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Abstract  
A prototype educational argument modeling system was 
previously developed for an undergraduate genetics 
course.  The system provides formative feedback by 
comparing a student’s argument graph structure to 
solutions generated internally by the system.  This paper 
describes improvements to the generation and delivery of 
feedback and results of small study of effectiveness.     

Introduction    
Science educators have long recognized the need to 
improve students’ argumentation skills. The National 
Science Teachers Association suggests that one way to do 
so in biology courses is “to engage students in scientific 
argumentation as part of the teaching and learning of 
biology” (Sampson and Schleigh, 2013). In previous 
work, we described a prototype educational argument 
modeling system for teaching undergraduate students to 
construct graphical representations of arguments about 
genetic disorders (Green 2017). The system’s drag-and-
drop interface for constructing argument graphs provides 
two types of information: data about a clinical case 
(possible premises of arguments) and general information 
about genetic disorders (possible warrants (Toulmin 
1998)). Atomic arguments, consisting of one or more 
premises, a warrant, and conclusion, can be composed 
into a tree structure. A unique feature of the system is that 
it does not require instructors to provide pre-made 
arguments. Instead, the system generates arguments from 
an underlying causal domain model and abstract 
reasoning patterns, such as Inference to the Best 
Explanation (IBE), for this domain. These arguments are 
used as a knowledge-source by the system for generating 
feedback. 
      Our system provides formative feedback, “information 
communicated to the learner that is intended to modify his 
or her thinking or behavior for the purpose of improved 
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learning” (Shute, 2008, p. 154).  A survey of automatic 
feedback techniques used in educational argument 
modeling systems is given in (Scheuer et al. 2012). The 
approach implemented in our system gives feedback not 
just on the structure of the argument graph, but also on its 
content.  Unlike other approaches surveyed in that article 
that deliver content feedback, our approach does not 
require an expert to manually encode arguments.   
     A limitation of the previous version of the system was 
that when the system generated more than one argument 
as a solution, very simple heuristics were used to decide 
which of the system’s arguments was most similar to the 
student’s argument and then that one was used as the 
basis for giving feedback. As a result, the student might 
be led to believe mistakenly that certain correct 
subarguments in her solution were in error if they did not 
match corresponding parts of the system’s selected 
argument. Another limitation was that only one feedback 
message was displayed after each attempt, although 
multiple errors might have been detected by the system.  
On the other hand, if feedback on all detected errors had 
been given at once, the student might be overwhelmed. 
Another problem was that the feedback was presented as 
text apart from the student’s argument graph, requiring 
the student to mentally connect the feedback to the 
relevant part of her argument graph.   
      The rest of this paper describes our work to address 
these limitations. The next section describes an improved 
method for generation of feedback. After that, we 
describe how the delivery of feedback was changed.  The 
last section discusses results of a small study of the 
effectiveness of the system. 

Feedback Generation  
To generate feedback, the system must compare the 
student’s attempted solution to the system’s solution(s). 
(The system may have generated multiple arguments 
since different data may be used to generate different 
arguments for the same conclusion.)  For example, to 
argue for the claim that patient JB has cystic fibrosis, the 
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system might generate the following series of four 
“chained” IBE arguments internally (i.e., premise B of 
Argument 1 is supported by Subargument 2, and premise 
C of Subargument 2 is supported by Subargument 3, 
which is based on data D). 
 
Argument 1: 
Conclusion: (A) JB has cystic fibrosis, i.e., 2 variant 
CFTR alleles.  
Premise: (B) JB has abnormal CFTR protein.  
Warrant: (WAB) Having 2 variant CFTR alleles leads to 
abnormal CFTR protein. 
 
Subargument 2: 
Conclusion: (B) JB has abnormal CFTR protein. 
Premise: (C) JB has viscous lung secretions. 
Warrant: (WBC) Having abnormal CFTR protein leads to 
abnormal lung secretions. 
 
Subargument 3: 
Conclusion: (C) JB has viscous lung secretions. 
Premise: (D) JB has frequent lung infections. 
Warrant:  (WCD) Having viscous lung secretions leads to 
frequent lung infections. 
 
Note that the above is a paraphrase of the content, which 
is not stored as English text, but is derived from nodes 
and arcs of the causal domain model and a set of accepted 
reasoning patterns. The causal domain model is 
constructed by an instructor using an authoring tool.  For 
more information see (Green 2017). 
     The student’s attempted solution is translated by the 
system into an internal representation based upon 
information provided by the authoring tool. The internal 
representation of structure and content of the student’s 
attempted solution is then comparable to the solution(s) 
generated by the system. As an example, Figure 1 shows 
outlines of the student’s argument (on the left) and the 
system’s two solutions (on the right), where System 
solution 1 is an outline of the argument shown above. 
(Warrants appear at right angles to premise-conclusion 
links.) In the previous version of the system, the feedback 
generator tried to determine which system solution best 
matched the student’s solution, and then it was used as the 
sole basis for providing feedback. Due to limitations of 
that approach we have implemented the following new 
approach.  
      First, a metric of the similarity to the student’s 
solution S is computed for each of the system’s solutions. 
We describe the internal representation of an argument 
graph as a directed hypergraph H = {X, E}, where X is a 
set of vertices and E is a set of edges. Each edge in E is a 
subargument of the graph, consisting of  

{vconclusion , {vw1..v.wn}, {vp1..vpm}}  
where vconclusion is the conclusion, {vw1..v.wn} is the 
warrant, and {v p1 ..v.pm} are the premises.  (Vertices come 

from the causal domain model.) For each of the system’s 
solutions, a similarity score (N1 + N2) – N3 is computed.  
N1 is the number of subarguments in the student’s 
solution that are identical to the content of the conclusion 
and premises of a subargument in the system’s solution.  
N2 is the number of vertices in the student’s solution that 
are identical to vertices anywhere in the system’s 
solution, and N3 is the number of missing or incorrect 
vertices in the student’s solution compared to the system’s 
solution. This metric was motivated by the observations 
that often (N1) a student’s solution may contain a 
subargument that is correct except for the warrant, or (N2) 
at least may contain elements of the system’s solution, but 
(N3) should be penalized for irrelevant or missing 
elements. For example, in Figure 1 the similarity scores 
for system’s solutions 1 and 2, respectively, are (1 + 5) - 2 
= 4 and (1 + 2) - 6 = -3.  Thus, solution 1 will be preferred 
when generating feedback, although solution 2 is 
structurally identical to the student’s.   
 
 
 
 
 
 
 
 
 
 
 
 
                                                                      
                                                 
 
                                    

Figure 1:  Student’s solution compared to system’s. 

The goal of the next phase of the algorithm (Figure 2) 
is to detect and annotate errors in each subargument e(S) 
of the student’s solution. The system’s solutions A1 .. An
are ordered from the most to least similar solution 
according to the above metric. If e(S) does not match a 
subargument in the best matching system argument, it still 
could match an acceptable subargument in one of the 
other system solutions. Note that the annotations in the 
algorithm are for internal use and are more concise than 
the wording used to give feedback to the student. 

      Feedback Presentation 
In the new version of the system, a non-editable copy of 
the student’s solution appears in an adjacent window 
vertically aligned with the student’s solution (Figure 3).  
Vertices of the argument graph in which errors have been 
detected are highlighted in color. The student can “mouse 
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over” any of the vertices to see the feedback message.  
This approach addresses the previous limitations of 
providing feedback on only one error at a time, and of not 
linking the feedback to the relevant part of the student’s 
solution. In the new design, the student can control the 
timing and quantity of feedback.  In addition, the student 
can change her solution at any time and see the system’s 
analysis of her latest solution. 
 
 
    For each e(S) { 

For each Ai in A1 .. An { 
  Search in Ai for a subargument e(Ai) with the same  

conclusion as the conclusion of e(S) and at least one 
premise matching a premise of e(S). 
If found then { 
 compare(e(S), e(Ai)). 
 exit inner loop.} 
} % end for each Ai 

 } 
 
% compare two subarguments S and A 
compare(S, A) { 

Mark the premises in S that match premises in A as  
OK and mark the others as NOT OK.  

 If there are premises in A that are not in S, mark  
S as HAS MISSING PREMISES. 

 Mark the parts of the warrant in S that match parts of  
the warrant in A as OK and mark the others as 
NOT OK.       

If there are parts of the warrant in A that are not in S,  
mark S as HAS MISSING WARRANTS. 

    For all premises p of S that are marked NOT OK { 
   If p matches a premise of a subargument of A,  

change mark to INDIRECTLY SUPPORTS. 
   Elseif p belongs somewhere else in A, change   

mark to IN WRONG PLACE. 
Elseif p belongs somewhere in another argument  

A’, change mark to IN WRONG ARGUMENT. 
   } 
 } 
 

Figure 2: Detecting errors in subarguments. 

Study and Conclusion 
A small study was done to see if the new version of the 
system was delivering the correct feedback and whether 
full feedback was more beneficial than just marking an 
argument component as incorrect. Eleven computer 
science undergraduate students took part individually. 
However, data from the first two participants is not 
reported below since the procedure was changed after 
their sessions.   

After a brief demonstration on how to use the system to 
create arguments and being given information on the 

genetic condition used in the problems (cystic fibrosis), 
the students were given five problems asking them to 
create arguments for certain hypotheses using the data and 
warrants presented on the user interface, e.g., an argument 
for the hypothesis that the patient has cystic fibrosis. The 
students were told that they could submit their answer to a 
problem as many times as they wanted, and that they 
could use the system’s feedback to help them arrive at a 
correct solution. Also they were told that they were free to 
move on to the next problem at any time. The students 
were shown the correct solution after they decided to quit 
working on a problem. Each student was given up to 30 
minutes to attempt to answer all the problems.   

The students were randomly divided into two groups. 
In one group (N=5), participants saw full feedback 
messages; in the other group (N=4) only the messages 
“Correct” or “Incorrect” were shown. In both cases, 
incorrect nodes of the argument graph were highlighted 
and feedback messages could be viewed by “mousing 
over” a node. 
   First, to ensure that the system was actually giving 
correct feedback, system logs of each participant’s 
sessions were used to manually recreate the sessions and 
verify the correctness of the feedback delivered by the 
system by “mousing over” each node.  Feedback on all 
nodes of the solution was checked even if the participant 
had not actually looked at it.  It was found that 385 of an 
expected 401 messages (96%) were correct. The 16 
feedback error messages that were expected but not given 
by the system were due to failure to detect a missing 
warrant. Also, to check if the similarity metric was being 
applied as designed, the system’s solutions were ordered 
by the experimenter according to their similarity to the 
participant’s solutions for each problem. The result was 
compared to the ordering given by the similarity metric, 
which was found to match.                         
 To evaluate the effectiveness of the feedback, the 
number of correct solutions found by the participants in 
each group was compared.  The group that received 
reduced feedback on average answered 1.4 problems 
correctly, compared to 1.5 for the group that received full 
feedback. Since that measure failed to show any clear 
benefit from full feedback, we explored whether full 
feedback was beneficial in other respects.   

We noted that on average, the full feedback group 
made 10.2 attempts, while the reduced feedback group 
made only 6.75 attempts. Participants in the reduced 
group may have made fewer attempts since they were not 
receiving guidance on why their solution was incorrect.  
Thus, a possible effect of full feedback was that it was 
better at guiding the student towards a correct solution.  
This could be indirectly measured by considering for each 
problem, the change in the number of error messages over 
time, and the change in size of the student’s solution over 
time.   
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To determine if the feedback helped steer the 
participants towards a correct solution the average change 
in error messages from the first submission to the final 
submission for each problem was calculated. Participants 
who received full feedback were more likely to have a 
decrease in the number of error messages per problem. 

Also, participants who received full feedback had a 
larger average increase in size of solutions for Questions 
1 through 4 than participants who did not. (Question 5 
could not be counted since it was answered by only one 
participant in the group with full feedback due to timing 
out.) The difference could indicate that participants who 
did not receive full feedback might see that a specific 
node in their argument was wrong, and without more 
detailed feedback, swapped that node out for another 
keeping the size of their attempt the same.   

While we would have liked to perform a larger-scale 
and more rigorous study with genetics students to 
evaluate benefits of our approach, it should be noted that 
the implementation of the improvements and the study 
were performed without external funding as two Master’s 
student projects.  In conclusion, one contribution of this 
paper is an approach to evaluating argument correctness 
that takes into account that a student’s argument may 
contain correct subarguments (possibly from multiple 
different system solutions) even when there are other 
errors in the graph. Another is our demonstration of what 
is likely to be a more effective way of presenting and 

controlling presentation of feedback on complex 
argument graphs. Finally our results show some promise 
that such intelligent feedback may motivate a student to 
work harder to construct an acceptable argument. 
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Figure 3:  User interface.  The far left panel contains a problem, possible hypotheses, data and general facts 
(warrants) that might be used in the argument.  A student has constructed an argument by dragging and 
dropping some elements into the middle panel and connecting them.  The far right panel shows the system’s copy 
of the student’s solution with red highlighting to indicate an error.  A feedback message is on display after the 
student “moused over” the highlighted area. The feedback message indicates that Data Item 5 selected by the 
student does not support the intermediate conclusion (Hypothesis 3) directly above it.  The argument structure 
from Hypothesis 3 upwards is correct. 
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