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Abstract

This paper investigates how spatial and temporal context in-
formation can be used in smart homes to detect abnormal be-
haviours. We discuss how various formalisms, such as proba-
bility theory, the Dempster-Shafer calculus, and fuzzy logic,
can be used to capture context information and argue that
fuzzy logic is the most suitable. We evaluate our approach
by analysing one of the CASAS smart home datasets.

Introduction

Most developed countries around the world are facing the
problem of an ageing population. Life expectancy is higher
than ever before, and people expect to maintain a high-
quality, independent lifestyle into retirement and beyond,
regardless of infirmity or illnesses such as Alzheimer’s or
Parkinson’s diseases. Unfortunately, this hope is not al-
ways met, which means that many elderly people require
hospital/residential care at some stage in their life, which
places an unsustainable demand on healthcare services (New
Zealand Ministry of Health 2016).

Rather than moving an elderly person to a nursing home
or employing the continuous support of a caretaker, there
is a trend to enable ageing-in-place by utilising smart home
technology and the elderly person’s social support network
(Peek et al. 2014). The smart home uses sensors to mon-
itor the inhabitant’s activities in an unobtrusive way, with
the aim of detecting behaviours that are potentially harmful
and seeking appropriate assistance when necessary. How-
ever, without an intelligent reasoning engine, the informa-
tion obtained from the sensors is of little use. The reason-
ing engine has to determine which activity is currently tak-
ing place and whether this activity is a normal behaviour, or
poses a threat to the inhabitant.

Recognising human activities is a challenging task, since
they can be quite complex, irregular, and vary substan-
tially between instances. Over the last ten years, a large
body of research on activity recognition has been devel-
oped. The approaches taken range from logic-based ap-
proaches to probabilistic machine learning approaches, e.g.,
(Augusto and Nugent 2004; Chua, Marsland, and Gues-
gen 2011; Duong et al. 2005; Gopalratnam and Cook 2004;
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Lotfi et al. 2012; Mahmoud, Lotfi, and Langensiepen 2014;
Rivera-Illingworth, Callaghan, and Hagras 2010; Sánchez,
Tentori, and Favela 2007; Tapia, Intille, and Larson 2004;
Tong, Chen, and Gao 2015). Although the reported suc-
cesses are promising, simply determining which activity is
taking place is not sufficient to decide whether this partic-
ular instance of the activity is abnormal. Abnormality can
be evident in things like missing important steps of a be-
haviour (such as turning the gas off after cooking), but it
is often the context that determines problems, in particu-
lar the spatial and temporal context (Aztiria et al. 2008;
Guesgen and Marsland 2010; Gottfried et al. 2015; Jakkula
and Cook 2008; Tavenard, Salah, and Pauwels 2007). For
example, it is normal to have meals during the day, but not
usual to have a meal at 3am. Or it is normal to sleep in the
bedroom rather than the laundry.

In this paper, we discuss how spatio-temporal context
information can be represented and how spatio-temporal
anomalies can be detected. We argue that using a probabilis-
tic approach has shortfalls, due to incomplete context infor-
mation, and that using an approach based on the concept of
beliefs fails due to its complexity. We then make a case for
fuzzy logic, which not only provides a simple and robust
mechanism for reasoning about contextual information, but
also provides a means to represent imprecise information.

A Case for Fuzzy Logic

Activities often take place in particular contexts (locations,
times, and before and after other activities), but there is usu-
ally no one-to-one relationship between an activity and the
context it occurs in. Rather, given a certain activity, contex-
tual information is determined according to some probabil-
ity distribution. If A is an activity (e.g., making breakfast)
and C some context information (e.g., in the kitchen), then
P (C|A) is the probability that C is true if A occurs (e.g.,
the activity takes place in the kitchen if we know that the
activity is making breakfast).

Given the conditional probability P (C|A), we can calcu-
late the conditional probability P (A|C) using Bayes’ rule:

P (A|C) =
P (C|A) · P (A)

P (C)

. There are several difficulties with using probability to pre-
dict activies. A large amount of data is needed, since we
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need to know the conditional probability for each context
and activity. Moreover, we not only need P (A|C) but also
P (A|C1, . . . , Cn), (where there are n different pieces of
contextual information), since it is often correlated. Second,
context data are not necessarily discrete. It is common to
wish to turn quantise data, for example turning precise times
into times of day (for example, 1515 could be afternoon).
However, putting hard thresholds on such binning is prob-
lematic.

(Clermont 2012) raises an interesting point when consid-
ering probabilistic reasoning in law, which is that combining
probabilities leads to counter-intuitive results, the so-called
conjunction paradox. Although not directly related to the
problem addressed in this paper, his example illustrates the
challenge we are facing:

We purport to decide civil cases according to a more-
probable-than-not standard of proof. We would expect
this standard to take into account the rule of conjunc-
tion, which states that the probability of two indepen-
dent events occurring together is the product of the
probability of each event occurring separately. The rule
of conjunction dictates that in a case comprised of two
independent elements the plaintiff must prove each el-
ement to a much greater degree than 50%: only then
will the plaintiff have shown that the probability that
the two elements occurred together exceeds 50%. Sup-
pose, for example, that a plaintiff must prove both cau-
sation and fault and that these two elements are inde-
pendent. If the plaintiff shows that causation is 60%
probable and fault is 60% probable, then he apparently
would have failed to satisfy the civil standard of proof
because the probability that the defendant both acted
negligently and caused injury is only 36%.
Replacing ‘causation’ and ‘fault’ with two different con-

textual observations shows the difficulty. In fact, this dif-
ficulty arises from the fact that total probability is always
100%. Another problem that this raises is that when our
knowledge is incomplete, so that we do not have prior infor-
mation about something, when a probability of the unknown
event has to be estimated, this is often based on nothing more
than guesswork, as otherwise it will be assigned probability
0, meaning that it is impossible.

Dempster-Shafer theory (Dempster 1967; Shafer 1976)
offers a way out of this dilemma. It uses the concepts of be-
lief (Bel) and plausibility (Pl) instead of probability to for-
mulate uncertainty, where classical probability lies between
belief and plausibility:

Bel(A|C) ≤ P (A|C) ≤ Pl(A|C)

Belief and plausibility are defined in Dempster-Shafer
theory on the basis of a mass function, which assigns ba-
sic probabilities to the power set of the so-called frame of
discernment:

m : 2U → [0, 1]

In the context of activity recognition, the frame of discern-
ment is the set of possible activities that can be observed by
the ambient intelligence of the smart home. The mass as-
signments to the activities must add up to 1, and the mass

assignment of the empty set has to be 0:
∑

X∈U

m(X) = 1 m(∅) = 0

For example, if we were able to observe only three types
of activity, having breakfast (Ab), eating dinner (Ad), and
washing dishes (Ac), the frame of discernment would be
U = {Ab, Ac, Ad}. Further, if we knew that the activity
that just took place occurred in the kitchen and that 80%
of kitchen activities are either having breakfast or washing
dishes, then we would assign 0.8 as basic probability to the
set {Ab, Ac}:

ms({Ab, Ac}) = 0.8

If we had no other spatial context information, we would
assign the remaining probability to the whole frame of dis-
cernment:

ms({Ab, Ac, Ad}) = 0.2

If we have two mass functions, for instance one for some
spatial context information and the other for some tempo-
ral context information, we can combine these for every
nonempty subset X of the frame of discernment in the fol-
lowing way:

[ms ⊕mt](X) =

∑
V ∩W=X ms(V ) ·mt(W )

1−∑
V ∩W=∅ ms(V ) ·mt(W )

The combined mass assignment for the empty set is 0:

[ms ⊕mt](∅) = 0

This assumes that the weight of conflict is not equal to 1:
∑

V ∩W=∅
ms(V ) ·mt(W ) �= 1

To illustrate the combination of mass functions, assume
that ms makes mass assignments as in the example above.
Further assume that mt assigns 0.6 to the set {Ac, Ad},
which means that the observed activity is either washing
dishes or eating dinner with a certainty of 60% (since the
activity took place in the evening and 60% of evening events
are either washing dishes or eating dinner). If we had no
other temporal context information, we would assign the re-
maining probability to the whole frame of discernment:

mt({Ac, Ad}) = 0.6 mt({Ab, Ac, Ad}) = 0.4

Combining the spatial and temporal evidence results in the
mass assignment shown in Table 1, where mc denotes the
combined mass assignment function.

Although this approach solves the problem of evidence
not adding up to 100% (which is not the same as mass
assignments adding up to 100%, since there is an explicit
‘don’t know’ category), it is not necessarily a practical solu-
tion to reasoning about context information in general, since
Dempster-Shafer theory is an even more complex frame-
work than probability theory, even if it is used in a quali-
tative form as discussed in (Guesgen and Marsland 2015).
There is also the question of how to obtain the mass as-
signments. One way is to base them on smart home datasets
(see next section). Given a particular context, whenever that
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⊕ ms({Ab, Ac}) = 0.8 ms({Ab, Ac, Ad}) = 0.2
mt({Ac, Ad}) = 0.6 mc({Ac}) = 0.48 mc({Ac, Ad}) = 0.12
mt({Ab, Ac, Ad}) = 0.4 mc({Ab, Ac}) = 0.32 mc({Ab, Ac, Ad}) = 0.08

Table 1: Example of combining spatial and temporal mass functions in Dempster-Shafer theory.

Figure 1: Graphical representation of a membership func-
tions that determines the degree to which a restaurant visit
falls on a particular day of the week.

context occurs, we increment a counter for the set of activ-
ities happening in this context. For example, each evening
we memorise the activities occurring on that evening. If the
only behaviour is eating dinner, then the counter for {Ad}
is incremented by 1, if the only activity is washing dishes,
then the one for {Ac} is incremented, and if both of them
occur, the counter for {Ac, Ad} is incremented. After that,
the normalised counters are used as mass assignments.

Context Fuzzy Sets

Unlike traditional sets, fuzzy sets allow their elements to be-
long to the set with a certain degree. Rather than deciding
whether an element d does or does not belong to a subset A
of a domain D, we determine for each element of D the de-
gree with which it belongs to the fuzzy set Ã. In other words,
a fuzzy subset Ã of a domain D is a set of ordered pairs,
(d, μÃ(d)), where d ∈ D and μÃ : D → [0, 1] is the mem-
bership function of Ã. The membership function replaces
the characteristic function of a classical subset A ⊂ D.

Rather than asking the question of what is the probability
of a certain activity occurring in a particular context, we now
pose the question as follows. Given some context informa-
tion C, to which degree is a particular activity a C-activity.
For example, if C is the day of the week, then we can ask for
the degree of the activity to be a Monday activity, Tuesday
activity, and so on. In terms of fuzzy sets, we define D as
the set of the seven days of the week and μÃ as the mem-
bership function that determines to what degree the activity
occurs on a particular day. The membership function of such
a fuzzy set is shown graphically in Figure 1. Unlike proba-
bilities, the membership grades do not need to add up to one.

In the example above, the context information is still crisp

Figure 2: A fuzzy set that maps distances to the qualitative
values very near, near, far, and very far.

Figure 3: A fuzzy set that approximates distances with a
granularity of half a metre.

information, despite the fact that it is used in a fuzzy set: for
any restaurant visit, we can determine precisely which day of
the week it occurred on. Other context information might not
be precise; for example, we may know that an activity occurs
near the kitchen but the precise distance (e.g., in metres) may
well be unknown. In this case, we can represent the context
information itself as a fuzzy set, as illustrated in Figure 2.

Similarly, we can define a fuzzy set that expresses dis-
tances by rounding them to the closest half metre – some-
thing we as humans often do when we perceive distances,
although not necessarily always on the same scale (see Fig-
ure 3).

All of the examples above relate particular activities to
either spatial or temporal context. There is another form of
spatio-temporal context awareness, which looks at two ac-
tivities and captures how they are related to each other in
space and/or time. For example, if the current activity is hav-
ing breakfast, then activities such as leaving the house (to go
to work) or having another cup of coffee (at the weekend)
may be quite likely, whereas going to bed is not. This type
of information can also be captured in fuzzy sets.

We have evaluated our approach using the CASAS
datasets (Cook 2012) 1. These datasets cover a wide range of

1Available at http://www.ailab.wsu.edu/casas/datasets/
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scenarios, from single-resident apartments to multi-resident
homes with interweaved activities of daily living. The
datasets are primarily based on motion sensors, but also in-
clude environmental sensors, object sensors, and wearable
sensors. Some of the datasets are fully annotated (i.e., con-
tain ground truth), while others are only partially annotated
or not annotated at all. The particular dataset we have used
is the Aruba dataset, which is the annotated data of a single
person living their daily life.

Table 2 shows our analysis of the Aruba dataset. Each en-
try in the table shows the (normalised) frequency with which
a particular activity is followed by another activity. We in-
terpret these frequencies as fuzzy membership grades, which
means that we can create a successor fuzzy set for each ac-
tivity present in the dataset.

For each activity, the entries in the table differ signifi-
cantly for the successor activities, which means the resulting
fuzzy sets can inform the activity recognition process effec-
tively in a number of ways. For example, we can select for
each activity the three successors with the largest member-
ship grades and bias the activity recogniser towards these
successors. Figure 4 visualises this boosting process using a
successor graph.

As the examples have shown, fuzzy sets can be used for
associating activities with context information and for repre-
senting imprecise context information. Fuzzy set theory also
provides us with a means to convert fuzzy sets back to crisp
sets, which is achieved with the notion of an α-level set. Let
Ã be a fuzzy subset in D, then the (crisp) set of elements
that belong to the fuzzy set Ã with a membership grade of
at least α is called the α-level set of Ã:

Aα = d ∈ D|μÃ(d) ≥ α

If the membership grade is strictly greater than α, then the
set is referred to as a strong α-level set.

Reasoning with Context Fuzzy Sets

To avoid the problem of accumulating values, which we en-
counter in probability theory and Dempster-Shafer theory,
we choose one of the schemes for combining fuzzy sets
that was proposed in (Zadeh 1965). Given two fuzzy sets
Ã1 and Ã2 with membership functions μÃ1

and μÃ2
, re-

spectively, then the membership function of the intersection
Ã3 = Ã1 ∩ Ã2 is pointwise defined by:

μÃ3
(d) = min{μÃ1

(d), μÃ2
(d)}

Analogously, the membership function of the union Ã3 =
Ã1 ∪ Ã2 is pointwise defined by:

μÃ3
(d) = max{μÃ1

(d), μÃ2
(d)}

The membership grade for the complement of a fuzzy set
Ã, denoted as ¬Ã, is defined in the same way as the com-
plement in probability theory:

μ¬Ã(d) = 1− μÃ(d)

(Zadeh 1965) stresses that the min/max combination
scheme is not the only scheme for defining intersection

and union of fuzzy sets, and that it depends on the context
which scheme is the most appropriate. While some of the
schemes are based on empirical investigations, others are the
result of theoretical considerations (Dubois and Prade 1980;
Klir and Folger 1988). However, Nguyen et al. (Nguyen,
Kreinovich, and Tolbert 1993) proved that the min/max op-
erations are the most robust operations for combining fuzzy
sets, where robustness is defined in terms of how much im-
pact uncertainty in the input has on the error in the output.

Figure 5 shows the overall architecture of the activity
recognition system. Sensors positioned throughout the smart
home, such as motion sensors, temperature sensors, door
sensors, etc. produce a data stream that feeds into the activ-
ity recogniser. The activity recogniser first produces candi-
dates of activities that might correspond to the observed data
stream. By using spatio-temporal fuzzy sets, it then decides
whether the activity is normal or not.

Conclusion

This paper discusses how context information can be rep-
resented and how it can be used for activity recognition in
smart homes. Since context information is often incomplete,
imprecise, and complex, probabilistic approaches are im-
practical and therefore potentially unhelpful in real-world
applications. Fuzzy logic offers a way around this, as it pro-
vides robust mechanisms for dealing with uncertainty.

Although we used context information in this paper to
boost the activity recognition process, this is not its only ap-
plication. Just determining which activity takes place in the
smart home is usually not sufficient, because we often also
need to know whether an activity is normal or abnormal.
One way to distinguish between a normal and an abnormal
activity is to look at the context in which it takes place. If
the context is different from the usually observed context,
the activity might be abnormal.
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