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Abstract

Control architectures and algorithms for large autonomous
swarms are receiving increased research interest. Control of
swarm systems becomes more difficult as the size of the agent
swarm increases, making centralized control approaches in-
adequate. This paper presents the informal team assignment
algorithm. By leveraging agent roles and signaling actions,
the algorithm provides a local agent mechanism leading to
the emergence of cooperative teams. Tested in a modified
pursuit-evasion domain, simulation results demonstrate that
agent roles and inter-agent signaling spontaneously create
small collaborative agent teams dedicated to shared task ac-
complishment. The result is in higher win ratios for signal
and role capable swarms.

1 Introduction

As countries such as China and the United States (US) look
into integrating large swarms of autonomous agents into
their military forces (Kania 2016), developing algorithms
and architectures for controlling agent swarms increase in
importance for safety and defense. When the size of an
agent swarm increases, centralized controllers quickly be-
come overwhelmed by the rising complexity of agent task
assignments, communication, and interactions. In order to
meet this growing challenge, this paper presents the informal
team assignment algorithm (ITAA). The algorithm leverages
agent roles and inter-agent signals to provide decentralized
control of an autonomous swarm engaged in a global task.

Tested in a modified two-dimensional (2D) pursuit eva-
sion scenario, simulations revealed that agent signaling led
to the formation of small teams of pursuing agents, invok-
ing the temporary leadership behavior noted in pigeon flocks
(Chen, Liu, and Zhang 2016). This is a notable finding, as
the algorithm created collaborative teams without predefined
leader-follower roles or a centralized control authority.

The rest of the paper is organized as follows. Section 2 re-
views current autonomous swarm control research. Section
3 formally presents the informal team assignment algorithm.
Section 4 describes the experimental variables and scenar-
ios, with Section 5 providing data analysis and discussion.
Section 6 concludes the work.
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2 Background

Finding methods for decentralized control of autonomous
swarms is an active area of research (McCune et al. 2013;
Cao et al. 2014; Tolba, Ammar, and Rajasekaran 2016). Tan,
et al. (Tan and Zheng 2013) proposed that decentralized con-
trol provided through individual agent behaviors produces a
scalable and robust complex system. This work views agent
behaviors, defined as roles, as the central component for sys-
tem scalability. Furthermore, sharing information through
signaling enables a swam to alter its structure through col-
laborative team formation, making the swarm robust to dy-
namic changes in the environment.

Tolba, et al. (Tolba, Ammar, and Rajasekaran 2016) used
a combination of flocking behaviors and limited signaling to
control a swarm of autonomous underwater vehicles (AUVs)
engaged in search operations. Each agent executed an inde-
pendent search pattern while using flocking rules (Reynolds
1987) to avoid other agents and environmental obstacles.
The agents used signaling only once they located an object to
attract other vehicles to the site. All of the agents possessed
the same role, search, with predefined behaviors. Although a
homogeneous swarm may be useful for single tasks, such as
locating an object, a complex code rewrite may be necessary
to add additional tasks or behaviors. Additionally, in their
current set-up, the first agent to locate an object would at-
tract all available agents to its location, making multi-object
search, and by extension multi-goal achievement, difficult.

Duan, et al. (Duan, Li, and Yu 2015) modeled the dy-
namics of unmanned combat aerial vehicles (UCAV) us-
ing a predator-prey particle swarm optimization (PSO) tech-
nique. They tested two autonomous teams against one an-
other, where one was set on destroying the other. Although
the agents were allowed to dynamically select enemy tar-
gets, the UCAVs did not communicate their selected ac-
tions. Additionally, both teams consisted of the same type of
agents with the attacking force given a slight speed advan-
tage. The authors successfully modeled the given scenario;
however, dynamic reassignment of roles and communication
between agents was ignored.

Beard, et al. (Beard et al. 2002), proposed an all encom-
passing solution for Unmanned Aerial Vehicle (UAV) co-
operative control. The UAVs were tasked with moving be-
tween multiple target locations in a dynamic threat environ-
ment with the primary goal of having a team of UAVs ar-
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rive simultaneously on the edge of each target’s radar de-
tection area. In a manner similar to (Tolba, Ammar, and
Rajasekaran 2016), each UAV possessed one role, target
engagement, and, although UAV’s coordinated their actions,
the authors accomplished it through a centralized commu-
nications controller. However, the complexity of coordinat-
ing a large autonomous swarm quickly overwhelms a cen-
tral control mechanism making such an approach for large
swarms infeasible.

Alexopolous, et al. (Alexopoulos, Schmidt, and Badred-
din 2015) appear to be the first to use the pursuit-evasion
domain to study the influence of agent roles on the perfor-
mance of autonomous agent teams. Their agents possessed
two roles, herd and pursue. Agents determined their cur-
rent role after solving an n-player discrete-time deterministic
game selecting the role which led to a victory for their team.
The selection of roles, where one agent could help corral the
evading agent by herding them, yielded positive results, in-
dicating that agent access to multiple roles improves agent
swarm performance in dynamic environments.

The ITAA, presented in the following section, incorpo-
rates the idea of role assignment introduced by (Alexopou-
los, Schmidt, and Badreddin 2015), et al., while including
agent signaling found in (Tolba, Ammar, and Rajasekaran
2016) and (Beard et al. 2002). Agent roles and signals serve
as a mechanism for decentralized control. As agents pos-
sess multiple roles, multiple sub-swarms (i.e. teams) and
multi-task accomplishment become realizable. Signals al-
low agents to share information, affecting each agent’s role
selection and team membership. Populations of teams may
shift autonomously as agents receive, and digest, new sig-
nals. Decentralized control makes the agent swarm scalable,
while roles and signals make them robust.

3 Algorithm
Emergence research (Holland 2012) provided the inspira-
tion for the ITAA. Emergence theorizes that the aggre-
gated interactions between simple agents give rise to com-
plex behaviors (Bedau and Humphreys 2008; Holland 1998;
Mitchell 2006; Serugendo et al. 2004). Holland (Holland
2012) proposes that agents use signals, both direct and in-
direct, to interact and affect one another and, by extension,
the system as a whole. Bonabeau, et al. (Bonabeau, Dorigo,
and Theraulaz 1999) believe that the ability of agents to
change roles, in response to changes in the environment,
makes natural systems (e.g. ant and bee colonies) success-
ful. The ITAA incorporates both ideas.

Algorithm 1 provides pseudocode for the ITAA. Before
running the algorithm, one assigns each agent a set of roles,
R = {r1,r2, ...,rn}. Each role contains a threshold setting,
T = {t1, t2, ..., tn}, which is composed of coded logic that de-
termines when an agent changes its role. Finally, one assigns
a set of actions, A = {a1,a2, ...,a j}, to each role.

Each agent processes the ITAA at each time step. First,
the agent processes sensory input, this includes incoming
signals from other agents. The agent stores this data and it-
erates through its potential roles (line 1). If a role meets a
predefined threshold (line 2), such as detection of an object,
the agent changes its role accordingly (line 3). Once an agent

Algorithm 1 Informal Team Assignment Algorithm (ITAA)
Input: Sensory Data
Output: None

1: for all r in Roles do
2: if threshold t met for r then
3: currentRole = RoleAssignment()
4: end if
5: end for
6: Execute actions assigned to currentRole

finishes role selection, it executes the actions assigned to the
selected role (line 6).

With the ITAA, agents make decisions autonomously, free
from centralized control. Agents invoke a Markov assump-
tion for role selection as they rely upon current data with-
out consideration for past events. Thresholds represent the
probability that the agent moves to another role (i.e. state).
Actions, such as signal propagation, influence other agent
decisions. The interplay between roles and signals creates
informal agent teams that grow and shrink in response to
environmental stimuli.

4 Experiments

A modified pursuit-evasion scenario was created to test
the scalability and robustness of an agent swarm using
the ITAA. The scenario consisted of an autonomous agent
swarm (pursuing agents) tasked with defending a defined
coordinate (i.e. nest) from an autonomous invading agent
(evading agent). This scenario is similar to pursuit-evasion
games (PEGs), where a team of pursuing agents tries to cap-
ture an evading agent (Alexopoulos, Schmidt, and Badred-
din 2015). However, this work differs in two ways from
other UAV based PEG scenarios (Alexopoulos, Schmidt,
and Badreddin 2015; Li 2006; Vial et al. 2001) in that (1)
large pursuit teams (up to 20 agents) were tested and (2)
evading agents possessed superior speed.

Scenario:

Figure 1 shows the initial set up for each simulation. Ini-
tial positions for both evading and pursuing agents were ran-
domly assigned within their respective territories. This kept
evading and pursuing agents from spawning too close to one
another. Random placement also dispersed agents across the
grid enabling multiple angles of entry for the evading agent,
overcoming any possible pattern formations that could be
advantageous to either side. Evading agents sought to reach
the nest center, while pursuing agents needed to detect and
intercept the evading agent to prevent it from reaching the
nest. Evading agents won if they reached the nest. Pursuing
agents won if they caught the evading agent.

Agent Implementation:

Algorithm 2, Nest Defense, presents the ITAA implementa-
tion for pursuing agents in a nest defense scenario. Evading
agents always moved towards the nest center. If they de-
tected a pursuing agent, they calculated a vector that moved
them away from the pursuing agent but toward the nest
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Figure 1: Grid layout of simulation environment. Both ini-
tial position boundary rectangles for evading and pursuing
agents are shown. The middle ellipse portrays the orbital ra-
dius followed by agents invoking the circle role.

center. This created a simple evasion technique. Pursuing
agents possessed three possible roles: Rp = {patrol, circle,
pursuit}, with the following actions, Ap = {separate, seek,
orbit, signal}.

Roles:

1. patrol – random movement around the grid.
2. circle – move in a circular pattern around the nest center.
3. pursuit – move toward evading agent.
Actions:

1. separate – steer away from other agents, otherwise, re-
main on course.

2. seek – move toward a coordinate.
3. orbit – move toward nest if current position is greater

than 100 pixels away from nest center, otherwise, stay on
course.

4. signal – send coordinates of evading agent to any pursu-
ing agent within 200 pixels.

Control and Independent Variables

Table 4 presents the experiments’ control and independent
variables. Simulations changed evading agent speeds, pursu-
ing agent team sizes, and signaling actions. Figure 2 shows
experiment construction. Using roles and signals as major
independent factors, each block represents 20 experiments.
For example, the first experiment set pursuing agent signal
actions to true, roles to patrol and pursuit, and pursuing
agent swarm size to 5, while setting evading agent speed
to 0.50 pixels per time step. The second experiment incre-
mented the pursuing agent swarm size to 10, the next ex-
periment to 15, and so on. The next set of experiments in-
creased the evading agent speed to 0.75 pixels per time step
and pitted them against pursuing swarms of 5, 10, 15, and

Algorithm 2 : Nest Defense
1: procedure ROLEASSIGNMENT
2: changeRole(environmentState)
3: executeActions(rcurent )
4: end procedure
5:
6: procedure CHANGEROLE(STATE)
7: for r ∈ allRoles do
8: thresholdMet(r, STATE)
9: end for

10: end procedure
11:
12: procedure THRESHOLDMET(ROLE, STATE)
13: if detectEnemy(state) or signal received then
14: rcurrent ← pursuit return
15: else if (state.distance.nest > 100) then
16: rcurrent ← circle return
17: else
18: rcurrent ← patrol return
19: end if
20: end procedure
21:
22: procedure DETECTENEMY(state)
23: allOb jectsInRange ← ob ject.state.distance ≤ 100
24: for allOb jectsInRange do
25: if ob ject == enemy then return true
26: end if
27: end for
28: return false
29: end procedure
30:
31: procedure EXECUTEACTIONS(ROLE)
32: if role == pursuit then
33: signalNeighbor()
34: seek evading agent
35: else if (role == circle) then
36: orbit + separate
37: else
38: separate
39: end if
40: end procedure
41:
42: procedure SIGNALNEIGHBOR
43: for neighbors ∈ distance do
44: signal
45: end for
46: end procedure

20 agents. Overall, 80 experiments, each simulated 10,000
times, were performed.

5 Results

Tables 5 and 5 summarize pursuing agent win ratios as both
the number of pursuing agents and evading agent speed in-
creased. Table 5 holds the baseline results as agent roles
were limited to patrol and pursuit (patrol-pursuit) with sig-
naling enabled. Table 5 shows the results of expanding the
number of roles to include the circle role (circle-pursuit). It
is clear that both the number of pursuing agents and evad-
ing agent speed impact the performance of the pursuing
swarm. Both types of pursuing agent swarms, patrol-pursuit
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Control

Nest Location Coordinate (320,320)
Agent Visual Field 360 degrees
Pursuing Agent Speed 0.50
Agent Sensor Range 100
Agent Signal Range 200
Orbit Radius 100

Independent

Evading Agent Speed 0.5, 0.75, 1.00, 1.25, 1.50
Pursuing Team Size 5, 10, 15, 20
Signal Action On / Off

Table 1: Control and Independent Variables. All speeds are
in pixels per time step, with ranges and radius length in pix-
els.

Figure 2: Experiments

and circle-pursuit, experienced a decrease in win percent-
ages as the speed of the evading agent increased. Addition-
ally, both types of pursuing agent swarms increased their win
percentage as the number of agents in the swarm increased.
Intuitively, these results make sense as the likelihood of de-
tecting an evading agent will increase with the number of
agents, and by extension the area of sensor coverage.

Number of Pursuing Agents
5 10 15 20

Evader
Speed

0.5 0.292 0.495 0.652 0.761
0.75 0.296 0.524 0.670 0.779
1.00 0.249 0.455 0.607 0.742
1.25 0.223 0.402 0.553 0.670
1.50 0.198 0.362 0.501 0.616

Table 2: Patrol-Pursuit agent win ratios versus evading agent
speed.

To test the impact of signaling on swarm performance,
signaling actions were removed from both patrol-pursuit and
circle-pursuit swarms for comparison (Figures 3 - 6). For
patrol-pursuit teams, the difference in performance is neg-

Number of Pursuing Agents
5 10 15 20

Evader
Speed

0.5 0.835 0.960 0.986 0.994
0.75 0.545 0.789 0.902 0.952
1.00 0.327 0.578 0.745 0.850
1.25 0.248 0.454 0.626 0.732
1.50 0.213 0.395 0.546 0.658

Table 3: Circle-Pursuit agent win ratios versus evading agent
speed.

Figure 3: Win percentages for 5 pursuing agents pitted
against a single evading agent.

ligible across the range of tested values with the win ratio
plots for both patrol-pursuit teams falling within the 95%
confidence bound of each other. One could attribute this out-
come to the random placement of the patrol-pursuit agents.
The random placement made it difficult for agents to form
sub-teams as agents were likely outside of signal range.

The circle-pursuit teams faired better against evading
agents across the majority of evading agent speeds and
swarm sizes. Starting at a swarm size of 10, circle pur-
suit teams with signaling performed better than their non-
signaling counterparts. The close proximity of agents to one
another led to a higher probability of sub-team formation,
resulting in swarm formations conducive to evading agent
capture. Non-signaling teams experienced delays in reac-
tion times as each agent had to detect the evading agent on
their own. The signaling behavior created formations of sub-
teams led by a temporary leader, a behavior noted in real-
world pigeon flocks (Chen, Liu, and Zhang 2016). These for-
mations created a net of pursuing agents which an evading
agent found difficulty in escaping. These complex behaviors
were obtained through simple role and signal actions.

Figure 7 presents a screen shot from a 1 versus 10 simu-
lation. Four pursuing agents (boxed) have detected the evad-
ing agent, switched to the pursuit role, and are converg-
ing towards the evading agent’s position. The other pursu-
ing agents (not boxed) are engaged in either patrol or circle
roles. The evading agent (circled) will be unable to avoid all
four pursuing agents in this simulation. The novelty of the
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Figure 4: Win percentages for 10 pursuing agents pitted
against a single evading agent.

Figure 5: Win percentages for 15 pursuing agents pitted
against a single evading agent.

Figure 6: Win percentages for 20 pursuing agents pitted
against a single evading agent.

ITAA is the emergence of these small collaborative teams
without the need for a centralized control authority.

Finally, defending teams were tasked with preventing a

Figure 7: During this simulation, four pursuing agents in
pursuit roles (boxed) converge on an evading agent (cir-
cled). Other pursuing agents remain in their current roles
(circle or patrol). The white dot represents the nest.

Figure 8: Win percentages for 20 pursuing agents pitted
against three evading agents.

multi-evader team from reaching the nest center. Multi-
evader teams consisted of three evading agents using flock-
ing rules to stay in formation. When encountering a de-
fending agent, the multi-evader team would split apart in an
avoidance maneuver while always moving towards the nest.
Figure 8 provides the win rates for defending teams of 20
agents as they were the most successful in the single evader
trials.

Surprisingly, in this scenario, patrol-pursuit teams with
signaling faired better than any other team type. This out-
come is likely due to team coupling, as in, patrol-pursuit
agents dispersed into smaller teams across the defender area
while circle-pursuit teams combined into larger, concen-
trated groups. These larger groups were effective at stop-
ping one evader but in a multi-evader scenario, if an evader
slipped by the large group it could continue, unfettered, to
the nest. For patrol-pursuit teams, missing an evader was
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less disastrous as an evader would likely encounter another
patrol-pursuit team. The signaling behavior for both types
of teams clearly helped achieve higher win rates than non-
signaling teams.

6 Conclusion

This paper presented the informal team assignment algo-
rithm (ITAA). Experimental results showed that informal
team assignment, based on local environmental conditions,
positively effected the performance of a large swarm in a de-
fensive position. In both single and multi-evader scenarios,
the ability to change roles and alert neighbors to an evading
agent’s position resulted in higher capture rates over similar
agents without signaling capabilities.

Results also showed that the ITAA enabled spontaneous
creation of teams in response to environmental stimulus.
These collaborative teams, making up sub-swarms, worked
towards completing a shared goal. This behavior allowed
an autonomous swarm to achieve multiple goals concur-
rently. In the multi-evader scenario, this behavior directly
contributed to the higher capture rates achieved by signal-
enabled pursuit teams.

Future work needs to address some shortfalls with the cur-
rent approach. First, while the simulation approach is the-
oretically solid, mathematical models mapping actions to
system level behaviors are lacking. A mathematical model
could enable outcome predictions as different variables
change (e.g. swarm increases, evading agent speed increases
etc.). Furthermore, a detailed analysis of how many defend-
ers are necessary to defend a certain region needs to be com-
pleted, allowing for more refined simulations and results. Fi-
nally, hybrid teams should be tested to see if mixed teams of
circle and pursuit agents fare better in single and multiple
evader scenarios.
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