although it can also easily be seen via the larger gap between
Standard Supervised and the SALT variants when using an
iterative budget in the Simple Thermometers domain). Fi-
nally, just as in task reward, having weighted versions of
SALT strategies does not seem to boost results overall.

Related Work

Recent work on trying to reduce training data required by
DAgger includes SafeDAgger (Zhang and Cho 2016) and
Shiv (Laskey et al. 2016). Another active LfD algorithm
which attempts to reduce the amount of needed training data
is RAIL (Judah et al. 2014). Like SALT , RAIL seeks to

90

help account for the i.i.d. violation via demonstrator queries
after the initial learner has been training. However, RAIL
assumes that the learner has access to a simulator of the do-
main, which SALT does not require. More general methods
for reducing training data include novelty reduction and un-
certainty reduction (Silver et al. 2012), which seek to ask the
demonstrator for more demonstrations using sampled prob-
lems that are considered to be too different from previously
seen states or for which the learner is too uncertain about
what to do in them. For their robot navigation domain, they
find this requires less demonstrator interaction while getting
improved results.

An approach to performing LfD with a demonstrator
query budget comes from Floyd and Esfandiari (2011), who
use a mixed-initiative system for case acquisition in case-
based reasoning. Their system allows the learner to cede
control to the demonstrator when it cannot produce an ac-
tion for the current state, the demonstrator to seize control,
and has the demonstrator cede control after a single “turn” of
the Tetris game. They found that this increased the number
of pieces the learner placed before getting a game over com-
pared to a passive approach. Another example of mixed con-
trol is MABLE (Freed et al. 2011), a Learning by Instruction
system. Like SALT , MABLE allows the demonstrator and
learner to work together to improve learning. However, in
MABLE, it is the human demonstrators who determine there
is an issue, not the learner.

Conclusions

This paper has studied learning from demonstration in the
context of video games, and specifically on the problem of
learning with a limited amount of training data. This is mo-
tivated by the fact that if learning from demonstration is ex-
pected to be a useful and practical means of defining game
AI, it has to work with the amount of data that humans can
realistically provide. We addressed this problem by intro-
ducing the concept of demonstrator query budget, and intro-
ducing a new set of strategies to extend the SALT learning
from demonstration framework to account for this budget.

The results of our experiments show that adding the no-
tion of a demonstrator budget increases the effectiveness
of SALT and improves the performance with respect to
not having the budget when training on the same amount
of training data. For each domain examined, using a per-
iteration budget either trains faster, reaches a higher re-
ward/similarity, or both than using a single global budget.

As future work, we would like to explore a larger collec-
tion of the strategies that govern the behavior of SALT , fo-
cusing on those that can improve learning performance for
even lower amounts of training data to make it even more
plausible for human demonstrators. Additionally, we would
like to perform user studies to obtain further insight into the
amount of effort SALT requires from human demonstrators.

References

Brenna Argall, Sonia Chernova, Manuela Veloso, and Brett
Browning. A survey of robot learning from demonstration.
Robotics and Autonomous Systems, 57(5):469–483, 2009.

Michael W Floyd and Babak Esfandiari. Supplemental case
acquisition using mixed-initiative control. In FLAIRS Con-
ference, 2011.
Michael Freed, Daniel Bryce, Jiaying Shen, and Ciaran
O’Reilly. Interactive bootstrapped learning for end-user pro-
gramming. Artificial Intelligence and Smarter Living, 11:07,
2011.
CM Heyes and CL Foster. Motor learning by observation:
Evidence from a serial reaction time task. The Quarterly
Journal of Experimental Psychology: Section A, 55(2):593–
607, 2002.
Kshitij Judah, Alan P Fern, Thomas G Dietterich, et al. Ac-
tive lmitation learning: formal and practical reductions to
iid learning. The Journal of Machine Learning Research,
15(1):3925–3963, 2014.
Michael Laskey, Sam Staszak, Wesley Yu-Shu Hsieh, Jef-
frey Mahler, Florian T Pokorny, Anca D Dragan, and Ken
Goldberg. Shiv: Reducing supervisor burden in dagger us-
ing support vectors for efficient learning from demonstra-
tions in high dimensional state spaces. In Robotics and Au-
tomation (ICRA), 2016 IEEE International Conference on,
pages 462–469. IEEE, 2016.
Brandon Packard and Santiago Ontañón. Policies for ac-
tive learning from demonstration. In Proceedings of AAAI
2017 Spring Symposium on Learning from Observation of
Humans, pages 513–519, 2017.
Stéphane Ross and Drew Bagnell. Efficient reductions for
imitation learning. In International Conference on Artificial
Intelligence and Statistics (AISTATS 2010), pages 661–668,
2010.
Stéphane Ross, Geoffrey J Gordon, and J Andrew Bagnell.
A reduction of imitation learning and structured prediction
to no-regret online learning. arXiv:1011.0686, 2010.
Stefan Schaal. Learning from demonstration. Advances in
Neural Information Processing Systems (NIPS 1997), pages
1040–1046, 1997.
David Silver, J Andrew Bagnell, and Anthony Stentz. Active
learning from demonstration for robust autonomous naviga-
tion. In Robotics and Automation (ICRA), 2012 IEEE Inter-
national Conference on, pages 200–207. IEEE, 2012.
Kenneth O Stanley, Ryan Cornelius, Risto Miikkulainen,
Thomas DSilva, and Aliza Gold. Real-time learning in the
nero video game. In AIIDE, pages 159–160, 2005.
Bulent Tastan and Gita Reese Sukthankar. Learning policies
for first person shooter games using inverse reinforcement
learning. In Artificial Intelligence and Interactive Digital
Entertainment (AIIDE 2011), 2011.
I.H. Witten, E. Frank, M.A. Hall, and C.J. Pal. Data Min-
ing: Practical Machine Learning Tools and Techniques. The
Morgan Kaufmann Series in Data Management Systems. El-
sevier Science, 2016.
Jay Young and Nick Hawes. Learning micro-management
skills in RTS games by imitating experts. In AIIDE, 2014.
Jiakai Zhang and Kyunghyun Cho. Query-efficient
imitation learning for end-to-end autonomous driving.
arXiv:1605.06450, 2016.

91

