

Improving Formative Feedback on Argument Graphs
Nancy L. Green, Kevin Walker, Somya Agarwal

Department of Computer Science
University of North Carolina Greensboro

Greensboro, NC 27402 USA
 nlgreen@uncg.edu

Abstract
A prototype educational argument modeling system was
previously developed for an undergraduate genetics
course. The system provides formative feedback by
comparing a student’s argument graph structure to
solutions generated internally by the system. This paper
describes improvements to the generation and delivery of
feedback and results of small study of effectiveness.

Introduction
Science educators have long recognized the need to
improve students’ argumentation skills. The National
Science Teachers Association suggests that one way to do
so in biology courses is “to engage students in scientific
argumentation as part of the teaching and learning of
biology” (Sampson and Schleigh, 2013). In previous
work, we described a prototype educational argument
modeling system for teaching undergraduate students to
construct graphical representations of arguments about
genetic disorders (Green 2017). The system’s drag-and-
drop interface for constructing argument graphs provides
two types of information: data about a clinical case
(possible premises of arguments) and general information
about genetic disorders (possible warrants (Toulmin
1998)). Atomic arguments, consisting of one or more
premises, a warrant, and conclusion, can be composed
into a tree structure. A unique feature of the system is that
it does not require instructors to provide pre-made
arguments. Instead, the system generates arguments from
an underlying causal domain model and abstract
reasoning patterns, such as Inference to the Best
Explanation (IBE), for this domain. These arguments are
used as a knowledge-source by the system for generating
feedback.
 Our system provides formative feedback, “information
communicated to the learner that is intended to modify his
or her thinking or behavior for the purpose of improved

Copyright © 2018. Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

learning” (Shute, 2008, p. 154). A survey of automatic
feedback techniques used in educational argument
modeling systems is given in (Scheuer et al. 2012). The
approach implemented in our system gives feedback not
just on the structure of the argument graph, but also on its
content. Unlike other approaches surveyed in that article
that deliver content feedback, our approach does not
require an expert to manually encode arguments.
 A limitation of the previous version of the system was
that when the system generated more than one argument
as a solution, very simple heuristics were used to decide
which of the system’s arguments was most similar to the
student’s argument and then that one was used as the
basis for giving feedback. As a result, the student might
be led to believe mistakenly that certain correct
subarguments in her solution were in error if they did not
match corresponding parts of the system’s selected
argument. Another limitation was that only one feedback
message was displayed after each attempt, although
multiple errors might have been detected by the system.
On the other hand, if feedback on all detected errors had
been given at once, the student might be overwhelmed.
Another problem was that the feedback was presented as
text apart from the student’s argument graph, requiring
the student to mentally connect the feedback to the
relevant part of her argument graph.
 The rest of this paper describes our work to address
these limitations. The next section describes an improved
method for generation of feedback. After that, we
describe how the delivery of feedback was changed. The
last section discusses results of a small study of the
effectiveness of the system.

Feedback Generation
To generate feedback, the system must compare the
student’s attempted solution to the system’s solution(s).
(The system may have generated multiple arguments
since different data may be used to generate different
arguments for the same conclusion.) For example, to
argue for the claim that patient JB has cystic fibrosis, the

The Thirty-First International Florida
Artificial Intelligence Research Society Conference (FLAIRS-31)

447

system might generate the following series of four
“chained” IBE arguments internally (i.e., premise B of
Argument 1 is supported by Subargument 2, and premise
C of Subargument 2 is supported by Subargument 3,
which is based on data D).

Argument 1:
Conclusion: (A) JB has cystic fibrosis, i.e., 2 variant
CFTR alleles.
Premise: (B) JB has abnormal CFTR protein.
Warrant: (WAB) Having 2 variant CFTR alleles leads to
abnormal CFTR protein.

Subargument 2:
Conclusion: (B) JB has abnormal CFTR protein.
Premise: (C) JB has viscous lung secretions.
Warrant: (WBC) Having abnormal CFTR protein leads to
abnormal lung secretions.

Subargument 3:
Conclusion: (C) JB has viscous lung secretions.
Premise: (D) JB has frequent lung infections.
Warrant: (WCD) Having viscous lung secretions leads to
frequent lung infections.

Note that the above is a paraphrase of the content, which
is not stored as English text, but is derived from nodes
and arcs of the causal domain model and a set of accepted
reasoning patterns. The causal domain model is
constructed by an instructor using an authoring tool. For
more information see (Green 2017).
 The student’s attempted solution is translated by the
system into an internal representation based upon
information provided by the authoring tool. The internal
representation of structure and content of the student’s
attempted solution is then comparable to the solution(s)
generated by the system. As an example, Figure 1 shows
outlines of the student’s argument (on the left) and the
system’s two solutions (on the right), where System
solution 1 is an outline of the argument shown above.
(Warrants appear at right angles to premise-conclusion
links.) In the previous version of the system, the feedback
generator tried to determine which system solution best
matched the student’s solution, and then it was used as the
sole basis for providing feedback. Due to limitations of
that approach we have implemented the following new
approach.
 First, a metric of the similarity to the student’s
solution S is computed for each of the system’s solutions.
We describe the internal representation of an argument
graph as a directed hypergraph H = {X, E}, where X is a
set of vertices and E is a set of edges. Each edge in E is a
subargument of the graph, consisting of

{vconclusion , {vw1..v.wn}, {vp1..vpm}}
where vconclusion is the conclusion, {vw1..v.wn} is the
warrant, and {v p1 ..v.pm} are the premises. (Vertices come

from the causal domain model.) For each of the system’s
solutions, a similarity score (N1 + N2) – N3 is computed.
N1 is the number of subarguments in the student’s
solution that are identical to the content of the conclusion
and premises of a subargument in the system’s solution.
N2 is the number of vertices in the student’s solution that
are identical to vertices anywhere in the system’s
solution, and N3 is the number of missing or incorrect
vertices in the student’s solution compared to the system’s
solution. This metric was motivated by the observations
that often (N1) a student’s solution may contain a
subargument that is correct except for the warrant, or (N2)
at least may contain elements of the system’s solution, but
(N3) should be penalized for irrelevant or missing
elements. For example, in Figure 1 the similarity scores
for system’s solutions 1 and 2, respectively, are (1 + 5) - 2
= 4 and (1 + 2) - 6 = -3. Thus, solution 1 will be preferred
when generating feedback, although solution 2 is
structurally identical to the student’s.

Figure 1: Student’s solution compared to system’s.

The goal of the next phase of the algorithm (Figure 2)
is to detect and annotate errors in each subargument e(S)
of the student’s solution. The system’s solutions A1 .. An
are ordered from the most to least similar solution
according to the above metric. If e(S) does not match a
subargument in the best matching system argument, it still
could match an acceptable subargument in one of the
other system solutions. Note that the annotations in the
algorithm are for internal use and are more concise than
the wording used to give feedback to the student.

 Feedback Presentation
In the new version of the system, a non-editable copy of
the student’s solution appears in an adjacent window
vertically aligned with the student’s solution (Figure 3).
Vertices of the argument graph in which errors have been
detected are highlighted in color. The student can “mouse

A

C

D

WAB

WCD

A

C

D

B

WAB

WBC

WCD

A

C

F

WAC

WCF

Student’s
solution

System’s
solution 1

System’s
solution 2

448

over” any of the vertices to see the feedback message.
This approach addresses the previous limitations of
providing feedback on only one error at a time, and of not
linking the feedback to the relevant part of the student’s
solution. In the new design, the student can control the
timing and quantity of feedback. In addition, the student
can change her solution at any time and see the system’s
analysis of her latest solution.

 For each e(S) {

For each Ai in A1 .. An {
 Search in Ai for a subargument e(Ai) with the same

conclusion as the conclusion of e(S) and at least one
premise matching a premise of e(S).
If found then {
 compare(e(S), e(Ai)).
 exit inner loop.}
} % end for each Ai

 }

% compare two subarguments S and A
compare(S, A) {

Mark the premises in S that match premises in A as
OK and mark the others as NOT OK.

 If there are premises in A that are not in S, mark
S as HAS MISSING PREMISES.

 Mark the parts of the warrant in S that match parts of
the warrant in A as OK and mark the others as
NOT OK.

If there are parts of the warrant in A that are not in S,
mark S as HAS MISSING WARRANTS.

 For all premises p of S that are marked NOT OK {
 If p matches a premise of a subargument of A,

change mark to INDIRECTLY SUPPORTS.
 Elseif p belongs somewhere else in A, change

mark to IN WRONG PLACE.
Elseif p belongs somewhere in another argument

A’, change mark to IN WRONG ARGUMENT.
 }
 }

Figure 2: Detecting errors in subarguments.

Study and Conclusion
A small study was done to see if the new version of the
system was delivering the correct feedback and whether
full feedback was more beneficial than just marking an
argument component as incorrect. Eleven computer
science undergraduate students took part individually.
However, data from the first two participants is not
reported below since the procedure was changed after
their sessions.

After a brief demonstration on how to use the system to
create arguments and being given information on the

genetic condition used in the problems (cystic fibrosis),
the students were given five problems asking them to
create arguments for certain hypotheses using the data and
warrants presented on the user interface, e.g., an argument
for the hypothesis that the patient has cystic fibrosis. The
students were told that they could submit their answer to a
problem as many times as they wanted, and that they
could use the system’s feedback to help them arrive at a
correct solution. Also they were told that they were free to
move on to the next problem at any time. The students
were shown the correct solution after they decided to quit
working on a problem. Each student was given up to 30
minutes to attempt to answer all the problems.

The students were randomly divided into two groups.
In one group (N=5), participants saw full feedback
messages; in the other group (N=4) only the messages
“Correct” or “Incorrect” were shown. In both cases,
incorrect nodes of the argument graph were highlighted
and feedback messages could be viewed by “mousing
over” a node.
 First, to ensure that the system was actually giving
correct feedback, system logs of each participant’s
sessions were used to manually recreate the sessions and
verify the correctness of the feedback delivered by the
system by “mousing over” each node. Feedback on all
nodes of the solution was checked even if the participant
had not actually looked at it. It was found that 385 of an
expected 401 messages (96%) were correct. The 16
feedback error messages that were expected but not given
by the system were due to failure to detect a missing
warrant. Also, to check if the similarity metric was being
applied as designed, the system’s solutions were ordered
by the experimenter according to their similarity to the
participant’s solutions for each problem. The result was
compared to the ordering given by the similarity metric,
which was found to match.
 To evaluate the effectiveness of the feedback, the
number of correct solutions found by the participants in
each group was compared. The group that received
reduced feedback on average answered 1.4 problems
correctly, compared to 1.5 for the group that received full
feedback. Since that measure failed to show any clear
benefit from full feedback, we explored whether full
feedback was beneficial in other respects.

We noted that on average, the full feedback group
made 10.2 attempts, while the reduced feedback group
made only 6.75 attempts. Participants in the reduced
group may have made fewer attempts since they were not
receiving guidance on why their solution was incorrect.
Thus, a possible effect of full feedback was that it was
better at guiding the student towards a correct solution.
This could be indirectly measured by considering for each
problem, the change in the number of error messages over
time, and the change in size of the student’s solution over
time.

449

To determine if the feedback helped steer the
participants towards a correct solution the average change
in error messages from the first submission to the final
submission for each problem was calculated. Participants
who received full feedback were more likely to have a
decrease in the number of error messages per problem.

Also, participants who received full feedback had a
larger average increase in size of solutions for Questions
1 through 4 than participants who did not. (Question 5
could not be counted since it was answered by only one
participant in the group with full feedback due to timing
out.) The difference could indicate that participants who
did not receive full feedback might see that a specific
node in their argument was wrong, and without more
detailed feedback, swapped that node out for another
keeping the size of their attempt the same.

While we would have liked to perform a larger-scale
and more rigorous study with genetics students to
evaluate benefits of our approach, it should be noted that
the implementation of the improvements and the study
were performed without external funding as two Master’s
student projects. In conclusion, one contribution of this
paper is an approach to evaluating argument correctness
that takes into account that a student’s argument may
contain correct subarguments (possibly from multiple
different system solutions) even when there are other
errors in the graph. Another is our demonstration of what
is likely to be a more effective way of presenting and

controlling presentation of feedback on complex
argument graphs. Finally our results show some promise
that such intelligent feedback may motivate a student to
work harder to construct an acceptable argument.

References
Green, N.L. 2017. Argumentation Scheme-Based Argument
Generation to Support Feedback in Educational Argument
Modeling Systems. International Journal of AI in Education.
September 2017, 27(3): 515–533.

Narciss, S. 2008. Feedback strategies for interactive learning
tasks. In J.M. Spector, M.D. Merrill, J. van Merrienboer, and
M.P. Driscoll eds. 2012. Handbook of research on educational
communications and technology (3rd ed., 125-143). New York:
Lawrence Erlbaum Associates.

Sampson, V., and S. Schleigh. 2013. Scientific Argumentation in
Biology: 30 Classroom Activities. National Science Teachers
Association Press.

Scheuer, O.; Loll, F.; Pinkwart, N.; and McLaren, B.M. 2012.
Automated analysis and feedback techniques to support and
teach argumentation: A survey. In N. Pinkwart, B.M. McLaren
eds. Educational Technologies for Teaching Argumentation
Skills. Bentham Science Publishers.

Toulmin, S.E. 1998. The uses of argument. Cambridge
Cambridge University Press.

.

Figure 3: User interface. The far left panel contains a problem, possible hypotheses, data and general facts
(warrants) that might be used in the argument. A student has constructed an argument by dragging and
dropping some elements into the middle panel and connecting them. The far right panel shows the system’s copy
of the student’s solution with red highlighting to indicate an error. A feedback message is on display after the
student “moused over” the highlighted area. The feedback message indicates that Data Item 5 selected by the
student does not support the intermediate conclusion (Hypothesis 3) directly above it. The argument structure
from Hypothesis 3 upwards is correct.

450

