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Abstract

Pollen recognition has a wide range of industrial and scien-
tific applications. It guides the energy industry to potential oil
and gas deposits, it is proxy data for climate-change scien-
tists, and it increases agricultural production. However, pollen
recognition is time consuming because it is usually done by
visual inspection. Current automated solutions rely on pre-
designed measurements of texture and contours, which re-
quire tuning for optimal features of a dataset. Also, most
methods classify pollen using single-focus images, which re-
quire pollen grains to be captured at specific focal planes.
We take a difference approach. Instead of using single-focus
images, we use stacks of multifocal images (i.e., z-stack) to
account for both visual characteristics and 3-D information.
We automatically learn from the data the best visual charac-
teristics for classifying pollen using deep-learning methods.
Here, we train convolutional and recurrent neural networks
(CNN and RNN) to learn the optimal features and recognize
a pollen grain as a sequence of multifocal images acquired by
an optical microscope. Additionally, we transfer the knowl-
edge pre-trained network to ours to improve its classification
and convergence speed. We evaluated our method using 392
stack sequences of 10 types of pollen grains with 10 images
for each sequence. Our method achieved a remarkable classi-
fication rate of 100%.

1 Introduction

Palynology or the study of pollen grains yields essential
data for scientific and industrial applications. For instance,
by analyzing fossil pollen found in soil extracted from the
bottom of ancient lakes, ecologists map thousands of years
of past climate (Treloar, Taylor, and Flenley 2004). Arche-
ologists analyze pollen to find clues about plants, ground
cover, and climate (Holt and Bennett 2014; Hodgson et
al. 2005). Allergy control scientists analyze allergen lev-
els of pollen collected from aerial traps (Vega et al. 2012;
Boucher et al. 2002). Interestingly, pollen grains also help in
oil discovery (Hopping 1967).

Most applications identify pollen by visual inspection, a
lengthy task that can take days to complete. Pollen recogni-
tion can be done in just a few hours by an automated sys-
tem. Regardless of being done manually or automatically,
recognizing pollen grains requires placing the grain sample
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on a slide under a microscope. When settled on the slide,
the grains’ position may hide distinctive characteristics from
view. Even for spherical grains, for which settling position
is not a problem, palynologists must adjust the scope’s focal
plane to view specific features (e.g., surface texture, pours,
spikes). Thus, palynologists examine grains at various focal
planes to see all distinguishing visual characteristics.

To automate the pollen recognition, we can use sequences
of multifocal images, which are called z-stacks. While z-
stacks have been used for pollen recognition (Chica 2012;
Punyasena et al. 2012; Lagerstrom et al. 2013; Riley et al.
2015), they are still under-exploited. Specifically, previous
methods concatenated z-stack features without considering
the images as an actual sequence. The sequence of focal
planes convey implicit 3-D information that can be useful
for recognition. The use of sequence information in z-stacks
of pollen grains has been recently used for classification (Ri-
ley et al. 2015; Daood, Ribeiro, and Bush 2016a). However,
these methods still rely on pre-designed features that encode
texture and contours, which might not be distinctive.

In this paper, we propose a method to recognize pollen
species using multifocal image sequences. Instead of us-
ing concatenated pre-designed features, our method uses
deep learning to both learn optimal features and classify
the pollen types from multifocal z-stacks as a sequential
data. We begin by training a convolutional neural network
(CNN) to find descriptive visual characteristics of pollen
types. Then, we combine the CNN with a Recurrent Neural
Network (RNN) to recognize the pollen type as a sequence
of multifocal images. CNN extracts discriminative features
and RNN classifies sequential data. We trained our networks
on a dataset of 10 pollen types. The dataset has 392 z-stacks
with 10 focal planes each. Figure 1 shows one z-stack sam-
ple for each pollen type in our dataset.

2 Our Method

We combine two different deep-learning networks to
perform the recognition of pollen grains from optical-
microscope images. Inspired by (Daood, Ribeiro, and Bush
2016b), we use a CNN to learn optimal visual characteris-
tics of pollen grains. Then, our method uses a RNN to clas-
sify the multi-focal z-stack of the pollen as sequential data.
RNN is a deep-learning network that classifies sequential
data (Graves and Schmidhuber 2009). Its memory units store
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Figure 1: Samples of multifocal z-stack of pollen grains in our dataset.

the history of previous inputs and allow for cyclical connec-
tions (Graves and others 2012). These connections map the
input sequences to any network output, making RNN ideal
for sequence learning. RNN has shown promising results on
speech recognition and natural-language processing. It has
solved challenging problems such as generating sequences
and synthesizing handwriting (Graves 2013).

Our method is divided into two parts. First, we train a
customized CNN to extract the features. Then, we improve
the recognition accuracy by tuning a pre-trained model
VGG16 (Simonyan and Zisserman 2014), which is an ap-
proach called transfer learning. Figure 2 shows the architec-
ture of our networks. To train and tune any CNN, we need
to re-structure our dataset. Here, we transform each multifo-
cal sequence from 3D space to 2D space. We partition our
data into 75% of training and 25% for testing. Our training

dataset has 294 stack sequences and the testing dataset has
98 stack sequences. After re-structuring, the training dataset
has 2,940 images and the testing dataset has 980 images.

Training a customized CNN

Our CNN has nine learned layers (Figure 2.a). The first
two layers are convolutional ones that are followed by two
blocks of max pooling and convolutional layers. The con-
volutional layers share configurations, where each layer in-
cludes a filters unit, a rectified unit (ReLUs), and a local
normalization unit. The last two layers are a fully connected
layer and a soft-max layer of 10 types.

Network configuration (i.e., network depth and filters’
size) affects training speed. Increasing the CNN’s depth and
filters size increases recognition rate but it also increase CPU
and memory consumption. In our design, network’s configu-
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Figure 2: Network architectures. (a) Training a customized CNN. (b) Tuning transferred learning from VGG16.

rations were determined experimentally by maximizing the
classification rate. Specific configurations are image reso-
lution, network depth (i.e., number of layers), filters’ size
for each individual layer, and the training window size (i.e.,
number of images used in the training process of each step
to update network’s parameters). For parameter initialization
and learning rate, we followed (Krizhevsky, Sutskever, and
Hinton 2012). The input of the first layer is 224×224 (i.e.,
the input image) with 32 filters of size 17×17. The second
layer takes the output of the first layer and convolves it with
64 filters of size 11×11. The number of filters and their size
of the rest of layers are: 128, 9×9, 250, 5×5, 1024, 1×1,
10, 1×1. Networks were trained using stochastic gradient
descent with window size of 32 images.

Our network has 108,644,625 parameters, which is rather
large in comparison to our small-size training dataset. To
limit over fitting, we artificially augmented the data tech-
nique to increase our training data from 2,940 to 14,700 im-
ages by applying 5 different rotations to each image. More-
over, we added two drop-out layers to the network by a
0.5 factor. Dropping out some network units during training
helps prevent excessive parameter updating. We initialized
the weights in each layer using a zero-mean Gaussian dis-
tribution. Biases were initialized with constant values of 1,
and the learning rate was set to 0.001. We trained our net-
work for 30 epochs using 14,700 samples of pollen grains
on a single machine with core 7 cpu and 24GB of memory.

We classify multifocal sequences of pollen grains using a
CNN followed by a recurrent neural network (RNN). First,

we de-serialized the predicted labels from CNN, and we ap-
plied majority voting to estimate the final prediction. How-
ever, taking the majority voting of 10 labels ignores sequen-
tial nature of multifocal images. Thus, we serialized the ex-
tracted features from the CNN to create sequences of fea-
tures (i.e., 10×1024) describing characteristics of the multi-
focal images. Then, the sequence of features was then used
to train a recurrent neural network (RNN). The trained RNN
has of 512 units of long-short-term memory (LSTM) fol-
lowed by a soft-max layer of 10 types. By using RNN to
classify the pollen z-stack as sequences of features, we im-
proved the classification accuracy.

Transfer learning

We improved the classification accuracy by adopting trans-
fer learning to leverage the learned knowledge from pre-
trained models. Tuning pre-trained models has shown
promising results when compared to using random features
(Yosinski et al. 2014). Additionally, transfer learning im-
proves convergence time during training.

Available deep-learning models that were pre-trained on
large-scale data include VGG16, VGG19 (Simonyan and
Zisserman 2014), Xception (Chollet 2016), ResNet (He et
al. 2015), and Inception (Szegedy et al. 2016). We use
VGG16 (Figure 2.b) because of its small size. VGG16 has
five blocks. The first block has two convolutional layers.
The remaining blocks have a max-pooling layer followed
by convolutional layers. Finally, the top part of VGG16 has
two fully connected layers and a soft-max layer of 1,000
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types. We removed the final part of VGG16 and connected
to it a fully connected layer of 1×1024 followed by a soft-
max layer of 10 types. We re-trained the new architecture to
fine tune the network parameters using our training data of
14,700 images. Then, we performed the identification pro-
cess as a similar way as described in Section 2.

3 Results

Using RNN with transfer learning by tuning VGG16
achieved a remarkable recognition rate of 100%. Figures 3
and 4 show the accuracy and the loss of our models during
the training of the CNN and the tuning of VGG16, respec-
tively. We computed the accuracy and the loss at each epoch,
and used them to track convergence. The convergence dur-
ing tuning of VGG16 is much faster than training the CNN
from the scratch. For example, the accuracy shown in Figure
4 became nearly 98% in the first two epochs. Figure 5 shows
the learned filters of the CNN’s first layer.

Figure 3: Accuracy and the loss of the training. At each it-
eration, feed forward is used to compute the accuracy of the
network, and the loss of the training.

Figure 4: Accuracy and the loss of tuning process. At each
iteration, feed forward is used to compute the accuracy of
the network, and the loss of the training.

Figure 5: Learned filter(17×17×32) of the first layer of the
customized CNNs. Primitive features such as corners, edges,
and blobs were learned.

Table 1: Classification rates
Method Classification Rate

Histogram features, Gray level statistics 81.92%
Geometrical features, fractal dimension 80.12%
Gray level co-occurrence matrix 73.44%
Moments invariants 70.35%
Gabor features 76.04%
HOG 75.63%
LBP 84.73%
Chica’s Method 86.18%
Lagerstrom’s Method 83.96%
Histogram, gray-level statistics, fractal dimension, LBP 88.88%
Customized CNN+Majority voting (Ours) 91.83%
Customized CNN+RNN (Ours) 95.91%
Transfer learning+Majority voting (Ours) 97.95%
Transfer learning+RNN (Ours) 100.00%

To compare our networks’ performance with other ap-
proaches that use pre-designed features, we extracted some
of the most commonly used features to perform the recogni-
tion process. These approaches are based on pre-processing
the pollen grain images (i.e., enhancement and segmenta-
tion), feature extraction, and classification. We used the fol-
lowing features: histogram features (i.e., the mean and vari-
ance of histogram), gray-level statistics (i.e., the mean, vari-
ance, and entropy), geometrical features (i.e., area, perime-
ter, compactness, roundness, and aspect ratio), fractal di-
mension, gray-level co-occurrence matrix (GLCM), Hu’s
invariant moments, Gabor features, histograms of oriented
gradient (HOG), and local binary pattern histogram (LBP).
After we performed features extraction, we trained a support
vector machine classifier. We also reproduced the results of
two works in the literature that used concatenated features
from multifocal planes, i.e., Chica’s Method (Chica 2012)
and Lagerstrom’s Method (Lagerstrom et al. 2013). Chica
extracted shape and texture features from three focal images
of a pollen grain. Lagerstrom extracted histogram statistics,
moments, grey-level co-occurrence matrix, and Gabor fea-
tures from nine focal planes. The results of these compar-
isons are shown in Table 1.

We compared our method with the best method in Table
1, which achieved a 88.88% classification rate. This method
combines histogram, gray-level statistics, fractal dimension,
and LBP. The P-value was 1.78 ×10−7, which rejected the
null hypothesis. We computed the average of precision, re-
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call, specificity, and F-score (Sokolova and Lapalme 2009).

Table 2: Evaluation Measurements
Method Precision Recall Specificity F-score

Features combination 89.77% 89.07% 98.75% 88.98%
Customized CNN+Majority voting 92.07% 91.69% 99.09% 91.58%
Customized CNN+RNN 96.42% 95.83% 99.54% 95.64%
Transfer learning+Majority voting 98.18% 97.14% 99.78% 97.33%
Transfer learning+RNN 100.00% 100.00% 100.00% 100.00%

4 Conclusion and Future Work

In this paper, we presented a method to identify pollen grains
using sequences of multi-focal images. Our method com-
bines two deep-learning networks: a convolutional neural
network (CNN) and a recurrent neural network (RNN). The
CNN learned discriminating visual characteristics such as
corners, blobs, and edges. Then, the learned features were
aggregated to create a sequence of features to describe the
stack of multi-focal images. We used these extracted fea-
tures to train a RNN network to classify the pollen as a se-
quence. We used data augmentation and drop-out layers to
reduce the effect of over fitting during training.

Additionally, we used the pre-trained model VGG16 to
leverage learned features to improve the classification rates
(i.e., transfer learning). By adopting transfer learning, we
achieved a 100% classification rate. We compared our re-
sults with previous techniques that use pre-designed fea-
tures. These techniques were largely outperformed by our
method. Even though our approach achieves a 100% classifi-
cation rate, the slow training time of CNNs is an issue when
using standard PCs. Faster training speed can be achieved
using parallel processing and GPU architectures. As future
work, we plan on using high-performance computing for
network training and also on increasing the number of pollen
types in our dataset.
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