
The Detection of Medicare Fraud Using Machine
Learning Methods with Excluded Provider Labels

Richard A. Bauder, Taghi M. Khoshgoftaar
College of Engineering & Computer Science

Florida Atlantic University
rbauder2014@fau.edu, khoshgof@fau.edu

Abstract

With the overall increase in the elderly population
comes additional, necessary medical needs and costs.
Medicare is a U.S. healthcare program that provides in-
surance, primarily to individuals 65 years or older, to of-
fload some of the financial burden associated with medi-
cal care. Even so, healthcare costs are high and continue
to increase. Fraud is a major contributor to these in-
flating healthcare expenses. Our paper provides a com-
prehensive study leveraging machine learning methods
to detect fraudulent Medicare providers. We use pub-
licly available Medicare data and provider exclusions
for fraud labels to build and assess three different learn-
ers. In order to lessen the impact of class imbalance,
given so few actual fraud labels, we employ random un-
dersampling creating four class distributions. Our re-
sults show that the C4.5 decision tree and logistic re-
gression learners have the best fraud detection perfor-
mance, particularly for the 80:20 class distribution with
average AUC scores of 0.883 and 0.882, respectively,
and low false negative rates. We successfully demon-
strate the efficacy of employing machine learning with
random undersampling to detect Medicare fraud.

Keywords: Medicare, LEIE, fraud detection, class imbal-
ance, machine learning

Introduction

The viability of most healthcare systems revolves around
competent and capable medical providers and a solid finan-
cial infrastructure. Both aspects can be irrevocably dam-
aged by fraud, waste, and abuse. The financial backbone,
in particular, is subject to fraudulent activities incurring po-
tentially large losses. Healthcare programs, in the United
States (U.S.), have experienced tremendous growth in pa-
tient populations and commensurate costs. The elderly com-
munity continues to grow with a 28% increase in 2014
versus a rate of just 6.5% for individuals under 65 years
of age (U.S. Administration for Community Living 2015).
Moreover, in 2015, spending on healthcare-related activi-
ties reached $3.2 trillion, which is about 17% of the to-
tal U.S. budget (Backman 2017). Medicare is one such
U.S. healthcare program created to assist the elderly and
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other individuals with certain medical conditions (Medicare
2017). Medicare alone accounts for about 15% in spend-
ing (net of $588 billion), per year of the total healthcare
budget and is expected to increase to 18% within the next
decade (Backman 2017). Given the increase in the elderly
population, with their need for increased healthcare and fi-
nancial assistance, programs like Medicare are critical and,
as such, must reduce program expenses and costs to allow
for accessible healthcare. One way to accomplish this is
to lessen the impact of fraud. The impact of healthcare
fraud is estimated to be between 3% to 10% of the na-
tion’s total healthcare spending continuing to adversely im-
pact the Medicare program and its beneficiaries (NHCAA
2017). There are programs, such as the Medicare Fraud
Strike Force (OIG 2017), enacted to help combat fraud, but
continued efforts are needed to better mitigate the effects of
fraud. More information on healthcare fraud, to include dif-
ferent types of fraud, can be found in (Joudaki et al. 2015;
Bauder, Khoshgoftaar, and Seliya 2017).

In this paper, we propose a machine learning approach
for Medicare fraud detection using publicly available claims
data and labels for known fraudulent medical providers,
across all medical specialties or provider types (e.g. der-
matology or cardiology). We do not build a distinct model
per specialty, but rather one model to predict a fraudulent
provider regardless of specialty. Specifically, we use the
Medicare Provider Utilization and Payment Data: Physi-
cian and Other Supplier, available from the Centers for
Medicaid and Medicare Services (CMS), which provides
information, by physicians and other healthcare providers,
on services and procedures provided to Medicare beneficia-
ries (CMS 2017). The Medicare data does not contain labels
indicating fraudulent providers or procedures. In order to
build models, or learners, to detect fraudulent providers, we
use the information found in the List of Excluded Individu-
als and Entities (LEIE) database (LEIE 2017). This database
contains a list of individuals and entities who are excluded
from participating in federally funded healthcare programs
due to fraud. We detail a process for merging the Medicare
data and the LEIE labels that accounts for differing lengths
of exclusions, matching providers by unique identification
numbers.

The final dataset has significantly more non-fraud versus
fraud labels, thus is a considered highly imbalanced. In or-
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der to mitigate the adverse effects of class imbalance on
detecting fraud, we employ random undersampling (RUS)
which retains all fraud labels while randomly reducing the
number of non-fraud labels. Because the Medicare data is
big data, with over 37 million instances, using oversam-
pling methods would further increase the dataset size mak-
ing many machine learning approaches impractical. We cre-
ate and test four different class distributions, or ratios, to
assess the best mixture of majority (non-fraud) and minor-
ity (fraud) class labels. For each distribution, we build and
assess three different learners (C4.5 decision tree, logistic
regression, and support vector machine) using 5-fold cross-
validation, repeated 10 times to reduce bias caused by bad
draws during sampling. In order to fairly assess fraud detec-
tion performance, we use several measures which include
the Area Under the ROC (Receiver Operating Characteris-
tic) Curve (AUC), false positive rate (FPR), and false neg-
ative rate (FNR). Our results indicate that the C4.5 deci-
sion tree and logistic regression learners have the best over-
all AUC performance, particularly for the 80:20 and 75:25
(majority:minority) class distributions. To the best of our
knowledge, no other work provides a study that directly in-
corporates the entire Medicare dataset plus LEIE exclusion
labels to detect fraudulent providers for any specialty, using
differing RUS class distributions on a diverse set of learners.

The remainder of the paper is organized as follows. The
Related Works section discusses works related to the current
research. In the Methodology section, we discuss our re-
search methodology detailing the Medicare and LEIE data,
learners, performance metrics, class imbalance, and exper-
imental design. The results of our research are examined
in the Results and Discussion section. Finally, the Conclu-
sion section summarizes our conclusions and plans for fu-
ture work.

Related Works
With the limited number of easily accessible, documented
Medicare fraud cases and the relatively recent availability of
data, a lot of the existing Medicare fraud detection research
uses unsupervised machine learning via anomaly detection
methods. A recent study by Sadiq et al. (Sadiq et al. 2017)
employs the Patient Rule Induction Method (PRIM) based
bump hunting (unsupervised) method to identify anomalies
in the 2014 Florida Medicare data. Studies, such as those
by our research group, employ unsupervised methods to de-
tect anomalies in Medicare payments leveraging regression
techniques and Bayesian modeling (Bauder and Khoshgof-
taar 2017; 2016). In our work, we employ supervised Medi-
care detection methods using publicly available excluded, or
fraudulent, provider information, which is the focus on the
remainder of the related works.

In a preliminary study, Chandola et al. (Chandola, Suku-
mar, and Schryver 2013) use Medicare claims data and
provider enrollment data from private sources to detect
healthcare fraud. The authors employ several different tech-
niques including social network analysis, text mining, and
temporal analysis. Using features derived from the tempo-
ral analysis, the authors build a logistic regression model to
detect known fraudulent cases using labeled data from the

Texas Office of Inspector General’s exclusion database only.
Moreover, details are limited with regards to data process-
ing and mapping fraud labels to the Medicare data. It is
important to note that none of these studies deal with the
problem of class imbalance. Our research group presents
an exploratory study, using 2013 Florida Medicare data, that
looks to predict fraudulent providers by using only the num-
ber of procedures performed via a Multinomial Naive Bayes
model (Bauder et al. 2016). If the predicted provider type
does not match what is expected, then this provider is per-
forming outside of normal practice patterns and should be
investigated.

There are only two related works found that address class
imbalance in the detection of Medicare fraud, using the
LEIE database. In a study by Herland et al. (Herland,
Bauder, and Khoshgoftaar 2017), the authors validate and
improve upon their previous model which detects possi-
bly fraudulent behavior by predicting a provider’s specialty
based on the number of procedures performed. They use
2013 Medicare data (Florida only) and the LEIE database
for fraud labels. The authors propose three strategies to im-
prove their previous model that include the following: fea-
ture selection and sampling, removal of low scoring special-
ties, and grouping similar specialties. Class imbalance was
mitigated using both random undersampling and Synthetic
Minority Over-sampling Technique (SMOTE) for 82 spe-
cialties. Branting et al. (Branting et al. 2016) create a graph
of providers, prescriptions, and procedures. The authors use
two algorithms where one calculates the similarity to known
fraud and non-fraud providers, and the other estimates fraud
risk via shared practice locations. Medicare data from 2012
to 2014 was used with 12,153 excluded providers from the
LEIE database. To address class imbalance, the authors only
used a 50:50 class distribution. A J48 decision tree was built
using 11 graph-based features and 10-fold cross-validation
but no repeats.

In relation to the last two very preliminary studies, which
also use Medicare data with LEIE fraud labels, our research
is more comprehensive in the breadth and depth of experi-
mentation and results. We provide a comprehensive discus-
sion of the data and the mapping of the fraud labels. We em-
ploy three different learners on four different class distribu-
tions to assess the effects of class imbalance. Moreover, our
experimental design is robust using 5-fold cross-validation
with 10 repeats per learner and class distribution combina-
tions. Finally, we present results using several different met-
rics and discuss statistical significance of the results.

Methodology

In this section, we detail the Medicare data, LEIE database,
and the mapping of fraud labels. Additionally, we discuss
the three learners, performance metrics, and class imbal-
ance. Finally, we briefly outline our experimental design.

Data

The data in our experiment is from the Centers for Medicare
and Medicaid Services (CMS) which encompass the 2012
to 2015 calendar years. The Medicare Provider Utilization
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and Payment Data: Physician and Other Supplier describes
payment and utilization claims data, with information on
services and procedures provided to Medicare beneficiaries.
The data was compiled and aggregated by CMS, grouping
claims information by unique National Provider Identifica-
tion (NPI) numbers, Healthcare Common Procedure Cod-
ing System (HCPCS) code, and place of service (e.g. office
or hospital). The Medicare dataset contains values that are
recorded after claims payments were made and with that, we
assume that the Medicare dataset was appropriately recorded
and cleansed by CMS (CMS Office of Enterprise Data and
Analytics 2017).

The combined Medicare dataset has 37,147,213 instances
and 30 features, covering 89 specialties, and 1,080,115 dis-
tinct providers. We focus on detecting fraud using the fea-
tures in Table 1. Note that three features are categorical,
with the remainder being numerical. The feature exclusion
is the class variable that contains the fraud or non-fraud la-
bels. NPI is not used in the model but retained for identi-
fication purposes. It is important to point out that because
we merged all four years of Medicare data, the standardized
payment variables are not included since these only appear
in the 2014 and 2015 Medicare years. Similarly, the stan-
dard deviation variables were also excluded, because they
pertain to 2012 and 2013 only. The possible use of the re-
maining variables, applying additional feature engineering,
is left as future work.

Table 1: Description of Medicare features

Feature Description

npi Unique provider identification
number

provider_type Medical provider’s specialty
(categorical)

nppes_provider_gender Gender (categorical)
hcpcs_code Procedure or service performed

by the provider (categorical)
line_srvc_cnt Number of procedures/services

the
provider performed

bene_unique_cnt Number of distinct Medicare
beneficiaries
receiving the service

bene_day_srvc_cnt Number of distinct Medicare
beneficiary / per
day services performed

average_submitted_chrg_amt Average of the charges that the
provider
submitted for the service

average_medicare_payment_amt Average payment made to a
provider per claim
for the service performed

exclusion Fraud labels from the LEIE
database

In order to obtain labels indicating fraudulent providers,
we incorporate excluded providers from the List of Ex-
cluded Individuals/Entities (LEIE) database (LEIE 2017).
The LEIE only includes NPI-level, or provider-level, exclu-
sions, with no details on procedures (HCPCS codes) that
contribute to the fraud. The exclusions are categorized
by various rule numbers, which indicate severity as well

as the length of time of each exclusion. We selected the
providers excluded for more severe reasons, that are classi-
fied as mandatory exclusions by the Office of Inspector Gen-
eral (LEIE 2017), as seen in Table 2. The 1128(a) rules have
five-year minimum periods, whereas rule 1128(c)(3)(g)(i)
has a 10 year minimum period, and rule 1128(c)(3)(g)(ii) is
permanent exclusion. More specifically, we label providers
as excluded during the exclusion period only for the cur-
rently available Medicare years. These activities during the
exclusion period can indicate a submission of claims for ser-
vices by an excluded provider which are considered fraud
under the federal False Claims Act (United States Code
2006). Even though the LEIE is limited in nature and does
not contain National Provider Identification (NPI) number
for most of the providers (Pande and Maas 2013), we de-
cided to match on NPI only to accurately capture the known
fraudulent exclusions. Moreover, due to the lack of detail in
the LEIE database, we assume the excluded providers (NPI)
include all of the corresponding procedures (HCPCS) per-
formed for the exclusion period. Based on this assumption,
all procedures performed by an excluded provider are con-
sidered fraudulent. Presently, there is no known publicly
available dataset which includes fraud labels by provider and
by each procedure performed, but future research will look
at ways to mitigate this lack of data through majority voting
or methods of NPI-level data aggregation.

Table 2: LEIE exclusion rules

Rule Number Description

1128(a)(1) Conviction of program-related crimes.
1128(a)(2) Conviction relating to patient abuse or neglect.
1128(a)(3) Felony conviction relating to health care fraud.
1128(b)(4) License revocation or suspension.
1128(c)(3)(g)(i) Conviction of two mandatory exclusion offenses.
1128(c)(3)(g)(ii) Conviction on 3 or more mandatory exclusion offenses.

In combining the 2012 to 2015 Medicare datasets, we
matched features and excluded those that did not match in
all four years. For instance, in 2012 the standard deviations
for charges and payments are available but discontinued for
the later years. To provide fraud labels for the combined
Medicare dataset, we cross-referenced NPI numbers in the
Medicare data and LEIE database, to match any providers
with past or current exclusions. In the LEIE database used
for our study, only the 1128(a) rules were used which indi-
cate a 5-year exclusion period. Note that only the year is
available in the Medicare data not day or month, so we as-
sumed that if a provider was excluded anywhere in a given
year, all of those instances would get fraud labels. In or-
der to map the LEIE fraud labels to the Medicare data, we
first exclude providers who have been reinstated or have re-
ceived waivers. Then, both start and end dates need to be
set based on the maximum period of exclusion. In our case,
five years was the maximum period, so we start five years
prior to the first year of the Medicare dataset. This indi-
cates that a provider could have been put on the exclusion
list in 2008 and still be on the list in 2012 (which is the
first year of the Medicare data), thus be labeled as fraud-
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ulent for 2012. Similarly, we do the reverse process from
the last year of the Medicare dataset and label providers ac-
cordingly. We take the disjunction of these start and end
labels to get the list of excluded instances to be labeled as
fraud. For examples, if a provider is placed on the exclusion
list in 2009, then their claims are marked as fraudulent for
2012 and 2013, but not 2014 and 2015. Finally, we match
this with the Medicare NPI numbers to generate the mapped
fraud and non-fraud labels. These steps to map fraud la-
bels help to mitigate over counting fraudulent providers due
to overlapping or expired exclusion periods, thus we can be
reasonably confident, with the stated assumptions, that we
capture a fair number of fraud labels for the correspond-
ing excluded providers. The final Medicare dataset, used
in our experiments, has 3,331 instances labeled as fraudu-
lent due to flagged providers with the remaining 37,143,882
instances being labeled as not fraudulent.

Learners

For our experiments, we built and test three different learn-
ers to classify fraudulent Medicare provider claims: C4.5
decision tree (C4.5), Support Vector Machine (SVM), and
Logistic Regression (LR). We chose these learners due to
their popularity and relatively good performance in differ-
ent classification-related domains. Each of these learners
was built and tested using the Weka machine learning soft-
ware (Witten et al. 2016). The default parameters are used
and changes were made to these configurations when exper-
imentation indicated increased performance based on pre-
liminary analysis. The decision tree, C4.5, was trained us-
ing the J48 algorithm in Weka and configured with Laplace
smoothing and no pruning as these have been shown to im-
prove performance (Weiss and Provost 2003). Logistic Re-
gression (LR) is a classification algorithm similar to lin-
ear regression except a different hypothesis class is used to
predict the probability of class membership (Le Cessie and
Van Houwelingen 1992). SVM in Weka incorporates se-
quential minimal optimization (SMO) for training the SVM
models. We set the complexity parameter ‘c’ to 5.0 and the
‘buildLogisticModels’ parameter to true.

Performance Metrics

The classification models are evaluated using the AUC per-
formance metric (Bekkar, Djemaa, and Alitouche 2013).
AUC is a popular measure of model performance, providing
a general idea of predictive potential of a binary classifier,
and was chosen as the performance measure for our exper-
iment because of the severe class imbalance of our testing
data (Jeni, Cohn, and De La Torre 2013). The ROC curve is
used to characterize the trade-off between true positive rate
and false positive rate and depicts a learner’s performance
across all decision thresholds, i.e. a value between 0 and 1
that theoretically separate the classes. AUC is a single value
that ranges from 0 to 1, where a perfect classifier provides
an AUC value of 1.

In order to gather more detail on learner performance, we
also examine false positive rate (FPR) and false negative rate
(FNR), with the instances labeled as fraud being the positive
class. A classification threshold of 0.5 was used to assess

these metrics for each learner. For the detection of Medi-
care claims fraud, a low FNR is most important since this
indicates a higher detection rate for capturing actual fraud-
ulent claims. Given the current manually intensive process
in detecting fraud, we can generally accept a slightly higher
FPR (i.e. claims predicted as fraud that are not actual fraud)
as long as we obtain the lowest possible FNR. In practice,
missing a substantial number of fraudulent events will ren-
der any fraud detection system ineffective, but, conversely,
having too many false positives will make the system unus-
able. For our research, a learner with a low false negative
rate and a reasonably low false positive rate is desired.

Class Imbalance

The Medicare claims data, with fraud labels, is a challeng-
ing dataset due to the skewed nature of the provider exclu-
sions. With such class imbalance (Haixiang et al. 2017), the
learner will tend to focus on the majority class (i.e. the class
with the majority of instances), which is usually not the class
of interest. In our case, the non-fraud labels are the major-
ity class. An effective way to compensate for some of the
detrimental effects of severe class imbalance is by chang-
ing the class distribution in the training data, to increase the
representation of the minority class to help improve model
performance. The sampling of data changes the class dis-
tribution of the training instances to minimize the effects of
these rare events. Van Hulse et al. (Van Hulse, Khoshgoftaar,
and Napolitano 2007) provide a comprehensive survey on
data sampling techniques and their impact on various clas-
sification algorithms. There are two basic sampling meth-
ods: oversampling and undersampling. Oversampling is a
method for balancing classes by adding instances to the mi-
nority class, whereas undersampling removes samples from
the majority class. Oversampling can increase processing
time by increasing the overall size. More critically, over-
sampling can overfit the data by making identical copies of
the minority class. On the contrary, with undersampling,
we retain all of the original fraud-labeled instances and ran-
domly sample without replacement from the remaining ma-
jority class instances.

In our study, we use random undersampling (RUS) with
the following class distributions (majority:minority): 50:50,
65:35, 75:25, and 80:20. The selected class ratios retain a
reasonable amount of the majority class and reduce loss of
information relative to the minority (fraud labeled) class. In
our experiment, we repeat the RUS process 10 times for each
of the class distributions.

Experimental Design

We employ stratified 5-fold cross-validation to assess the
performance of each of the learners (Witten et al. 2016). The
reason we use 5-fold cross-validation is because of the ex-
tremely low percentage of fraud labels throughout the entire
Medicare dataset. This reduces the likelihood that a fold has
too few positive class instances and retains more equitable
labeled data for fair evaluation. Moreover, to further reduce
bias due to bad random draws and to better represent the
claims data, we repeat the 5-fold cross-validation process 10
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times and average the scores to get the final performance
results.

Results and Discussion

In general, the results of our study do not necessarily point
to one specific learner as the best overall performer across
class distributions and performance metrics. Even so, C4.5
and LR both perform well, based on average AUC, across
all class distributions, with C4.5 having the highest absolute
AUC score. Table 3 details the performance results for all
class distributions and learners, across all the performance
metrics. From this, we can see that C4.5 and LR are indeed
the best performing learners, with the general trend indicat-
ing worse performance as the minority class percentage in-
creases. SVM has a deviation from this general trend with
the lowest AUC at the 65:35 class distribution. At this point,
based on AUC only, the best learner is C4.5 with an 80:20
class distribution.

Table 3: Performance results by class distribution

Class Distribution 80:20

Learner C4.5 LR SVM Avg
AUC 0.883 0.882 0.862 0.876
FNR 0.275 0.483 0.583 0.447
FPR 0.159 0.075 0.056 0.097

75:25

AUC 0.882 0.880 0.861 0.874
FNR 0.226 0.411 0.416 0.351
FPR 0.191 0.099 0.102 0.131

65:35

AUC 0.876 0.876 0.856 0.869
FNR 0.167 0.285 0.296 0.250
FPR 0.250 0.154 0.162 0.189

50:50

AUC 0.868 0.865 0.857 0.863
FNR 0.100 0.152 0.197 0.149
FPR 0.343 0.256 0.235 0.278

As discussed, additional metrics, including FPR and FNR,
are used to further assess learner performance across class
distributions. It is important to use other measures of learner
performance to help gauge actual detection capabilities, par-
ticularly when the correct detection of real fraud cases is
more important than detecting non-fraud ones. From Ta-
ble 3, we again note that C4.5 has the highest AUC for each
class distribution, with LR being very close to C4.5 in aver-
age AUC. Because we wish to catch as many actual fraud-
ulent providers as possible, we require a learner with a low
FNR to correctly identify positive class instances. However,
there is a tradeoff between the number of actual fraud in-
stances detected and false positives. As stated, the detec-
tion of actual fraudulent providers is the primary purpose of
any fraud detection approach, thus using the learner with a
low FNR is critical, even at the cost of injecting additional

false positives. The C4.5 decision tree learner has the lowest
FNR for every class distribution, but also the highest FPR.
The lowest FPR scores alternate between LR and SVM, de-
pending on the class distribution. Even though LR and C4.5
have similar AUC scores, LR has higher false negative rates.
Given our need for the accurate detection of actual fraud, the
C4.5 learner is the best choice with the highest AUC and the
lowest rate of false negatives.

In order to provide additional rigor around our results and
recommendations, we evaluated the statistical significance
of our AUC results with a two-factor ANalysis Of VAriance
(ANOVA) and Tukey’s Honest Significant Difference (HSD)
tests, at a 95% confidence level (Sargin and others 2009).
Table 4 shows that both the class distribution and learner
factors are significant. To further elucidate the specifics per
factor, we performed a Tukey’s HSD test outlined in Fig-
ure 5. Table 5a, in the Tukey’s HSD results table, confirms
that C4.5 and LR are significantly better than SVM. Table 5b
shows that the only significant difference is seen in the 65:35
and 50:50 class distributions. These results, as noted, are for
AUC and do not directly reflect the FNR or FPR of each
learner but do highlight the need to understand the domain
and investigate other metrics to assess overall model perfor-
mance and fraud detection capabilities.

Table 4: ANOVA results

Df SumSq MeanSq Fvalue Pr(>F)

Distribution 3 0.003 0.001 94.36 <2e-16
Learner 2 0.008 0.004 415.42 <2e-16
Residuals 114 0.001 0.001

Table 5: Tukey’s HSD results

Groups Learner AUC

a C4.5 0.877
a LR 0.876
b SVM 0.859

(a) Learners

Groups Ratio AUC

a 80:20 0.876
a 75:25 0.874
b 65:35 0.869
c 50:50 0.863

(b) Class Distributions

Conclusion

Medicare fraud is a major contributor to high overall health-
care expenses and costs, particularly for the growing el-
derly population. The reduction of fraud and the recov-
ery of costs is of utmost importance to maintain proper
health and well-being. In our study, we present an effec-
tive approach to detect Medicare fraud leveraging the LEIE
database for provider fraud labels. Additionally, the merg-
ing of the Medicare data with LEIE fraud labels is outlined
which reduces the potential for over representation of fraud
labels. The use of random undersampling is highlighted in
exhibiting good fraud detection capabilities with different
learners. Our research demonstrates the efficacy of using
known fraud labels coupled with RUS to detect fraudulent
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Medicare providers. Since our focus is on detecting actual
fraudulent providers, we require a model with a high AUC
and low false negative rate. We demonstrate that C4.5 is the
best overall learner with the 80:20 class distribution, with an
AUC of 0.883, and the lowest false negative rates. In our
study, we show that using RUS with big data can success-
fully detect fraudulent Medicare providers.

Continued research includes acquiring additional LEIE
fraud labels using other methods, such as fuzzy string
matching, and other data sources. Additionally, perform-
ing experiments by specialty to simulate real-word fraud de-
tection performance will be pursued. Finally, we intend to
account for NPI-level LEIE exclusions, rather than assumed
NPI and procedure-level exclusions, in assessing fraud using
the Medicare data.
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