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Abstract

Model-free reinforcement learning techniques have been suc-
cessfully used in diverse robotic applications. In this paper,
we design and implement the Q-learning algorithm, a widely
used model-free algorithm to find the optimal speed control
function for a fast moving train on a fixed track. The goal is to
allow for the train to learn the fastest speed profile it may use
on a track, without derailment. We contrast the performance
of the learning algorithm with the performance of the hu-
man controlling trying to perform the same task. In order the
test the proposed algorithm, a complete hardware and soft-
ware testbed has been designed and implemented, allowing
for the evaluation of the learning models over a physical en-
vironment. We conclude that in simple tasks, the performance
on humans in speed control is similar to the performance of
the reinforcement learning algorithm, but when a more com-
plex track is considered, the proposed reinforcement learning
learning models outperforms the humans.

1 Introduction

Reinforcement learning (RL) is one of popular techniques
used in field of artificial intelligence, control, and machine
learning. It has proved to be a robust learning tool applied
in diverse fields. Its advantageous from the theoretical and
algorithmic perspective led to using RL for solving complex
tasks from job-shop scheduling (Zhang and Dietterich 1995)
to easy daily tasks like riding a bicycle (Randløv and Al-
strøm 1998).

Generally speaking, in reinforcement learning an agent
seeks to discover the state-space by trial and error, based
on a reward/cost function. The goal is to learn sequences of
actions associated with a given that that yield a greater accu-
mulated reward in the long term. In reinforcement learning,
the state represents the current situation of the agent in the
world, while actions are mappings of state transitions and
associated rewards. The result of an RL learning algorithm
is a a policy, which maps the best sets of actions to given
state.

1.1 Markov Decision Process

In reinforcement learning, we assume that our environment
satisfy the Markov property, which states that the condi-

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

tional probability of a future stat of a system based on all its
prior states depends only on its current state, which means
that the system is memoryless. This model is called the
Markov Decision Process (MDP) (Tsitsiklis 1994) (Dayan
1992) (Howard 1960).The MDP model is described as
follows, where (s) presents as given state, (a) represents a
given action, and (r) the reward:

• S : a set of states s ∈ S.
• A : a set of actions a ∈ A.
• R(s, a) → r : a reward function.
• T : S × A → Π(S) where Π(S) is the probability distribution

of state transitions for a given action.

The transition function probabilistically defines the next
state of an agent in the environment based on its current
state and the action it takes. The Reward function defines
the expected reward the agent receives based on the action
it takes in the current state. This formulation requires no as-
sumptions for a finite space of state or actions, however, in
this paper, we limit our problem to a finite set of states and
actions that is defined by the environment.

2 Experimentation Environment

The environment proposed for this design and experimen-
tation of the learning algorithm is a set of connected rail
tracks illustrated a railroad system (Figure 2). The environ-
ment also provides an analog for a simple flexible manufac-
turing system, where robotic units would be represented by
the model trains.

Agents are model trains with customized hardware that
move on these rails. They have WIFI connectivity, sensors
used to detect failure or success when they take actions, a
motor speed controller, and the main processing unit. We
call this model trains as an agent in our RL problem. Figure 1
shows the agent running on track with customized hardware.

2.1 Problem Description

In our experiment, each agent in the environment is capa-
ble of controlling its speed from very slow to very fast. We
described it as values between 0 and 255. Considering that
the agent receives a task as moving from one point to an-
other point on the tracks, our goal is to minimize the travel-
ing time for the agent. That means the faster agent will go
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Figure 1: Model trains as the agents with sensors on them.

forward earliest it will reach its destination, but the problem
is that if we set the max speed for the agent, it is very likely
that it will flip over or derail due to the fact that there are dif-
ferent sharp angles on tracks, anomalies on connections and
joints, uneven connections between track segments, switch-
ing segments with sensitive tracks, and so on. That will make
it impossible for the agent to move forward with max speed
all the way until it reaches the goal.On the other hand, set-
ting a slow, safe speed for the train will make sure that the
agent will reach the destination. However,it will lose the op-
timal condition we are looking for, which is to reach the goal
as fast as possible.

In general, we can define our problem as a behavior op-
timization problem in which our agent almost knows how
to reach its goal, but it needs to tune its behavior some-
how to reach the destination in optimal time. This behav-
ioral knowledge can be gained from prior experiences by the
agent or can be a solution suggested by a human. There have
been studies in behavior optimization of robots in reinforce-
ment learning problems like using reinforcement learning to
refine robot motor control (Franklin 1988) or use human-
generated control strategies to bootstrap a robot controller
using Q-learning. (Smart and Kaelbling 2000).

In addition to minimizing the travel time, we would also
like to minimize the number of times that the agent will fail
to complete the path (flip over or derail) during the learning
process.

3 Comparing To Human Performance

There have been many types of research in the field of rein-
forcement learning to compare human performance to rein-
forcement learning performance (Knox and Stone 2012) and
also how human experience can help to boost an RL algo-
rithm performance. (Mnih et al. 2015) (Thomaz, Breazeal,
and others 2006) Also, to demonstrate our experimental re-
sults in reinforcement learning, as the second part of our ex-
periments, we compare the human learning rate and perfor-
mance results where humans will manually control the speed
of trains via a joystick.

It is commonly stated that reinforcement learning algo-
rithms take a large number of observations and samples in
comparison to a human (Doshi-Velez and Ghahramani ). As
the second part of our experimentation, we investigate how
humans perform in controlling the speed of an agent to fin-
ish the lap in the minimum amount of time and how the error
rate is compared to the RL algorithms.

3.1 Test Cases

We have run our learning algorithm on two different paths
that we have selected on tracks. The learning procedure
starts with the agent moving forward from a designated start-
ing point and finishing up at the end of the loop. This pro-
cedure repeats until the the agent learns optimal policies. In
test case one we first test our approach in simple path 2 and
demonstrate our results. In addition, we asked humans to
control the agent manually on the same path and compared
the results.

Figure 2: Simple path taken by the agent in test case 1.

For our second test case, we use a long and complex path
as it is shown in Figure 3, which includes additional turns in
both directions.

Figure 3: Complex path taken by the agent in test case 2.

In our problem set, we divided all tracks to segments and
labeled them as different states that the agent can be in at
each time step. Figure 4 shows each state with a different
color for for test case 1. Agents can take actions by changing
their speed from 0 to 255. The lower the value the lower the
speed would be. Zero speed turns off the motor, but the train
will slide based on its previous speed.

Figure 4: States as partition of segments the agent can be in
each time step.
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3.2 Feedback from the Environment

Each agent is equipped with gyroscope sensor on it. We use
this sensor as our state signal from the environment based
on the action we perform. A gyroscope is widely used in
robotics for stabilization (Fuller et al. 2014) (Brown and Xu
1997) and motion control (Nagasaka et al. 2004). It returns
Yaw, Roll, Pitch values of the robot.

Since we have the robot on a flat surface, we can ignore
the pitch values while it will never change. The yaw value
gives us the direction that the agent is facing which we will
not use it as our state-action feedback. Hence, we are only
interested in roll values from the gyroscope that describe if
the train is flipping over. Trains have a flexibility of some
degree that they can push left and right as they are on curves
on tracks. The yaw value has a significant change between
90◦ to −90◦ when the train flips over. This indicates to the
learner that the action taken on a specific state leads to fail-
ure. These values are observed by plotting roll values of the
agent and running it from a lower speed to the maximum
speed on a simple path shown in 2 with curves until it loses
its control and goes off the track and flips over.

Figure 5: Gyro roll value readings on loop path with increas-
ing speed.

Figure 5 shows the plotting of roll values. From that, we
can observe that the roll values of more than 20 indicate a
flip-over state. In addition to that, we can predict that before
the agent flips over at time t, it has experienced some high
roll values at time t−1. This can be used as a warning for the
agent that a little bit more speed on the same state is going to
cause a failure. This is very important for us in designing the
reward function to reduce the number of times the agent flips
over significantly. If we define R as our gyro roll reading
value we have:

Feedback State

⎧⎪⎨
⎪⎩

Critical Pass 7 > R > 6

Non-Critical Pass R < 6

Flip over R > 7

(1)

3.3 Reward Function

It has been proven that choosing a good reward function can
have strong effects on how long the learner will spend the
time to learn the optimal policy in an environment (Mataric
1994) (Randløv and Alstrøm 1998).At the beginning, we
simply defined our reward function as follows:

R(s, a)

{
+5 if state s is passed successfully
−5 if state s pass is fails (train is flipped over)

(2)

The agent will receive 5 rewards if it reaches the destination
without flipping over and 5 penalties if along the path it flips
over. In that case, the agent must start the learning process
from the beginning. From our observations in Section 3.2,
for the critical roll values that the agent experiences, This
will be a warning for the agent. If it increases its speed in
the same state in next iteration, it will be flipped over by a
minor change in reward function:

R(s, a)

⎧⎪⎨
⎪⎩
+5 if state s is passed without critical gyro value
−10 if state s is passed with critical gyro value
−20 if state s pass fails (train is flipped over)

(3)
We were able to decrease the number of times the agent flips
over in the learning process from 10 to 2 in test case 1,

3.4 Modeling the Problem as MDP

We use the standard Markov decision process (MDP) For-
mulation (Bertsekas and Tsitsiklis 1995) for representing
the fully observable environment.

S : a set of states (position of agent on track) s ∈ S

A : a set of actions (speed range 0-255) a ∈ A

R(s, a) → r : reward received by taking action a at states s

R(s, a)

⎧⎪⎪⎨
⎪⎪⎩

+5 if state s is passed without critical gyro value.

−10 if state s is passed with critical gyro value.

−20 if state s pass fails (train is flipped over).

(4)

4 The Q-Learning Algorithm

As we do not have a model of our world based on a probabil-
ity distribution function T (s, a, s′) which defines the prob-
ability of transitioning from state s to state s′ using action
a. In addition, modeling mechanical characteristics of the
trains is very hard task to do. Hence, we selected one of the
most widely used model-free reinforcement learning tech-
niques called Q-Learning (Kaelbling, Littman, and Moore
1996) (Watkins and Dayan 1992) due to its algorithmic
simplicity and also the ease of transitioning from state-value
function to an optimal control policy (Martinson, Stoytchev,
and Arkin 2001) by choosing every state-action with the
highest value. Q-Learning has been used in many robotic ap-
plications from stabilization of a Biped robot (Park, Jo, and
Kim 2004) to path planning for multi-agent soccer robots
(Kim et al. 2000).

In our experiment, we implement Q-Learning to find the
best policy for the agent that maps the state to the optimal
action, which in our case is the fastest and safest speed for
the agent in each state. We define Q∗(s, a) as discounted
reinforcement of taking action a at state s. Afterward taking
actions optimally, we also define V ∗(s) as the value of s
assuming that the best action is taken initially. Hence, we
define it as:

V ∗(s) = max
a

Q∗(s, a) (5)

We can define our optimal policy as :

π∗(s) = argmax
a

Q∗(s, a) (6)
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where Q∗(s, a) is formulated as follows:

Q(st, at) ← Q(st, at) +α
[
rt+1 + γ max

a
Q(st+1, a)−Q(st, at))

]
(7)

where γ is the discount factor between zero and one that
defines how much future rewards will be more substantial
than the reward that the agent will receive from the very
next state. α is called the learning rate, which defines how
much the learner values the new experience above experi-
ences from previous actions. In our implementation, α is set
to 1.

5 Learning Process

Beginning from the starting point, the agent will move for-
ward with a slow speed while calculating Q-values and sav-
ing them in the Q-matrix. At the end of each loop, the agent
increases its speed by 5. This continues process ends when
the agent reaches maximum speed and all Q-values are up-
dated. Obviously, we will have flip-overs while learning. In
such cases, we put the agent back to the starting point and
resume the learning process.

The output of our reinforcement learning implementation
would be the list of optimal actions. In our case this is the
speed for the agent for the list of the states, which are the
track segments in our environment.

6 Experimental Results

In this section, we show the results of our implementation
running on two different paths. Our first test was to run a
Figure 6 shows the result of running the learning process on
Test case 1. Red plot shows the finish time of the lap with no
learning where we have increased the speed of the agent in
each loop until it flips over. This indicates the best time that
the agent can finish the lap without any learning algorithm.
Blue plot shows the lap finish time by the agent when we
run our learning algorithm where we can see a significant
improvement in finishing the lap.

Figure 6: Q-Learning and no learning results on path1.

Table 1 shows the results of test case 1 for humans and
the RL algorithm, as well as average performance of five
humans and RL algorithm.

As shown in our results, for a simple path covering the
perimeter of the track, humans learned how to control the

Table 1: Q-Learning results for Test Case 1.
# of Laps # of Failures Finish(sec)

Learning Best 33 2 10
Human Best 6 1 10.44

Learning Average 10 5 10.54
Human Average 33 3 10.16

agent in much fewer laps than the learning algorithm did.
The finish time was very close to what Q-Learning achieved
but RL algorithm still recorded better lap finish time. With-
out dynamic speed change, the agent could finish at 12 sec-
onds without flipping over which, was 2 seconds more than
Q-Learning and human finish time. Hence, we can assume
that Q-learning achieves better results compared to setting
fixed speed to the agents. The standard deviation the RL al-
gorithm for five runs was 0.092 seconds, while the standard
deviation for humans was 0.135. A t-test ( (Student 1908))
with 99% confirmed the statistical difference between av-
erage finish time taken by humans and by the Q-Learning
algorithm..

For our second experiment, we picked a more complex
path with more curves. Figure 3 shows the path for Test case
2. Figure 7 shows the comparison of the finishing time of
the loop on Test case 2 by the agent using our learning algo-
rithm.

Figure 7: Lap finish time for the best results of human and
RL algorithm.

Similarly to our approach in test case 1, we again ran our
experiment with humans manually controlling the speed of
the trains through a joystick. We have recorded the best re-
sults for five different participants, all given some initial time
to familiarize themselves with the controls. Table 2 com-
pares the results of the best finish time by humans and our
learning algorithm.

Unlike our first experiment, on a simple path that the hu-
man lap finish time was almost the same as our learning al-
gorithm. As we changed the path to a more complex path,
the number of errors by the manually controlled agent in-
creased and also the reinforcement learner recorded better
results in finishing time.
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Table 2: Q-Learning results for Test Case 2.
# of Laps # of Failures Finish(sec)

Learning Best 26 2 19.9
Human Best 8 5 20.6

Learning Average 12 8 20.97
Human Average 33 3 20.11

We again conducted a t-test for test case 2, evaluating the
is a statistical difference between time required for a person
to complete the more complex path (test case 2), and the
time required by the learning algorithm.

The variance of the reinforcement learning algorithm
measurements over five runs was 0.158 seconds, while the
variance of measurements across five participants was 0.431
seconds. Using a 99% level of confidence our t-test has re-
jected the null (H0) hypothesis that both measurements (be-
tween humans and the RL algorithm) were equal.

Figure 7 shows the best performance of humans on man-
ual speed control with learning algorithm over five runs. Our
results show that humans need a smaller number of trials to
learn in comparison to a machine, but the learning algorithm
has a better finishing time than the humans after 25 laps.

Figures 8 and 9 shows the actions selected by the agent
and human for each lap in the learning process. Figure 10
demonstrates the best actions selected in the best lap for hu-
mans and the RL algorithm.

Figure 8: Actions (speeds) selected by the agent for each lap
(best result plotted in red).

Figure 10 shows that the human and the learning algo-
rithm has a similar reaction to the different states but ma-
chine picks actions in a more optimal manner and it has
better performance in finishing time. In addition, human de-
creased speed in some states which was not a critical state.

7 Conclusions

In this paper, a physical testbed to run our proposed model-
free reinforcement learning algorithm to minimize the travel
time of the model trains operating on tracks has been devel-
oped. By finding the best safe speeds for different states, our
reinforcement learning algorithm will prevent trains from
flipping over or derailing. Also it is shown in our results that

Figure 9: Actions (speeds) selected by human for each lap
(best result plotted in red).

we can minimize travel time significantly by using reinforce-
ment learning compared to setting a fixed speed to trains.

The second part of our experimentation was to compare
human controller behavior to the reinforcement learning
method from the learning rate and optimal action selection
perspective. We have asked humans to control the speed of
trains manually by a joystick, and our results show that hu-
mans can learn faster in simpler tasks with almost close fin-
ishing time performance in comparison to the reinforcement
learning algorithm. On the other hand, when we have se-
lected a complicated path to be tested, we witnessed that
human performance decreases in comparison to learning al-
gorithm and the number of errors made by the human con-
troller increases as the travel path gets more complicated.

Finally, we used t-test statistical examination method to
proof the statistical difference between humans and the re-
inforcement learning algorithm results for both test cases.
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