
The Enemy of My Enemy Is My Friend:
Class-to-Class Weighting in K-Nearest Neighbors Algorithm

Xiaomeng Ye
Indiana University Bloomington

xiaye@umail.iu.edu

Abstract

The K-nearest neighbors algorithm (k-NN) is widely used in
instance-based learning and case-based reasoning. The ba-
sic k-NN approach has been refined and augmented in many
ways, including the use of local weighting, asymmetric met-
rics, and class-specific weighting, which enables the use of
different similarity criteria for each class. This paper ex-
tends class-specific weighting with a method we call class-
to-class (C2C) weighting. Beyond class-specific weighting,
which learns feature weightings to identify the most simi-
lar cases to a class, C2C weighting also focuses on learning
differences between classes to potentially apply those differ-
ences to classification. Once C2C weighting has learned how
class C1 is different from class C2, given a new case is dif-
ferent from a C1 case in a way similar to the way C2 cases
are different from C1 cases, then the new case is assigned to
class C2.
C2C offers two potential advantages: First, unlike global
weighting, it is robust to deletion of the cases in a given class,
because non-native class weightings can still make relatively
good predictions. We demonstrate experimentally that this
can be true even when a whole class of cases is dropped.
Additionally, C2C might provide a new potential form of
explainability, in explaining classifications based on pattern
of differences. Preliminary results suggest that in normal
settings C2C offers accuracy comparable to standard meth-
ods, though slightly lower. However, with our initial learn-
ing method, the native class weightings of C2C weighting are
easily skewed and can lead to worse performance than tra-
ditional global weightings. We argue this is not an intrinsic
flaw in C2C weighting, but rather an issue in the combina-
tion of C2C weighting with global weighting, and propose an
approach to address this issue.

Background

The K-nearest neighbors algorithm (Fix and Hodges 1951;
Cover and Hart 1967) is a widely used case classification
algorithm that has received considerable attention in case-
based reasoning (Aha, Kibler, and Albert 1991). For classi-
fication, given an input query, k-NN retrieves the most sim-
ilar k cases. Based on the classes of the k retrieved cases, it
suggests the class of the input case, often by majority vote.

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The presumption of k-NN is that cases with similar features
are likely to share the same class.

The standard method for assessing similarity between
the input query and stored cases is to measure the differ-
ence between every feature and combine the individual dis-
tances, e.g., by Euclidean distance or a sum of differences
(Wettschereck, Aha, and Mohri 1997). As different features
have different importance, each feature is given a weight-
ing (Wettschereck, Aha, and Mohri 1997). Normally, these
weightings are global. However, this method is suscepti-
ble when the local landscape has its own norm which is
different from that of the global landscape. For this rea-
son, local weightings are developed to assign weightings
to features in smaller scopes (Aha and Goldstone 1992;
Friedman 1994; Ricci and Avesani 1995). The most fine-
grained local weighting method is instance-specific, namely,
every instance has its own set of feature weightings.

Another avenue of effort assigns feature weightings in re-
gard to the classes (Marchiori 2013). In this method, each
class has its own feature weightings. Although the work
shows that class-specific weighting is “useful to unravel in-
teresting properties of features with respect to a class of in-
terest”, it also admits that class-specific weighting is not bet-
ter at predicting new cases because ultimately it is splitting
the traditional weighting into several parts.

This paper continues the idea of class-specific weighting.
We developed the class-to-class (C2C) weighting and com-
bined it with global weighting. We tested it on various data
sets as well as synthetic data sets, and compared the predic-
tion accuracy with that of a global weighting method.

Theory of C2C Weighting

Existing weighting methods all focus on the fact that among
cases of the same class, certain features tend to be similar.
By assigning higher feature weightings to these features, the
weighting methods reward this norm in similarities.

We suggest a novel weighting method, named class-to-
class (C2C) weighting. C2C weighting looks at the pattern
of differences from one class to another. The assumption is
that cases of class C1 are different from cases of class C2

in a systematic way. Given a new input case, if C1 cases are
different from the new case in the same fashion, then this
new case is likely to be of class C2. Metaphorically speak-
ing, the enemy (the input case) of my enemy (C1 cases) is

The Thirty-First International Florida
Artificial Intelligence Research Society Conference (FLAIRS-31)

389

my friend (C2 cases).
Note that C2C weighting does not reject traditional

weighting. In other words, C2C weighting can reward both
similarity pattern and difference pattern between classes.

We use the notation C1-C2 to represent a set of C2C fea-
ture weightings that reflect the trend of similarity/difference
from C1 to C2.

C2C weighting functions as an extension to existing
weighting methods. It can be attached to any of the weight-
ing methods described in the Background section. For our
purpose here, we only study extending traditional global
weighting with C2C weightings.

Implementation

A global weighting offers only one set of feature weight-
ings. Each feature weighting represents the importance of a
corresponding feature. Let the number of classes be M , a
C2C weighting would offer in total M ×M sets of feature
weightings. The memory requirement is thus much higher
than global weighting. If the difference patterns are sym-
metric, namely weighting C1-C2 is the same as C2-C1, then
this memory requirement can be reduced by half. Addition-
ally, the additional memory usage is not bad at all when M
is a small number.

Next we present a few settings needed for implementa-
tion, followed by the pseudo-code for training and using
C2C weighting.

Feature Metric

We built a case-based reasoning (CBR) system using the fea-
ture metric directly from ISAC (Bonzano, Cunningham, and
Meckiff 1996; Bonzano, Cunningham, and Smyth 1997).
Other feature metrics or similarity measures (Richter 1993;
Weinberger, Blitzer, and Saul 2006) could also be used but
the decision would influence subsequent implementation de-
tails. While ISAC actually uses local weighting, for the pur-
pose of this paper, our CBR system uses global weighting.

The feature metric is used to measure the distance be-
tween two values of a certain feature. Given a case base,
we first find out the maximum value vmax and minimum
value vmin of the feature. So the range of the feature is
vmax−vmin. Then the feature difference score (fd) between
two values of that feature, vt and vb, is calculated as

fd(vt, vb) = 1− 2
|vt − vb|

vmax − vmin
(1)

A fd is a number between −1 and 1. We consider a posi-
tive fd as an indication of similarity between the two feature
values, and a negative fd as an indication of difference.

In ISAC, a feature weighting wv is multiplied with the
feature difference score fd for feature v to produce an acti-
vation value. The similarity between two cases is measured
by the activation sum of all features. For a case, the other
case with the highest activation sum is the most similar case
to this case. In C2C weighting, this is slightly different and
will be explained in the Case Metric section.

Updating Feature Weighting

As the case with feature metric, we use the same updating
policies as ISAC(Bonzano, Cunningham, and Smyth 1997)
to change the feature weightings in the training process. The
updating policies are:

• Good matching up: if the retrieved case is of the same
class as the input case (good), we increase the weightings
of features with a positive fd (matching).

• Good unmatching down: if the retrieved case is of the
same class as the input case (good), we decrease the
weightings of features with a negative fd (unmatching).

• Bad matching down: if the retrieved case is of a different
class from the input case (bad), we decrease the weight-
ings of features with a positive fd (matching).

• Bad unmatching up: if the retrieved case is of a different
class from the input case (bad), we increase the weight-
ings of features with a negative fd (unmatching).

Following the example of (Bonzano, Cunningham, and
Smyth 1997) We alter the weightings by adding/subtracting
some number. The formula for increasing weighting is:

wi(t+ 1) = wi(t) + δ ∗ Fc

Kc
(2)

The formula for decreasing weighting is:

wi(t+ 1) = wi(t)− δ ∗ Fc

Kc
(3)

wi(t) is the weighting of the i-th feature at time step t. δ
is a fixed value. Fc is the number of times the case has been
falsely retrieved and Kc is the number of times the case has
been correctly retrieved.

Learning and Rewarding Differences

In ISAC, a negative fd score indicates difference, therefore
the feature weightings are strictly positive. To understand
this, imagine the weighting wv for feature v is negative. If
two cases are vastly different in feature v, then the fd score
is negative. When multiplied with a negative weighting, it
positively contributes to the activation sum. This is not de-
sired since k-NN wants to only reward similarity.

Therefore, in the training process of ISAC, when updating
policies produce a negative feature weighting, it is reset back
to zero or a very small positive value.

To allow the learning and rewarding of difference patterns
in C2C, a key implementation is to allow negative feature
weightings in Ci-Cj , when Ci �= Cj .

When Ci �= Cj , a negative feature weighting multiplied
with a negative feature difference score will positively in-
fluence the activation sum, thus rewarding difference for the
corresponding feature.

Note that when Ci = Cj , negative feature weightings are
still not allowed for the same reason as in ISAC.

390

Case Metric

In C2C weighting, cases of class C1 actually has M sets
of feature weightings, where M is the number of classes.
These weightings are C1-C1, C1-C2, ... C1-CM . A weight-
ing Ci-Cj indicates the pattern of similarities and differ-
ences from cases of Ci to cases of Cj . Lastly Ci-Cj are not
necessarily symmetric, namely Ci-Cj �= Cj-Ci.

For the weighting Ci-Cj , we call Ci the original class and
Cj the projected class. If Ci = Cj , then Ci-Cj is called the
native class weighting. If Ci �= Cj , then Ci-Cj is called the
non-native class weighting. These terms are useful in later
sections.

Continuing from the Feature Metric section, the activation
sum between a case A of class Ci and a case B of class Cj

is calculated using:

w = Ci − Cj (4)

fd(vt, vb) = 1− 2
|vt − vb|

vmax − vmin
(5)

activation(A,B,w) =
∑

v

wv ∗ fd(vA, vB) (6)

where w is a set of feature weightings, v is the index of a
feature, wv is the weighting for v in w, and vA is the value
of feature v in case A. The term activation(A,B,w) reads
as: the activation score between case A and case B under
weighting w.

It might be a little counter-intuitive to use this case metric
in testing. After all, given a new input case whose class is
unknown, we won’t be able to decide which weighting w to
use. We tackle this by suggesting all possible classes for the
input case, finding the weightings, and calculating the acti-
vation score for each possible class. The highest k activation
scores win. Each of these activation scores is calculated by
some w (or Ci-Cj), which casts a vote for the projected class
Cj in w. This will be further detailed in the pseudo-code sec-
tion.

Pseudo-code

We implemented C2C weighting as an extension for global
weighting.

The pseudo-code for training is listed in Algorithm 1. It is
different from the training of traditional weightings in sev-
eral aspects:

• There are multiple weightings Ci-Cj

• Cases are divided into pools based on their classes, and
the retrieval takes place in every pool. The motivation be-
hind this design is that, even if we know that the training
case A is of class Cj , we still want to retrieve cases from
some other class Ci, so that we can update Ci-Cj to learn
the pattern of similarities and differences from Ci to Cj .

• If Ci = Cj , then no negative value is allowed in the set
of weightings Ci-Cj . Otherwise, negative values are al-
lowed.

Following the example of ISAC, we normalize the
weightings after every round of feature weighting updating,

Algorithm 1 training algorithm

Require: case base, the cases to be learned.
1: initialize feature metric
2: store all possible classes in all classes
3: for each Ci ∈ all classes do
4: for each Cj ∈ all classes do
5: initialize Ci-Cj weighting
6: end for
7: end for
8: initialize pool to store cases in each class
9: for each case ∈ case base do

10: Ci = the class of case
11: add case to pooli
12: end for
13: repeat
14: for each case A ∈ case base do
15: Cj = the class of A
16: for each pooli ∈ pool do
17: retrieve k cases B1 ... Bk from pooli
18: such that activation(Bp, A, w) are the max
19: w is of the form (Ci-Cj)
20: for each Bp ∈ B1 ... Bk do
21: for each fq ∈ features do
22: oldWq = (Ci-Cj)q

23: newWq = oldWq ± δ ∗ FBp

KBp

24: if Ci = Cj and newWq < 0 then
25: set newWq to 0.001
26: end if
27: set (Ci-Cj)q to newWq

28: end for
29: Normalize (Ci-Cj)
30: end for
31: end for
32: end for
33: until training converge / max # of iterations reached

to prevent the risk that certain weightings become too large
and overshadow all other feature weightings.

The code for testing is listed in Algorithm 2. It is different
from the testing of traditional weightings in that there is a
class suggestion stage before the retrieval of stored cases.

Following the pseudo-code, the computational complex-
ity for the training and testing of C2C weighting is M times
the respective complexity of global weighting, where M is
the number of classes.

Performance

In this section, we present the prediction accuracies of our
modified k-NN algorithm and compare them with the ac-
curacies of a k-NN algorithm using global weighting. We
tested on three data sets: Iris, Cleveland, and Breast Cancer
(Lichman 2013). We divided the cases into training and test-
ing set by the ratio of 7:3. We tried setting k to 1 and 3. As
the results are similar, we only show the results for when k
is 1. For each setting, we shuffled the cases in every iteration
in the training process and trained for 10 iterations. We ran

391

Algorithm 2 testing algorithm

Require: test case A
1: Initialize score
2: for each Cj ∈ all classes do
3: Suggest the class of A as Cj

4: for each case B ∈ case base do
5: Ci = the class of B
6: w = Ci-Cj

7: scoreB,A,Ci-Cj
= activation(B,A,w)

8: end for
9: end for

10: Get the highest k scoreCi-Cj

11: extract Cjs from Ci-Cjs
12: Return the major vote of Cjs

Iris Cleveland Breast Cancer
C2C 0.889 0.611 0.828

Global 0.938 0.762 0.947

Table 1: C2C vs Global weighting, no cases removed

training + testing for each k-NN algorithm 100 times and
took the average of accuracies in testing.

We notice C2C weighting struggles with data sets with
certain characteristics, but shines under some other circum-
stances. We present an analysis of the phenomena. Lastly we
use a synthetic data set to confirm this observation.

The Bad

Although C2C weighting sounds enticing, our results in
Table 1 show that C2C weighting combined with a tradi-
tional global weighting performs slightly worse than global
weighting.

After closer examination of the feature weightings pro-
duced, we notice that when C2C weighting produces bad ac-
curacies, it is normally because some native class weighting
is heavily skewed. For example, an example of bad weight-
ing C1-C1 for the iris data set is:

[0.001, 3.997, 0.001, 0.001]
Clearly this weighting heavily skews toward the second fea-
ture and ignores similarity in other features.

In the future iterations of training: if a new input case of
C1 retrieved a stored case of C1 using this weighting, then
it is highly likely that their second feature values match,
while other feature values may not (due to the weighting
only rewarding similarity in the second feature). Because of
the “good matching up” policy, the second feature weight-
ing will increase, while others may change to more or less.
After normalizing, the second feature weighting would still
dominate.

The only way to regulate such skewed weighting is to re-
trieve a stored case of C1 when the input case is of some
other class C2. Because of the weightings, the two cases’
second feature values match, thus triggering the “bad match-
ing down” policy to drive down the second feature weight-
ing. However, there remain two obstacles: 1) The retrieval

Iris Cleveland Breast Cancer
C2C 0.722 0.562 0.627

Global 0.612 0.452 0.624

Table 2: C2C vs Global weighting, a whole class of cases
removed

is unlikely to happen because the input case of C2 is more
likely to retrieve a C2 case, especially if the weighting for
C2-C2 is not skewed. 2) Even if the retrieval does happen,
other feature values have to be unmatched to trigger “bad
unmatching up”, thus increasing other feature weightings.
However, there is no guarantee that this will happen.

In short, once a native class weighting is skewed in C2C
weighting, our current design does not offer a way to restore
it. Such skewed weighting is the direct reason for a lower
accuracy.

The Good

Knowing what could go wrong, we manually check C2C
weighting results of multiple runs. When the weightings are
not skewed, the accuracy is comparable to global weighting.

In these runs, the native class weighting is correctly
trained and produce good predictions. The scores obtained
using native class weightings are generally higher than the
scores obtained using non-native class weightings. As a re-
sult, the cases are almost always retrieved using the native
class weightings. Here C2C weighting shows the same effect
as a class-specific weighting (Marchiori 2013). This phe-
nomenon is also partially due to completeness and cleanness
of our data sets.

We then carried out an experiment where we removed a
whole class of cases from the case base before the testing
process. Even though in the real world no one would sim-
ply drop a whole class of cases, but data compression and
case base maintenance are practical issues. Our experiment
is crude but meaningful. As we disrupted the completeness
of our case base. we rendered certain native class weightings
useless, and forced the CBR system to utilize non-native
class weightings. We deterministically chose the class of the
first stored case, and removed all cases of that class from
the case base. We then ran the same experiment as the last
section for both C2C weighting and global weighting. The
prediction accuracies are listed in Table 2.

From this experiment we see that in certain situations C2C
excels traditional weighting. When the whole class C1 of
cases is dropped, global weighting would simply fail for any
input case of C1. For C2C weighting, even though the native
class weighting C1-C1 can no longer be used, non-negative
class weightings such as C2-C1 can still work with cases of
class C2 and project an input case as C1.

In the Iris data set and the Cleveland data set, cases of
different classes are nicely separated from each other. If the
difference between C2 and C1 follows a pattern, then C2-C1

can be distinctively established. Cases in C2 will be able to
make a good suggestion about whether an input case is of
C1.

392

Figure 1: Scattered data set leads to unclear difference pat-
tern

In the Breast Cancer data set, cases of different classes are
widely scattered and mixed with each other. A simplified ex-
ample of such data sets is shown in Figure 1. In this figure,
because the cases of C1 are spread out, the difference pattern
between A1 and B is not the same as that between A2 and
B. Therefore, non-native class weightings are hard to learn,
or there might not exist one. As shown by our result for the
Breast Cancer data set, C2C weighting performs about the
same as global weighting. In such scenarios, feature selec-
tion and feature transformation might be needed to establish
the pattern of differences in features between classes.

The Synthetic Data Experiment

To further illustrate the point above and demonstrate when
C2C weighting can be of great interest, we created three data
sets of points on a 2-dimensional plane. Every point belongs
to one of four classes. Each class of points is generated using
a Gaussian distribution.

There are two parameters to generate the four groups: μ
and σ. The four Gaussian distributions are: N ((μ, μ), σ2),
N ((μ,−μ), σ2), N ((−μ, μ), σ2), N ((−μ,−μ), σ2). We
used σ = 2 and various μ = 2, 4, 8 to generate the three
data sets.

With these data sets, we ran both C2C weighting and
global weighting on it for 100 times to get their average ac-
curacies. We also re-ran the same experiment after removing
one class of cases and two classes of cases from the data sets.
The results are shown in Table 3, 4, and 5.

The results confirm our earlier analysis. When μ is small,
different classes are mixed together and it is hard to learn
a distinguished pattern of differences between two classes.
Because the native class weightings can be skewed and the
non-native class weightings are hard to learn, in these situa-
tions, C2C weighting performs worse than global weighting.

As μ becomes larger, C2C weighting is less skewed in na-
tive class weightings, and its accuracy gradually approaches
that of its counterpart. When μ is large, the classes are well
separated and C2C weighting easily learns the correct pat-
tern of differences. In these situations, C2C weighting per-
forms great. Even when we drop one or multiple classes,
the prediction accuracy remains almost intact (0.946, 0.945,
0.941). This is because non-native class weightings are mak-
ing good suggestions when the native class weightings can-
not.

μ = 2 μ = 4 μ = 8
C2C 0.575 0.881 0.946

Global 0.588 0.897 1.0

Table 3: C2C vs Global weighting, no cases removed

μ = 2 μ = 4 μ = 8
C2C 0.459 0.693 0.945

Global 0.483 0.701 0.753

Table 4: C2C vs Global weighting, 1 class of cases removed

μ = 2 μ = 4 μ = 8
C2C 0.443 0.495 0.941

Global 0.452 0.503 0.498

Table 5: C2C vs Global weighting, 2 classes of cases re-
moved

Discussion

By implementing and testing C2C on different data sets, we
learned that even though the accuracy of C2C combined with
global weighting actually degenerates the accuracy of global
weighting, C2C weighting can achieve certain advantages
over global weighting.

When no case is removed, global weighting functions bet-
ter than C2C weighting. We argue that this is not an intrinsic
flaw in C2C weighting. Instead, it is a problem in our inte-
gration of C2C weighting with global weighting. We almost
directly reuse the training process of global weighting on
C2C weighting, and native class weightings can be skewed
by the training process. Non-native class weightings can of-
fer useful insight, especially when native class weightings
are not confident (low activation score) or cannot be used
(whole class of cases removed). In our experiment, non-
native class weighting can still make good predictions of a
class, even if the case base does not contain a single case of
that class.

Another unshown advantage of C2C weighting is that,
it opens a brand-new avenue of explainability. When tradi-
tional k-NN suggests an input case is of class C1, the ex-
planation is always that the input case is similar to some
existing case of C1. Using C2C weighting, k-NN can make
a different kind of suggestion that the input case is of C1,
because it is different from Ci cases in a way that existing
C1 cases are different from Ci cases.

Future Work

Better Integration of C2C with Existing Weighting
Methods

As discussed, we should not directly reuse the training pro-
cedure of global weighting on C2C weighting. One possi-
ble way to solve this is to train non-native and native class
weightings separately, possibly even using different proce-
dures.

393

In the testing process, non-native and native class weight-
ing can also be used simultaneously, suggesting the class of
a case both from within the class and outside the class. When
multiple non-native class weightings are taken into account,
the votes from different non-native class suggestions can tri-
angulate the projected class.

Integration of C2C with Instance-specific
Weighting

Instance-specific weighting (Aha and Goldstone 1992) is
a weighting method naturally fit for C2C extension. Com-
pared to global weighting, Instance-specific weighting is
less likely to be skewed, because it focuses on the local land-
scape and the weighting updates do not influence globally.

If combined with instance-specific weighting, C2C will
be able to learn the pattern of differences between classes in
a local region, even if cases of different classes are scattered
and mixed globally. To reuse the example of Figure 1, C2C
weighting will learn the a C1-C2 weighting for cases near
A1 and another C1-C2 weighting for cases near A2. The two
weightings are useful in their own local regions and do not
interfere each other.

Therefore, we envision that the integration of C2C with
instance-specific weighting naturally evades the issues we
encountered when integrating C2C with global weighting.

Summary

After studying existing weighting methods used in k-NN,
we invented class-to-class weighting. C2C weighting is a
weighting method that learns the pattern of similarities and
differences between classes. By using this pattern, k-NN can
make predictions of an input case in a novel way. We car-
ried out experiments and compared the performance of C2C
weighting with global weighting. We acknowledged the flaw
in current C2C weighting implementation but also found sit-
uations when C2C weighting is beneficial. We will push fur-
ther the study by better integrating C2C weighting with ex-
isting weighting methods and by presenting some practical
usage of C2C weighting.

Acknowledgement

We thank Dr. David Leake for the continuous support and
guidance. We thank the insightful comments from anony-
mous reviewers. We did our best to address these comments.
Some comments also point out interesting future directions,
including: experimenting with challenging data sets such as
heterogeneous data sets; and improving the weighting updat-
ing policies by formulating the problem with a cost function
and carrying out standard optimization.

References

Aha, D. W., and Goldstone, R. L. 1992. Concept learning
and flexible weighting. In In Proceedings of the Fourteenth
Annual Conference of the Cognitive Science Society, 534–
539. Erlbaum.
Aha, D.; Kibler, D.; and Albert, M. 1991. Instance-based
learning algorithms. Machine Learning 6(1):37–66.

Bonzano, A.; Cunningham, P.; and Meckiff, C. 1996. ISAC:
A CBR system for decision support in air traffic control.
Berlin, Heidelberg: Springer Berlin Heidelberg. 44–57.
Bonzano, A.; Cunningham, P.; and Smyth, B. 1997. Using
introspective learning to improve retrieval in CBR: A case
study in air traffic control. In Leake, D., and Plaza, E., eds.,
Proceedings of the 2nd International Conference on Case-
Based Reasoning (ICCBR-97), volume 1266 of LNAI, 291–
302. Berlin: Springer.
Cover, T., and Hart, P. 1967. Nearest neighbor pattern
classification. IEEE Transactions on Information Theory
13(1):21–27.
Fix, E., and Hodges, J. L. 1951. Discriminatory analy-
sis, nonparametric discrimination: Consistency properties.
US Air Force School of Aviation Medicine Technical Report
4(3):477+.
Friedman, J. H. 1994. Flexible metric nearest neighbor clas-
sification. Technical report, Stanford University.
Lichman, M. 2013. UCI machine learning repository.
Marchiori, E. 2013. Class Dependent Feature Weighting
and K-Nearest Neighbor Classification. Berlin, Heidelberg:
Springer Berlin Heidelberg. 69–78.
Ricci, F., and Avesani, P. 1995. Learning a local simi-
larity metric for case-based reasoning. Berlin, Heidelberg:
Springer Berlin Heidelberg. 301–312.
Richter, M. M. 1993. Classification and learning of similar-
ity measures. In Opitz, O.; Lausen, B.; and Klar, R., eds., In-
formation and Classification, 323–334. Berlin, Heidelberg:
Springer Berlin Heidelberg.
Weinberger, K. Q.; Blitzer, J.; and Saul, L. K. 2006. Distance
metric learning for large margin nearest neighbor classifica-
tion. In Weiss, Y.; Schölkopf, B.; and Platt, J. C., eds., Ad-
vances in Neural Information Processing Systems 18. MIT
Press. 1473–1480.
Wettschereck, D.; Aha, D.; and Mohri, T. 1997. A review
and empirical evaluation of feature-weighting methods for
a class of lazy learning algorithms. Artificial Intelligence
Review 11(1-5):273–314.

394

