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Abstract

We propose a supervised approach incorporating group
feature sparsity in multi-class kernel logistic regression
(GFR-MKLR). The need for group sparsity arises in
several practical situations where a subset of a set of
factors can explain a predicted variable and each fac-
tor consists of a group of variables. We apply our ap-
proach for predicting human interactions based on body
parts motion (e.g., hands, legs, head, etc.) where image
features are organised in groups corresponding to body
parts. Our approach, leads to sparse models by assign-
ing weights to groups of features having the highest dis-
crimination between different types of interactions. Ex-
periments conducted on the UT-Interaction dataset have
demonstrated the performance of our method with re-
gard to stat-of-art methods.

Introduction
Models with sparsity constraint on solutions plays a cen-
tral role in many high-dimensional classification problems
(Hastie et al. 2015; Tibshirani 1996). In some cases, ex-
planatory variables can be grouped together into separate
factors influencing prediction of classes (Rao et al. 2016).
This is the case, for example, in real world human activi-
ties captured in videos where a single activity can be de-
composed into co-occurring actions performed by different
persons (e.g., hand shaking, hugging, meeting, etc.) (Noceti
et al. 2014). Each action, performed by the person, incurs
the motion of different body parts depending on the gestures
performed in the action (Aggarwal et al. 2011). Therefore,
having sparse classification models selecting features at the
gesture level is an important issue for better activity recog-
nition. Sparse models usually prevent over-fitting and lead
to more interpretable solutions in high-dimensional machine
learning problems (Hastie et al. 2015; Rao et al. 2016).

Group sparsity has been proposed in the past mainly as an
extension to the least absolute shrinkage and selection op-
erator (LASSO) method (Tibshirani et al. 1996; Yuan et al.
2006). Contrarily to LASSO which performs feature selec-
tion for individual features, group LASSO performs selec-
tion for entire groups of variables, where each group con-
stitutes a separate explanatory factor (Hastie et al. 2015).
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In particular, it can be assumed that the optimal sparsity
will tend to involve clusters or groups of coefficients, cor-
responding to preexisting groups of features (Yuan et al.
2006). While the form of the groups can be a priori known
(e.g., in activity recognition, a group can correspond to all
features associated with a part of the body performing a ges-
ture), the subset of groups that is relevant to the classifica-
tion task at hand can be unknown. Recently, group LASSO
methods have enjoyed a tremendous success in high dimen-
sional classification problems (Vincent et al. 2014; Wang et
al. 2008; Wang et al. 2013). It remains, however, that most
proposed methods are limited to binary classification based
on linear models.

One of the earliest work on two person interaction recog-
nition using motion trajectories was proposed by Datta et
al. (Datta et al. 2002). This method tracks the trajectories
of different parts of the body, then tries to dissociate violent
from non-violent actions. In (Park et la. 2003), a hierarchical
Bayesian network (BN) is proposed for interaction recogni-
tion. In this method, low-level nodes of the network are used
to represent the pose of body parts, whereas high-level nodes
estimate the overall body pose. (Ryoo et al. 2009) designed a
method to measure structural similarity between sets of spa-
tiotemporal features extracted from two videos. The authors
then derived a kernel for action classification based on sup-
port vector machines (SVM). In the same vein, (Slimani et
al. 2014) designed a correlation matrix between spatiotem-
poral features used to represent and classify interactions be-
tween persons using SVM. In (Meng et al. 2012), location
and appearance of human joints are combined for interaction
representation, which are then classified using SVM.

Similarly to our approach, (Yuan et al. 2012) groups tra-
jectories of densely-sampled key points in videos to form in-
teraction components. Then, different interactions are com-
pared using a spatiotemporal context kernel plugged in an
SVM classifier. In (Do and Pustejovsky 2017), authors pro-
pose a compact representation for human-object interactions
by comparing quantitative and qualitative features at two
levels: frame level features (by visualizing human and ob-
jet trajectories) and event level (by summarizing the change
between first, middle and last frames across event duration).
These methods, however, incorporate sparsity at the level of
interaction representation, whereas our method focuses on
integrating sparsity in the classification stage of interactions.
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In this paper, we are interested in extending group sparsity
in a multi-class setting for recognizing activities involving
interactions between two individuals. Building on the suc-
cess of kernel-based classification methods applied to sin-
gle action recognition in videos (e.g., walking, sitting, etc.)
(e.g., walking, sitting, etc.) (Aggarwal et al.2011; Schuldt
et al. 2004), we propose a sparse model based on multino-
mial kernel logistic regression for recognition of activities
involving interactions between persons. We represent mo-
tion of each moving person by tracking trajectories of key
joints over the video frames. A group of features is defined
for each trajectory and the concatenation of the group of fea-
tures gives the final representation of each interaction. The
direction of the trajectories generated by the persons are dif-
ferent among different types of interactions. To emphasize
these differences and select the most discriminative trajecto-
ries, group of features weighting is integrated in kernel lo-
gistic regression instead of weighting each feature as in the
case of LASSO. We show that our algorithm yields better
results in comparison with several recent methods.

The rest of the paper is organized as follows. Section 2
provides details about interaction representation. Section 3
presents the proposed model for interaction classification.
Section 4 presents some experimental results. We conclude
the paper with a conclusion and future work perspectives.

Interaction representation and classification
In our method, we represent interactions using features ex-
tracted from the motion of human joints. On the constructed
feature space, interaction recognition is performed using
sparse multinomial kernel logistic regression. In the follow-
ing section, we first describe human interaction representa-
tion. Then, we give the details of the proposed classification
model based on group sparsity. The outline of the steps of
our method is shown in Figure 1.

Interaction representation
For an input video with T frames, we extract the trajectory
for all key points corresponding to a set of human joints
J. For this purpose, we track each joint over video frames
Ft, t ∈ {1, ..., T} using the algorithm proposed in (Yang et
al. 2011). There are a total of 7 joints in the following or-
der: head (H), right shoulder (RS), left shoulder (LS), right
hand (RH), left hand (LH), right foot (RF) and left foot (LF),
which are tracked over the video frames. The concatena-
tion of joint locations (l1, l2, ..., lT ) with lt = (xt, yt) form
the interaction trajectories trJi

, i ∈ {1, ..., 14} (7 trajec-
tories per person). In order to eliminate false joints detec-
tions over frames, we use a median filter to smooth the re-
sulting trajectories. The static joints which give points or
small trajectories are retained since the goal is to prove the
implication or not of a joint movement to discriminate be-
tween different interactions. Figure 2 shows examples of
extracted trajectories for punch, kick and point interactions.
From each trajectory trJi

, two features are computed to de-
scribe joints shape and motion. Given a trajectory of length
T, its shape is described by : (Δl1,Δl2, ...,ΔlT−1), with
Δlt = (Δlxt

,Δlyt
) = (xt+1−xt, yt+1−yt). The final dis-

placement vectors according to the coordinates x and y are
normalized as follow:

Dx,y =
(Δl1,Δl2, ...,ΔlT−1)∑T−1

j=1 ‖Δlj‖
, (1)

The normalized histogram of displacement HOD is then ob-
tained by concatenating the histograms of Dx and Dy as
follow HOD = [HODx, HODy].The motion of each tra-
jectory is described by a local curvature in space and time
coordinates, respectively, x,y and t (Rao et al. 2002). The
curvature Ct at each frame t is defined in Eq. (2)

Ct =
x

′
ty

′′
t − y

′
tx

′′
t

(x
′2
t + y

′2
t + 1)3/2

, (2)

with, x
′
t, y

′
t, x

′′
t andy

′′
t are the first and second order tem-

poral derivatives of the trajectory position, with: x
′
t =

Δlxt
, y

′
t = Δlyt

, x
′′
t = Δx

′
t, y

′′
t = Δy

′
t and Δt = 1

knowing that the trajectories are extracted over successive
frames. The shape and the motion of the given trajectory is
then described by a concatenation of normalized histogram
of displacement and curvature to form a group of features:
[HOD,HOC]. Finally, for each video two descriptors per
trajectory are concatenated following a certain spatial order
starting from right to left and from up to bottom as follow:
[(HODtrH , HOCtrH )(p1), (HODtrRS , HOCtrRS )(p1), ...,
(HODtrLF , HOCtrLF )(p1), HOD(trH , HOCtrH )(p2), ...,
(HODtrLF , HOCtrLF )(p2)], p1 and p2 refers to person 1 and
person 2 in a current video frame.

Interaction classification
Since each interaction is represented by a group of features
of each trajectory, we aim in this section to discriminate be-
tween activities by weighting a discriminant group of fea-
tures according to their contribution. This work is an exten-
sion of our previous work (Ouyed et Allili. 2014), instead of
weighting individual features in a multinomial kernel logis-
tic regression the weights are attributed for a group of fea-
tures which refers to a trajectory descriptors. details of our
classification method are given in section.

Group feature weighting for MKLR
Assume that we have n instances of training data xi ∈ R

d,
i ∈ {1, ..., n}, with d measured features for each instance.
The features are partitioned in G groups x

(g)
i ∈ R

dg , g ∈
{1, ..., G} and dg = d/G and we can rewrite the full vector
xi as: xi = (x

(1)
i ,x

(2)
i , ...,x

(G)
i ). Therefore, instead of cal-

culating relevance at the level of each feature, we calculate
relevance for each group of features g in the multinomial
kernel logistic regression. Suppose that the data are gener-
ated from m classes (m ≥ 2). We associate an encoding
vector yi = [y

(1)
i , y

(2)
i , ..., y

(m)
i ]T for each data point xi.

Using a weighting vector Ψ(j) = [ψ
(j)
1 , ψ

(j)
2 , ..., ψ

(j)
G ]T

for each class j ∈ {1, ...,m − 1}, we associate a separate
symmetric kernel K̃(j) for each class j encoding the class
group of features relevance. The kernel entries for a class j
are calculated as follows:
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Figure 1: Our framework of human interaction recognition.

p2 p1

p2 p1
p1p2

Punch Kick Point

Figure 2: Examples of extracted trajectories.

K̃(j)(xr,xs) = exp

(
−1

2

G∑
g=1

ψ(j)
g ‖x(g)

r − x(g)
s ‖

)
(3)

Using the �0-”norm” penalization, the NLL is given as fol-
lows:

L(A,Ψ) =
m−1∑
j=1

−y(j)T K̃(j)a(j)

+ 1T ln

[
1 +

m−1∑
h=1

exp(K̃(h)a(h))

]

+
m−1∑
j=1

[
λ

2
a(j)

T
K̃(j)a(j)

+ μ
G∑

g=1

[
1− exp(−βψ(j)

g )
] ]

, (4)

where A = [a(1), ...,a(m−1)] and Ψ = [Ψ(1), ...,Ψ(m−1)].
We have ∀j ∈ {1, ...,m− 1}, ∀g ∈ {1, ..., G}:

∂L/∂a(j) = K̃(j)c(j) (5)

∂L/∂Ψ(j) = [c(j)
T
Q

(j)
1 a(j), ..., c(j)

T
Q

(j)
G a(j)]T

+ μβexp(−βΨ(j)), (6)

where we define c(j) =
( − y(j) + p(j) + λ

2a
(j)

)
and

Q
(j)
g = K̃(j) ◦B(j)

g , with B
(j)
g is an n×n matrix having en-

tries defined by B
(j)
g (r, s) = −ψ

(j)
g ‖x(g)

r − x
(g)
s ‖ and p(j)

is the class posterior probability defined for each instance.
The symbol ◦ defines the element-wise Hadamard product

between matrices. It follows that the gradient of L with re-
spect to the vectors a(j)’s and Ψ(j)’s will be given by:

g̃ =
(
K̃∗(p̃− ỹ + λã),h(1), · · · ,h(m−1)

)
, (7)

where h(j) =
[
c(j)

T
Q

(j)
1 a(j), ..., c(j)

T
Q

(j)
G a(j)

]T
+

μβexp(−βΨ(j)), ã = [a(1)
T
,a(2)

T
, ...,a(m−1)T ]T and

K̃∗ = diag[K̃(1), ..., K̃(m−1)]. The operator diag[·] builds
a matrix with diagonal blocks made of the elements of the
arguments. To calculate the Hessian of function (4), note
that the Hessian with respect to the elements of A is given
by the matrix K̃∗W∗K̃∗ + λK̃∗, where we define K̃∗ =

diag[K̃(1), ..., K̃(m−1)]. We define also the matrix W∗ as
follows:

W∗ =

⎛
⎜⎜⎝

W1,1 W1,2 . . . W1,m−1

W2,1 W2,2 . . . W2,m−1

...
...

. . .
...

Wm−1,1 Wm−1,2 . . . Wm−1,m−1

⎞
⎟⎟⎠ , (8)

with:

Wj,� =

{
diag[p(j)

1 (1− p
(j)
1 ), ..., p(j)

n (1− p(j)
n )] if j = �.

diag[−p
(j)
1 p

(�)
1 , ...,−p(j)

n p(�)
n ] if j �= �.

(9)

Similarly to the case of binary clarification, we also need
to calculate matrices T(j) and M(j) for each class j, j ∈
{1, ...,m − 1}, with elements defined as follows: T(j) =

∂2L
∂Ψ(j)∂Ψ(j)T

and M(j) = ∂2L
∂a(j)∂Ψ(j)T

. The full Hessian ma-
trix with respect to all the parameters is given as follows:

H̃ =

(
K̃∗W∗K̃∗ + λK̃∗ M∗

M∗T T∗

)
, (10)
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where we have M∗ = diag[M(1), ...,M(m−1)]T and T∗ =
diag[T(1), ...,T(m−1)]T . Finally, the N-R update consists of
the following iterative formula:(

ã(t+1)

Ψ̃(t+1)

)
=

(
ã(t)
Ψ̃(t)

)
− H̃−1g̃. (11)

where ã = [a(1)
T
,a(2)

T
, ...,a(m−1)T ]T and Ψ̃ =

[Ψ(1)T ,Ψ(2)T , ...,Ψ(m−1)T ]T .

Experiments results
To evaluate the performance of our method, we conducted
experiments on the UT-interaction dataset (Ryoo et al. 2009)
which contains six classes of human-human interactions:
punch, kick, hand-shake, hug, points and push. The dataset
is divided into sets I end II, each one consisting of 10 videos
for each activity. Set I has a static background and Set II
is slightly more challenging with some camera motion. As
porposed in (Ryoo et al. 2009), for two interacting persons
we use for each activity the first four sequences from set I
and the first three sequences from set II. This gives 24 and
18 instances from sets I and II, respectively, with an average
number of 40 frames per video sequence. For each set, we
randomly generated 5 groups for learning and 5 groups for
testing and we average the obtained classification accuracy
values.

Figure 3 shows weights obtained for punch and point in-
teractions. From this figure we can note that our method has
been able to attribute the highest weight for the trajectory
which is discriminative for the interaction and lower weight
values for trajectories having less discrimination.

Figure 4 shows the best results obtained using our method
on the UT-dataset. We can note that generally our method
outperforms the others for interaction classification. How-
ever, we can observe some classification errors between ac-
tions in each confusion matrix: between hand shake and
push on Set1 confusion matrix, and confusion between kick
and push on Set II confusion matrix. We compared our
method to stat-of-art performance, and obtained classifica-
tion accuracy are dressed in Table 1. (Liang et al. 2016) us-
ing spatio-temporal motion has achieved average accuracy
of 84% and 92.3% with both spatio-temporal motion fea-
tures and context features which does not reach the results
that we have obtained 95.12%. These results demonstrate
the performance of the proposed method even though we
used a simple representation of the trajectories.
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Figure 3: Weights obtained for punch and point interaction.

Conclusion
We proposed an approach for recognizing human interac-
tion by introducing group of features weighting in multino-

Methods Set I Set II
Yuan et al. 2012 78.3 68.2
Yun et al. 2012 91.1 87.3
Meng et al. 2012 91.81 83.6
Sener et al. 2015 95 91.67
Motiian et al. 2017 95.08 89.39
Kernel logistic regression 87.5 83.33
Our method 95.8 94.44

Table 1: Average classification accuracy obtained by com-
pared methods for set I and set II from UT-dataset.
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Figure 4: Confusion matrix showing results in set I and set
II from UT-interaction dataset.

mial kernel logistic regression. Our method assigns weights
to joint trajectories depending on their contribution to dis-
criminate between different interactions. Application of our
method to the UT dataset has obtained results outperform-
ing recent methods in terms of classification accuracy. In the
future, we plan to extend our work with the use of complex
representation such as deep learning networks.
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