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Abstract

In Case-Based Reasoning (CBR), new problems are solved
by retrieving similar previously solved cases and adapting
their solutions. The new case is then stored appropriately in
the case-base for future use. It is a fundamental problem to
control the growth of case-base and the case-base maintenance
step retains cases in the case-base based on an estimate of their
usefulness in solving new problems. We propose an optimiza-
tion formulation to identify an optimal set of representative
cases called the optimal footprint of the case-base. The op-
timization formulation ensures that the optimal footprint set
strikes a right trade-off between minimizing the number of
cases and maximizing their ability to solve the remaining cases
in the case-base. This trade-off is studied empirically in this
paper. We also illustrate the trade-off between the size and
performance of optimal footprint in the context of regression.

Introduction

Case-Based Reasoning (CBR) (Kolodner 1992) is an expe-
rience based learning methodology, which reuses past expe-
riences to solve problems in future. It solves new problems
by retrieving and adapting solutions of similar previously
solved problems that have been stored in a repository called
the case-base (De Mantaras et al. 2005). The case-base con-
tains problem-solution pairs of problems that are solved in
the past. For example, in regression data, each data instance
corresponds to the problem and its target value corresponds
to the solution. Each problem-solution pair is considered as
a case in the case-base. The case-base size increases when
more previously solved cases are added to the case-base. The
size reduction of a case-base is ensured during the Case-Base
Maintenance (Reinartz, Iglezakis, and Roth-Berghofer 2001,
Smyth 1998) step, which retains cases in the case-base based
on its quality to arrive at a solution for new problems. Com-
petence of a case-base (Smyth and McKenna 1998) is the
range of target problems that can be solved by the cases in
that case-base. The footprint based approach (Smyth and
McKenna 1999) is a competence guided case-base mainte-
nance method to estimate a subset of cases in the case-base
called the footprint set, which can solve the remaining cases
in the case-base. More precisely, the footprint based approach
is a data reduction approach in CBR which identifies a set of
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Figure 1: A sample case-base network

representative cases that can be retained in the case-base to
find a solution for new problems.

The footprint approach uses a greedy algorithm to esti-
mate the footprint set that can solve the remaining cases in
the case-base. Though this approach estimates a footprint set
with size close to minimum, there is no guarantee for it. These
footprint cases are estimated based on their ability to find a
solution for a large range of cases in the case-base. However,
the extent to which the footprint cases solve the remaining
cases is not considered. Hence, the usage of footprint set
as a surrogate of the original case-base can adversely affect
CBR effectiveness. Mathew and Chakraborti (2017) propose
a generalized case competence model that estimates the foot-
print set based on the extent to which other cases are being
solved by the footprint set. Here the objective is to arrive at
a footprint set that can solve all cases in the case-base more
effectively. However, this approach also does not guarantee a
minimal footprint set. In order to address the limitations of
these existing approaches in literature, we attempt an investi-
gation into an approach to arrive at an optimal footprint set
while minimizing performance loss compared to the original
case-base.

As in Mathew and Chakraborti (2017), we use the term
problem solving ability, which is defined for a case c to solve
another case t, to indicate the extent to which the case c is
able to arrive at a solution for t. The loss in the performance
of footprint set compared to the original case-base depends
on the ability of cases in the footprint set to solve the rest of
the cases in the case-base. We propose a convex optimization
formulation to identify a footprint set with minimum size and
maximum overall problem solving ability. We also study the
trade-off between the footprint size and the performance loss
using the proposed optimization method.
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Figure 2: A sample case-base network with problem solving
ability as weights

Cases Relative
Coverage

Weighted
Retention

Score
c1 1 2
c2 0.5 1.02
c3 0.5 1
c4 2.5 1.8
c5 0.5 1.07

Table 1: Relative Coverage and Weighted Retention Score of
Cases in Figure 1 and 2 respectively

Background

Footprint Based Approach

The footprint based approach identifies a set of representative
cases that can be retained in the case-base, which can be used
to arrive at a solution for the rest of the cases in the case-
base. This method is a competence guided model where the
competence of a CBR system is the range of target problems
that the given system can solve. The footprint based approach
follows a two step procedure to identify the footprint set or
representative cases. Firstly, it orders cases in a decreasing
order based on a measure called relative coverage (Smyth and
McKenna 1999) which captures the individual contribution of
each case in solving other cases in the case-base. Secondly, it
identifies the footprint cases by following a greedy approach
which processes cases in the relative coverage order, and each
case is added to the footprint set only if the current footprint
cannot solve it.

The idea of relative coverage is based on local competence
properties such as coverage and reachability (Smyth and
McKenna 1998). For the purpose of defining these properties,
a relation solves (Smyth and McKenna 1998) is defined as
Definition 1. solves(c,t): A case c solves a target problem
t, if and only if c can be retrieved and adapted to obtain a
solution for t

Let C be the set of cases in the case-base. The coverage
and reachability are defined as
Definition 2. Coverage of a case c is a set of cases that are
solved by c.
Coverage(c) = {ci ∈ C|solves(c, ci)}
Definition 3. Reachability of a case c is a set of cases that
can solve c
Reachability(c) = {ci ∈ C|solves(ci, c)}

For example, consider the case-base network given in Fig-
ure 1. The vertices denote cases and edges are drawn based on
the definition of solves in Definition 1, i.e., an edge (ci, cj)
denotes that ci can arrive at a solution for cj . In Figure 1, the

coverage of c1 includes c2 and c4 and the reachability of c2
includes c1 and c3.

The relative coverage measures the global competence of
a case-base and it is defined as

RelativeCoverage(c) =
∑

ci∈Coverage(c)

1

|Reachability(ci)|
(1)

If a case ci can be solved by n other cases in the case-base,
then each of the n cases gets a contribution of 1

n from ci to
their relative coverage measures. It may be noted that the
elegance of the footprint approach is that it encompasses all
four knowledge containers in Case-Based Reasoning (Richter
and Weber 2016) (the definition of solves above, for instance
entails use of similarity, case-base, vocabulary and adaptation
knowledge), and hence is ideally suited as our baseline.

The relative coverage of cases in Figure 1 are listed in Ta-
ble 1. To identify the footprint set, the cases are processed in
the descending order of their relative coverage. As the cases
are processed based on the relative coverage order, highly
competent cases get added to the footprint set before the less
competent cases. In this example, c4 has the highest relative
coverage, which is added first to the footprint set. Since it
solves c1, c3 and c5, these cases are not required to be in-
cluded in the footprint set. Finally, the footprint set evaluates
to {c4, c2}. We note that the approach is greedy. Though
cases covered by cases in the footprint set are excluded, there
is no guarantee that the footprint set size is minimum.

Generalized Case Competence Model

The generalized case competence model (Mathew and
Chakraborti 2017) handles CBR applications which in-
volve single case or compositional adaptation (Wilke and
Bergmann 1998). In the former applications, the solution of
a target problem can be adapted from the solution of a single
case, and in the latter one, the solution of the target problem
can be adapted from solutions of multiple cases. However,
the relative coverage based model (Smyth and McKenna
1999) handles only single case adaptation. This model uses
a measure called Weighted Retention Score instead of Rel-
ative Coverage in Smyth and McKenna (1999) to estimate
the footprint set. The weighted retention score estimates the
retention quality of cases in the case-base and considers prob-
lem solving ability, i.e., the ability of cases in solving other
cases while estimating the retention quality. This score is
measured using a recursive formulation like PageRank (Page
et al. 1999) and it is derived based on the intuition that the
weighted retention score of a case c is high if

(a) c can find a solution for many cases with high problem
solving ability

(b) the cases that can be solved by c have high weighted reten-
tion score

(c) c needs the support of less number of cases to find the
solution for the cases that it solves. (a case may require
the support of other cases to obtain the solution of a target
case in compositional adaptation applications)

(d) the minimum of the weighted retention score of those cases
that support c is high
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A more detailed formulation of the weighted retention score
can be found in Mathew and Chakraborti (2017).

Consider the case-base network given in Figure 2, this
network is similar to Figure 1 except that it is weighted. The
weight of an edge (ci, cj) denotes an estimate of the ability
of ci to arrive at a solution for cj , i.e., the problem solving
ability of ci to solve cj . The weights are normalized between
0 and 1 (inclusive). The weighted retention score values for
all cases in the network are given in Table 1. To estimate the
footprint set, like in Smyth and McKenna (1999) cases are
sorted in the descending order of their weighted retention
score. Then, while processing cases one by one in this order,
a case is added to the footprint set if it cannot be solved by
the cases in the footprint set. Thus, we obtain the footprint
set as {c1, c5, c3}. The problem solving ability of cases in the
footprint set are high. The cases c2 and c4 are the cases that
are not present in the footprint set; c2 and c4 can be solved
by c1 with problem solving ability 1 and 0.9 respectively.
However, the footprint set size need not be minimal.

The work reported in this paper is driven by the intuition
that it may be interesting to explore a middle ground between
minimizing the footprint size and maximizing the problem
solving ability of the footprint cases. The goal is to arrive at
a general formulation of the case-base maintenance problem
that can be tweaked to address application specific needs. It
may also be noted that the choice of footprint strategy as the
baseline ensures that our approach encompasses all the four
knowledge containers of Case-Based Reasoning (Richter and
Weber 2016) as noted earlier in this section.

Problem Statement

Let C be a set of cases in a case-base. We define a matrix P
of dimension |C| × |C| to store values that correspond to the
problem solving ability of all pairs of cases in C. For each
pair of cases (ci, cj) ∈ C, we define the problem solving
ability (P (ci, cj)) as the extent to which the case ci is able to
arrive at a solution of cj and the matrix P is characterized as,

1. P (ci, ci) = 1

2. 0 ≤ P (ci, cj) ≤ 1

3. P (ci, cj) = 0 if ci does not solve cj

The goal is to estimate an optimal footprint set FPopt ⊆ C

as representatives such that
1. FPopt can solve all cases in C with high solution quality
2. FPopt size is minimal

Problem Formulation

We formulate a convex minimization problem to estimate the
optimal footprint set FPopt from a case-base C.

Consider the binary vector x =< xci >ci∈C, where each
element xci corresponds to a case ci ∈ C and it indicates
whether the case ci is present in the optimal footprint set or
not, i.e.,

xci =

{
1 if ci ∈ FPopt,

0 otherwise.
(2)

Let loss =< lossci >ci∈C be a loss vector of a case-base
with respect to the footprint set (FPopt). Let cj be the case

in FPopt that solves a case ci ∈ C with a maximum problem
solving ability P (cj , ci). Then the loss of a case ci with
respect to FPopt is defined as 1− P (cj , ci). If a case ci can
be solved by more than one case in FPopt, then the case
with the maximum problem solving ability is used for loss
computation. lossci is zero if ci ∈ FPopt. The loss function
is formally defined as,

lossci = 1− max
cj∈C

P (cj , ci) ∗ xcj (3)

Let Cov =< Covci >ci∈C be a vector, which indicates
whether a case ci can be solved by the footprint FPopt or not.
Mathematically, it is defined as,

Covci =

{
1 if ci can be solved by FPopt

0 otherwise
(4)

We formulate an optimization problem as a Mixed Integer
Program (Wolsey 2008) where the objective function is to
minimize the footprint size and the overall loss of all cases in
the case-base, and the footprint set is constrained to solve all
cases in the case-base. The objective function and constraints
are given in Equations 5a, 5b and 5c respectively.

min
∑
ci∈C

(lossci + xci ) (5a)

subject to
∑
ci∈C

Covci = |C|, (5b)

xci ∈ {0, 1} ∀1 ≤ i ≤ n. (5c)

All constraints are linear, hence they are convex. How-
ever, the loss function is concave due to the max term in
it. This makes the objective function concave and the opti-
mization problem concave minimization problem. Hence this
problem cannot be solved as a convex optimization problem.
The equivalent linear function of max can be obtained by
using a binary variable (Fico 2009). For example, suppose
we want to find the max(v1, v2, . . . , vn) where 0 ≤ vi ≤ 1
for 1 ≤ i ≤ n. The linear function of max introduces a
new variable y and a binary variable d of dimension n. Let
y = max(v1, v2, . . . , vn), then y ≥ vi ∀1 ≤ i ≤ n. These
constraints find a y such that,

y ≥ max(v1, . . . , vn) (6a)

The binary variable d is used for finding an upper bound for
y and these constraints are as follows.

y ≤ vi + 1− di ∀1 ≤ i ≤ n, (7a)
n∑

i=1

di = 1, (7b)

di ∈ {0, 1} ∀1 ≤ i ≤ n, (7c)

The constraints 7b and 7c ensure that only one value of d is
1 and remaining are 0. The vi value corresponds to di = 1
acts as the upper bound for y variable as per constraint 7a.
These constraints and the constraint 6a find a feasible solution
only when di = 1 for the vi with maximum value. This
results in the bounded constraints y ≥ max(v1, . . . , vn) and
y ≤ max(v1, . . . , vn). Using this idea, the equivalent linear
function corresponds to the one defined in Equation 3 is,

lossci = 1− yi (8)
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Method FP Total loss Objective value

FPopt c1, c4 0.6 2.6
FPrc c4, c2 1.1 3.1
FPwrs c1, c5, c3 0.1 3.1

Table 2: Comparison of footprint size and total loss for the
example in Figure 2

where yi is constrained as in the revised optimization formu-
lation given below.

min
∑
ci∈C

(1− yi + xci ) (9a)

subject to
∑
ci∈C

Covci = |C|, (9b)

xci ∈ {0, 1} ∀1 ≤ i ≤ n, (9c)
yi ≥ P (cj , ci) ∗ xci ∀1 ≤ i, j ≤ n, (9d)

yi ≤ P (cj , ci) ∗ xci + 1− dj ∀1 ≤ i, j ≤ n, (9e)
n∑

i=1

di = 1, (9f)

di ∈ {0, 1} ∀1 ≤ i,≤ n. (9g)

The constraints 9d, 9e, 9f, and 9g ensure that yi takes the
maximum value of P (cj , ci) ∗ xci for all 1 ≤ i ≤ n.

For example, consider a sample case-base network given
in Figure 2, which contains cases C = {c1, c2, c3, c4, c5}.
Using weights of edges in the network, its problem solving
ability matrix P is obtained as,

P =

⎡
⎢⎢⎣

1 1 0 0.9 0
0 1 0.3 0 0
0 0.2 1 0 0
0.5 0 0.4 1 1
0 0 0 0.3 1

⎤
⎥⎥⎦

FPopt is estimated based on the proposed optimization for-
mulation. The footprint size and the summation of the loss of
all cases in the case-base (total loss) are compared with those
from the original footprint approach (Smyth and McKenna
1999) which uses relative coverage (FPrc) and also with the
footprint set estimated based on weighted retention score
(FPwrs) (Mathew and Chakraborti 2017). The comparison
is given in Table 2.

Though the size of FPopt and FPrc are same, both foot-
print sets are different and the total loss of FPopt is much less
than FPrc. The total loss of FPwrs is much less compared to
the other two approaches, whereas the size is not minimum.

In constraint 9b, the Covci is estimated based on the in-
volvement of any case in FPopt in solving the case ci. How-
ever, the extent to which the case ci is being solved by FPopt

is not considered. The soft definition of Covci as in Equation
4 can be redefined as

Covci =

{
1 if ci can be solved by cj ∈ FPopt with P (cj , ci) ≥ β

0 otherwise

(10)
The parameter β decides the threshold that dictates whether
the case ci can be considered to be solved by the case
cj ∈ FPopt. This redefinition of Covci will reduce the loss
whereas it will increase the size of footprint set. For example,

Dataset # instances # features

housing 506 13
auto MPG 392 7
hardware 209 7

automobile 194 12

Table 3: Dataset characteristics

Dataset FPopt FPrc FPwrs

size loss size loss size loss

housing 396 23.09 397 24.78 464 8.56

auto MPG 302 19.36 303 22.04 345 8.4

hardware 157 15.24 156 16.24 165 11.65

automobile 114 4.5 115 5.3 121 4.5

Table 4: Comparison of footprint size and loss over different
datasets

let β = 0.5; consider FPopt = {c1, c4} that is obtained for
the example in Figure 2. Then, the Cov vector with respect to
β = 0.5 as per Equation 10 is {1, 1, 0, 1, 1}. As Covc3 = 0
, the constraint 9b is not valid. Hence, the optimal footprint
set based on the revised definition is {c1, c3, c4}. The loss
corresponding to this footprint set is zero.

Experiments

We evaluate the proposed method on four datasets: hous-
ing, auto MPG, computer hardware, and automobile. These
datasets are available in UCI Repository (Bache and Lichman
2013). The goal of these datasets is to predict the housing
price, fuel consumption, estimated relative performance, and
automobile price respectively. The data instances with un-
known values are removed from all datasets, non-numeric fea-
tures are omitted, and feature values are normalized between
0 and 1. The characteristics of all datasets are summarized in
Table 3.

To illustrate the proposed optimal data reduction technique,
we consider each dataset as a case-base where the data in-
stances are cases. We use the nearest neighbor algorithm
(Cover and Hart 1967) to identify the nearest case that can
predict the target value of each case while keeping the ac-
ceptable prediction error fixed at 5%. A case-base network
is constructed with cases as vertices and each directed edge

Dataset FPrc FPwrs FPopt

α = 0 α = 0.5 α = 1

housing 27.46 27.47 27.61 27.35 25.63

auto MPG 12.02 11.5 12.18 11.54 10.93

hardware 45.55 45.55 45.5 45.5 45.45

automobile 6.49 6.52 6.38 6.23 5.92

Table 5: Mean Square Error of test data when trained with
footprint sets FPrc, FPwrs and FPopt with α = 0, 0.5, 1
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Figure 3: Trade-off between footprint size and loss for all
datasets
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Figure 4: Average size and loss of footprint sets (FPrc,
FPwrs, FPopt with α = 0, 0.5, 1) obtained from 5-fold
training data

(u, v) in the network denotes the case u can predict the target
value of the case v with an error percentage less than or equal
to 5%. Each edge (u, v) is associated with a weight that cor-
responds to the problem solving ability of u to solve v. The
problem solving ability of a case c to solve the problem t
(P (c, t)) is measured as,

P (c, t) =
1

1 + (yactual − ypredict)2
(11)

where yactual is the actual solution of t and ypredict is the esti-
mated solution predicted by c for t. We estimate the footprint
set FPopt from the case-base network using the proposed op-
timization formulation. FPopt is compared with the footprint
sets obtained using greedy algorithms such as relative cov-
erage based footprint (FPrc) and weighted retention score
based footprint (FPwrs). In Table 4, the footprint size and
overall loss of FPopt, FPrc, and FPwrs are given for all
four datasets.

We can observe that the footprint size of FPopt and FPrc

are almost same. However, the loss of FPopt is less com-
pared to FPrc for all datasets. Although the loss of FPwrs is

Dataset β = 0.2 β = 0.4 β = 0.6 β = 0.8 β = 1

housing 27.35 27.35 25.82 25.82 25.63

auto MPG 11.54 11.50 11.50 11.31 11.10

hardware 45.49 45.47 45.45 45.45 45.45

automobile 6.23 6.23 6.0 6.0 6.0

Table 6: Mean Square Error of test data when trained with
FPopt with α = 0.5 and β = 0.2, 0.4, 0.6, 0.8, 1
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Figure 5: Average size and loss of FPopt sets with α = 0.5
and at β = 0.2, 0.4, 0.6, 0.8, 1 estimated from 5-fold
training data

much less compared to other two footprint sets, the footprint
size is much more than others. This is because FPwrs finds
a footprint set with high problem solving ability by compro-
mising on footprint size. FPrc almost reaches the optimal
footprint size, but the loss is not minimized. FPopt identifies
a footprint set which balances both footprint size and loss.

Trade-off between footprint set size and loss

We analyze the trade-off between the footprint set size and
the loss by changing the objective function into a weighted
sum of both size and loss. The modified objective function is
given as,

min α ∗
∑
ci∈C

lossci + (1− α) ∗
∑
ci∈C

xci (12)

where 0 ≤ α ≤ 1. When α = 0, the objective function
minimizes only based on size and when α = 1, the objective
function relies only on loss. When α = 0.5, both footprint
size and loss are given same importance. The trade-off is
illustrated in Figure 3.

For all datasets, we can observe that the footprint size
remains constant from α = 0 till α = 0.5 and it slightly
increases at α = 0.6. After that when α > 0.6, the footprint
size grows relatively rapidly and the size reaches close to the
original case-base size at α = 1. Despite the footprint size re-
maining constant from α = 0 till α = 0.5, the loss decreases
very slowly for these α values. The loss decreases fast from
α = 0.6 with increase in the footprint size and loss is 0 at
α = 1. For the computer hardware dataset, there is a sudden
decrease in loss after α = 0.5, and for housing and auto MPG
dataset this effect is seen after α = 0.6. This is because the
footprint size increased rapidly after the corresponding α val-
ues. Although the footprint sizes of small datasets such as the
computer hardware and automobile increase from α = 0.8 to
α = 1, the losses reach zero at α = 0.8. This indicates that
the compressed footprint set at α = 0.8 performs equivalent
to the one at α = 1.

Footprint set performance analysis

The performance of the optimal footprint set is analyzed by
using the footprint set as training data in regression appli-
cations. For each dataset, we take 80% of data instances as
training data and 20% as test data. The footprint set is esti-
mated from the training data and is used as training data to
predict the target value of the test data. We perform 5-fold
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cross validation and the average of the mean square error
(MSE) of the predicted values are used for analyzing the per-
formance of the footprint set. We experiment with footprint
set based on relative coverage (FPrc), footprint set based
on weighted retention score (FPwrs), and optimal footprint
set (FPopt) based on Equation 12 with α = 0, α = 0.5,
and α = 1. The size of footprint sets obtained based on
each method from 5-fold training data are averaged and the
corresponding average loss is compared in all datasets and
reported in Figure 4. We can observe that the footprint set
size of FPrc and FPopt with α = 0 and α = 0.5 are almost
the same. However, the average loss of FPopt with α = 0.5
is less compared to FPrc and FPopt with α = 0. FPopt with
α = 1 adds almost all cases to the footprint set due to which
its size is close to 100% and its loss is close to zero. The size
and loss of FPwrs lie in between the size and loss of FPopt

with α = 0.5 and α = 1.
The performance of each footprint set is evaluated based

on the mean square error (MSE) of test data while the cor-
responding footprint set acts as the training data. The mean
square error obtained for all footprint sets when experimented
in all four datasets are given in Table 5. FPopt with α = 1
is almost same as the original training data, hence its MSE
is the lowest compared to others in all datasets. FPopt with
α = 0.5, scores the next lowest MSE in all datasets except
auto MPG for which FPwrs scores second lowest. FPopt

with α = 0.5 compresses more than FPwrs and performs
close to FPopt with α = 1 (i.e., original training data) com-
pared to other footprint sets. Among the footprint sets - FPrc,
and FPopt with α = 0 and α = 0.5 that have high compres-
sion rate, FPopt with α = 0.5 scores the lowest MSE in all
datasets.

We also analyze the FPopt sets with different β values
as per Equation 10. We fixed α = 0.5 and obtained FPopt

with β = 0.2, 0.4., 0.6, 0.8, 1. These footprint sets are used
as training data and the mean square error obtained over test
data are analyzed and the error values are given in Table 6.
The corresponding footprint set size and its loss are given
in Figure 5. We can observe that the MSE of footprint sets
decreases with increase in the value of β, the average size
of footprint set increases as β increases, and this results in
decrease in average loss as β increases. From β = 0.6 till
β = 1, the MSE of FPopt sets are close to the MSE of FPopt

with α = 1 as in Table 5. The parameters α and β can be
chosen according to the extent to which the footprint set
needs to be compressed and the loss needs to be reduced in
the domain under consideration.

Conclusion and Future Work
We propose an optimization formulation to estimate a set
of representative cases called footprint set from a case-base,
which optimizes based on the size and ability of footprint
cases to solve the remaining cases in the case-base. We per-
form a trade-off analysis between the footprint set size and
the problem solving ability in four datasets. The trade-off
between performance of footprint set and its size is also
studied.

The current optimization formulation assumes single case
adaptation. We would like to extend the formulation to ap-

ply this approach in compositional adaptation applications
(Mathew and Chakraborti 2016).
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