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Abstract

The assignment of weights to attacks in a classical Argumen-
tation Framework allows to compute semantics by taking into
account the different importance of each argument. We repre-
sent a Weighted Argumentation Framework by a non-binary
matrix, and we characterize the basic extensions (such as w-
admissible, w-stable, w-complete) by analysing sub-blocks
of this matrix. Also, we show how to reduce the matrix into
another one of smaller size, that is equivalent to the orig-
inal one for the determination of extensions. Furthermore,
we provide two algorithms that allow to build incrementally
w-grounded and w-preferred extensions starting from a w-
admissible extension.

Introduction

An Abstract Argumentation Framework (AF) (Dung 1995)
is represented by a pair 〈A, R〉 consisting of a set of argu-
ments A and a binary relation of attack R defined between
some of them. Given a framework, it is possible to exam-
ine the question on which set(s) of arguments can be ac-
cepted, hence collectively surviving the conflict defined by
R. Answering this question corresponds to define an argu-
mentation semantics. The key idea behind extension-based
semantics is to identify some sets of arguments (called ex-
tensions) that survive the conflict “together”. A very simple
example of AF is 〈{a, b}, {R(a, b), R(b, a)}〉, where two ar-
guments a and b attack each other. In this case, each of the
two positions represented by either {a} or {b} can be intu-
itively valid, since no additional information is provided on
which of the two attacks prevails. However, having weights
on attacks results in such additional information, which can
be fruitfully exploited in this direction. For instance, in case
the attack R(a, b) is stronger than (or preferred to) R(b, a),
taking the position defined by a may result in a better choice
for an intelligent agent, since it can be regarded as more re-
liable or relevant on the framework.

In a recent work, Xu and Cayrol represent an AF by a
binary matrix and they give a characterization for stable, ad-
missible and complete extensions by analysing sub-blocks
of this matrix (Xu and Cayrol 2015). Also, they present
the reduced matrix w.r.t. conflict-free subsets, by which the
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determination of extensions becomes more efficient, and
that allows to determine w-grounded and w-preferred exten-
sions.

Our aim is to extend the above mentioned results to
Weighted Argumentation Frameworks (WAFs) by adopt-
ing the paradigm introduced in (Bistarelli, Pirolandi, and
Santini 2010; Bistarelli, Rossi, and Santini 2016) for the
semiring-based version of classical semantics. In partic-
ular, (i) we characterize w-conflict-free, w-admissible, w-
stable and w-complete extensions by analysing sub-blocks
of a non-binary matrix representing a given WAF, (ii) we
show how to reduce this matrix to another one of smaller size
that allows to more efficiently determine extensions, and (iii)
we provide two algorithms that allow to build incrementally
grounded and preferred extensions.

This paper is organized as follows: we first recall the ba-
sic definitions on AFs and on WAFs, then we give charac-
terizations for weighted extensions by analysing the matrix
associated with the given WAF. Finally, we present the ma-
trix reductions of WAFs based on contraction and division of
WAFs, and we provide methods for incrementally building
w-grounded and w-preferred extensions.

Weighted Argumentation Frameworks

In this section, we recollect the main definitions at the basis
of AFs (Dung 1995), and introduce c-semirings for dealing
with attack-weights. We then rephrase some of the classi-
cal definitions, with the purpose to parametrise them with
the notion of weighted attack and c-semiring. Last, we give
definitions about the matrix representation for AFs.

Abstract Argumentation Frameworks

In his pioneering work (Dung 1995), Dung proposed Ab-
stract Frameworks for Argumentation, where (as shown in
Figure 1) an argument is an abstract entity whose role is
solely determined by its relations to other arguments:

Definition 1. An Abstract Argumentation Framework (AF)
is a pair 〈A, R〉 of a set A of arguments and a binary rela-
tion R on A, called attack relation. ∀ai, aj ∈ A, aiRaj (or
R(ai, aj)) means that ai attacks aj (R is asymmetric).

Let F = 〈A, R〉 be an AF and Z ⊆ A. R+(Z) denotes
the set of arguments attacked by Z (a set Z attacks a set
Z ′ if exist ai ∈ Z and aj ∈ Z ′ with R(ai, aj)). R−(Z)
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Figure 1: An example of AF.

denotes the set of arguments attacking Z. IAF denotes the
set of arguments which are not attacked (also called initial
arguments of F ).

An argumentation semantics is the formal definition of
a method ruling the argument evaluation process. In the
extension-based approach, a semantics definition specifies
how to derive from an AF a set of extensions, where an ex-
tension B of an AF 〈A, R〉 is simply a subset of A. In Defi-
nition 2 we define conflict-free sets:
Definition 2 (Conflict-free). A set B ⊆ A is conflict-free iff
no two arguments a and b in B exist such that a attacks b.

All the following semantics rely (explicitly or implicitly)
upon the concept of defence:
Definition 3 (Defence (Dung 1995)). An argument b is de-
fended by a set B ⊆ A (or B defends b) iff for any argument
a ∈ A, if R(a, b) then ∃c ∈ B s.t., R(c, a).

Definition 4 (Extension-based semantics). • A conflict-
free set B ⊆ A is admissible iff each argument in B is
defended by B.

• An admissible extension B ⊆ A is a complete extension
iff each argument that is defended by B is in B.

• A preferred extension is a maximal (w.r.t. set inclusion)
admissible subset of A.

• A grounded extension is a minimal (w.r.t. set inclusion)
complete subset of A.

• A conflict-free set B ⊆ A is a stable extension iff for each
argument which is not in B, there exists an argument in B
that attacks it.

C-semirings

C-semirings are commutative (⊗ is commutative) and idem-
potent semirings (i.e., ⊕ is idempotent), where ⊕ defines a
partial order ≤S. The obtained structure can be shown to be
a complete lattice.
Definition 5 (c-semirings). A commutative semiring is a tu-
ple S = 〈S,⊕,⊗, ⊥,�〉 such that S is a set, �,⊥ ∈ S,
and ⊕,⊗ : S × S → S are binary operators making the
triples 〈S,⊕,⊥〉 and 〈S,⊗,�〉 commutative monoids (semi-
groups with identity), satisfying i) ∀s, t, u ∈ S.s⊗ (t⊕u) =
(s⊗ t)⊕ (s⊗ u) (distributivity), and ii) ∀s ∈ S.s⊗⊥ = ⊥
(annihilator). If ∀s, t ∈ S.s ⊕ (s ⊗ t) = s, the semiring is
said to be absorptive.

Well-known instances of c-semirings are:
• Sboolean = 〈{false, true},∨,∧, false, true〉1,
• Sfuzzy = 〈[0, 1],max,min, 0, 1〉,
• Sbottleneck = 〈R+ ∪ {+∞},max,min, 0,∞〉,
• Sprobabilistic = 〈[0, 1], max,×, 0, 1〉,
• Sweighted = 〈R+ ∪ {+∞},min,+,+∞, 0〉.

1Boolean c-semirings can be used to model crisp problems and
classical Argumentation (Dung 1995).
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Figure 2: An example of WAF, adding weights to Figure 1.

C-semirings provide a structure that reveals to be suitable
for Weighted Argumentation Frameworks. In fact, values in
S can be used as weights for relations, while the operators
⊕ and ⊗ allow to define an ordering among weights.

Weighted AFs

The following definition reshapes the notion of Weighted
Argumentation Framework into semiring-based WAF, called
WAF S:

Definition 6 (Semiring-based WAF). A semiring-based
WAF (WAF S) is a quadruple 〈A, R,W, S〉, where S is a c-
semiring 〈S,⊕,⊗,⊥,�〉, A is a set of arguments, R the at-
tack binary-relation on A, and W : A×A −→ S is a binary
function. Given a, b ∈ A and R(a, b), then W (a, b) = s
means that a attacks b with a weight s ∈ S. Moreover, we
require that R(a, b) iff W (a, b) <S �.

In Figure 2, we provide an example of a WAF de-
scribing the WAF S defined by A = {a, b, c, d, e}, R =
{(a, b), (c, b), (c, d), (d, c), (d, e), (e, e)}, with W (a, b) =
7,W (c, b) = 8,W (c, d) = 9,W (d, c) = 8,W (d, e) =
5,W (e, e) = 6, and S = 〈R+ ∪ {∞},min,+,∞, 0〉 (i.e.,
the weighted semiring).

Therefore, each attack is associated with a semiring value
that represents the “strength” of an attack between two argu-
ments. We can consider the weights in Figure 2 as supports
to the associated attack, as similarly suggested in (Dunne et
al. 2011). A semiring value equal to the top element of the
c-semiring � (e.g., 0 for the weighted semiring) represents
a no-attack relation between two arguments. On the other
side, the bottom element, i.e., ⊥ (e.g., ∞ for the weighted
semiring), represents the strongest attack possible. In the
following, we will use

⊗
to indicate the ⊗ operator of the

c-semiring S on a set of values:

Definition 7 (Attacks to/from sets of arguments). Let
WF = 〈A, R,W, S〉 be a WAF S. A set of arguments B
attacks a set of arguments D and the weight of such attack
is k ∈ S, if

W (B,D) =
⊗

b∈B,d∈D
W (b, d) = k.

For example, looking at Figure 2, we have that
W ({a, c}, b) = 15, W (c, {b, d}) = 17, and
W ({a, c}, {b, d}) = 24.

Definition 8 (w-defence (Bistarelli, Rossi, and Santini
2016)). Given a WAF S, WF = 〈A, R,W, S〉, B ⊆ A w-
defends b ∈ A iff ∀a ∈ A such that R(a, b), we have that
W (a,B ∪ {b}) ≥S W (B, a).

A set B ⊆ A w-defends an argument b from a, if the ⊗
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Figure 3: Example of a WAF with S = Sweighted .

of all attack weights from B to a is worse2 (w.r.t. ≤S) than
the ⊗ of the attacks from a to B ∪ {b}. For example, the
set {c} in Figure 2 defends c from d because W (d, {c}) ≥S

W ({c}, d), i.e., (8 ≤ 9).
Definition 9 (w-conflict-free). Given a WAF S WF =
〈A, R,W, S〉, a subset of arguments B ⊆ A is w-conflict-
free if W (B,B) = �.
Definition 10 (w-admissible). Given a WAF S WF =
〈A, R,W, S〉, a w-conflict-free set B ⊆ A is w-admissible iff
the arguments in B are w-defended by B from the arguments
in A \ B.
Definition 11 (w-complete). A w-admissible extension B ⊆
A is also a w-complete extension iff each argument b ∈ A
such that B ∪ {b} is w-admissible belongs to B, i.e., b ∈ B.
Definition 12 (w-preferred and w-grounded). A w-preferred
extension is a maximal (w.r.t. set inclusion) w-admissible
subset of A. The least (w.r.t. set inclusion) w-complete ex-
tension is the w-grounded extension.
Definition 13 (w-stable). Given WF = 〈A, R,W, S〉, a
w-admissible set B is also a w-stable extension iff ∀a /∈
B, ∃b ∈ B such that W (b, a) ≤S �.

The Matrix Representation for WAFs

Given an AF F , we can obtain a matrix representing F by
using Definition 4 in (Xu and Cayrol 2015). We extend this
definition to represent WAFs through matrices.
Definition 14. Let F = 〈A, R,W, S〉 be a WAF with A =
{1, 2, . . . , n}. The matrix of F corresponding to the per-
mutation (i1, i2, . . . , in) of A, denoted by M(i1, i2, . . . , in),
is a matrix of order n, its elements being determined by
the following rules: (1) as,t = w iff (is, it) ∈ R and
W (is, it) = w; (2) as,t = � iff (is, it) /∈ R.
Example 1. Given F = 〈A, R,W, S〉 as in Figure 3. The
matrices of F corresponding to the permutations (a, b, c)
and (a, c, b) are

( a b c

a 0 7 0
b 9 0 0
c 0 8 0

)
and

( a c b

a 0 0 7
c 0 0 8
b 9 0 0

)

Characterizing extensions of a WAF

In this section, we mainly focus on the characterization
of various extensions in the matrix M(AF ) representing a
WAF.

2When considering the partial order of a generic semiring, we
use “worse” or “better” because “greater” or “lesser” would be mis-
leading: in the weighted semiring, 7 ≤S 3, i.e., lesser means better.

Characterizing the w-conflict-free subsets

The basic requirement for extensions is conflict-freeness.
So, we will discuss the matrix condition which insures that
a subset of a WAF is conflict-free.
Definition 15. Let F = 〈A, R,W, S〉 be a WAF with
A = {1, 2, . . . , n} and Z = (i1, i2, . . . , ik) ⊆ A. The k× k
sub-block

Mi,j =

⎛
⎜⎜⎝
ai1,i1 ai1,i2 . . . ai1,ik
ai2,i1 ai2,i2 . . . ai2,ik

...
...

. . .
...

aik,i1 aik,i2 . . . aik,ik

⎞
⎟⎟⎠

of M(AF ) is called the cf-sub-block of Z, and denoted by
M cf (Z) for short. We use this sub-block to find conflict-free
subsets of arguments.
Claim 1. Given F = 〈A, R,W, S〉 with A = {1, 2, . . . , n},
Z = (i1, i2, . . . , ik) ⊆ A is w-conflict-free iff all the ele-
ments in the cf-sub-block M cf (Z) are �.
Example 2. Consider the WAF of Figure 3. We have that

M cf ({a, c}) =

(
0 0
0 0

)
, M cf ({a, b}) =

(
0 7
9 0

)
and

M cf ({b, c}) =

(
0 0
8 0

)
. By Theorem 1, {a, c} is w-

conflict-free, while {a, b} and {b, c} are not.

Characterizing the w-admissible subsets

From Definition 10, we know that arguments belonging to a
w-admissible subset B ⊆ A are w-defended from the argu-
ments in A \ B.
Definition 16. Let F = 〈A, R,W, S〉 be a WAF with
A = {1, 2, . . . , n}, Z = (i1, i2, . . . , ik) ⊆ A and
A \ Z = {j1, j2, . . . , jh}. The k × h sub-block

M i1,i2,...,ik
j1,j2,...,jh

=

⎛
⎜⎜⎝
ai1,j1 ai1,j2 . . . ai1,jh
ai2,j1 ai2,j2 . . . ai2,jh

...
...

. . .
...

aik,j1 aik,j2 . . . aik,jh

⎞
⎟⎟⎠

of M(AF ) is called the s-sub-block of Z, and denoted by
Ms(Z) for short. The h× k sub-block of M(AF )

M j1,j2,...,jh
i1,i2,...,ik

=

⎛
⎜⎜⎝
aj1,i1 aj1,i2 . . . aj1,ik
aj2,i1 aj2,i2 . . . aj2,ik

...
...

. . .
...

ajh,i1 ajh,i2 . . . ajh,ik

⎞
⎟⎟⎠

is called the s-sub-block3 of Z, and denoted by Ms(Z).
Theorem 1. Given F = 〈A, R,W, S〉 with
A = {1, 2, . . . , n}, a w-conflict-free subset
Z = {i1, i2, . . . , ik} ⊆ A is w-admissible iff ∀jq ∈ A \ Z,⊗
i∈Z

W (i, jq) ≤S

⊗
i∈Z

W (jq, i), where W (i, jq) refers to the

3In (Xu and Cayrol 2015), Ms is denoted as Ma and it is called
the a-sub-block.
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column vector Ms
∗,q of the s-sub-block Ms(Z) and W (jq, i)

refers to the column vector Ms
∗,q of the s-sub-block Ms(Z).

Example 3. Let’s consider the w-conflict-free subsets {a}
and {a, c} (see Figure 3). We have Ms({a}) = (7 0) and

Ms({a}) =
(
9
0

)
, the weight associated to the column vec-

tor Ms
∗,1 of Ms({a}) is W (a, b) = 7 while the weight asso-

ciated to the row vector Ms
1,∗ of Ms({a}) is W (b, a) = 9.

Since 7 ≥S 9, {a} is not w-admissible in F according to
Theorem 1.

However, from Ms({a, c}) =

(
7
8

)
and Ms({a, c}) =

(9 0), we know that the weight associated to the column
vector Ms

∗,1 of Ms({a, c}) is W (a, b)⊗W (c, b) = 7+8 =

15 while the weight associated to the row vector Ms
1,∗ of

Ms({a, c}) is W (b, a) ⊗ W (b, c) = 9 + 0 = 9. Since
15 ≤S 9, we claim that {a, c} is w-admissible in F by The-
orem 1.

Characterizing the w-stable extensions

We can say whether a w-admissible subset B ⊆ A is also a
w-stable extension by checking if all arguments in A\B are
attacked by arguments in B. On this purpose, we can use the
already defined matrix Ms(Z).
Theorem 2. Given F = 〈A, R,W, S〉 with A =
{1, 2, . . . , n}, a w-admissible subset Z = {i1, i2, . . . , ik} ⊆
A is a w-stable extension iff each column vector of the s-sub-
block Ms(Z) of M(AF ) contains only elements different
from �, where {j1, j2, . . . , jh} is a permutation of A \ Z.
Example 4. Let’s consider the w-admissible subset {a, c}
(see Figure 3). Since the only column vector of

Ms({a, c}) =

(
7
8

)
contains some elements different from

�, we claim that {a, c} is a w-stable extension of F , accord-
ing to Theorem 2.

Characterizing the w-complete extensions

From the definition of w-complete extension, it comes that
in addition of considering relations between arguments all
inside B and between arguments in B and those outside B,
we also need to take into account attacks thoroughly outside
B. We give the following definition and theorem.
Definition 17. Let F = 〈A, R,W, S〉 be a WAF with
A = {1, 2, . . . , n}, Z = (i1, i2, . . . , ik) ⊆ A and
A \ Z = {j1, j2, . . . , jh}.The h× h sub-block

M j1,j2,...,jh
j1,j2,...,jh

=

⎛
⎜⎜⎝
aj1,j1 aj1,j2 . . . aj1,jh
aj2,j1 aj2,j2 . . . aj2,jh

...
...

. . .
...

ajh,j1 ajh,j2 . . . ajh,jh

⎞
⎟⎟⎠

of M(AF ) is called the c-sub-block of Z, and denoted by
M c(Z) for short.
Theorem 3. Given F = 〈A, R,W, S〉 with A =
{1, 2, . . . , n}, a w-admissible subset Z = {i1, i2, . . . , ik} ⊆
A is w-complete iff

a

b c

d

4
8

3

Figure 4: Example of a WAF with S = Sweighted .

(1) if some column vector Ms
∗,p of the s-sub-block Ms(Z)

contains only � elements, then its corresponding column
vector M c

∗,p of the c-sub-block M c(Z) contains some el-
ement different from � and

(2) for each column vector M c
∗,p of the c-sub-block M c(Z)

appearing in (1), which contains some element different
from �, there is at least one element ajq,jp �= � of M c

∗,p
such that

⊗
i∈Z

W (jq, i) ⊗ W (jq, jp) ≤S

⊗
i∈Z

W (i, jq) ⊗

W (jp, jq), where W (i, jq) refers to the column vector
Ms
∗,q of the s-sub-block Ms(Z), where W (jq, i) refers

to the column vector Ms
∗,q of the s-sub-block Ms(Z),

{j1, j2, . . . , jh} = A \ Z and 1 ≤ q, p ≤ h.

Example 5. Given F = 〈A, R,W, S〉 as in Figure 4. Ac-
cording to Definition 14, the matrix of F is as follows

M(AF ) =

⎛
⎜⎝
0 4 0 0
0 0 8 0
0 0 0 0
0 3 0 0

⎞
⎟⎠

By Theorem 1, we have that Z = {a, d} is w-admissible.

Note that the matrix Ms({a, d}) =

(
4 0
3 0

)
has a col-

umn vector Ms
∗,2 =

(
0
0

)
corresponding in M c({a, d}) =(

0 8
0 0

)
to the column vector M c

∗,2 =

(
8
0

)
. For ab,c = 8 in

M c
∗,2, the corresponding column vector Ms

∗,1 in Ms({a, d})
has W (a, b) ⊗ W (d, b) = 4 + 3 = 7. Since 8 ≤S 7, ac-
cording to Theorem 3, we claim that {a, d} is a w-complete
extension of F .

Matrix reduction for WAFs

Most of the time, it is convenient to reduce the size of the
matrix before performing further operations on it. Below, we
provide a method to contract the w-conflict-free subset of a
matrix into a single entity, without affecting the computation
of the extensions. Moreover, we show an iterative procedure
for building w-grounded and w-preferred extensions.

Matrix reduction by contraction

Starting from a conflict-free sub-block, we can character-
ize w-admissible, w-stable and w-complete extensions of a
WAF. Contracting such a sub-block, we obtain a new matrix
of smaller size, but with the same semantics status as the
original one.

510



Definition 18. Let M(AF ) be the matrix of a WAF. The
combination of two rows i and j of the matrix M(AF ) con-
sists in “combining” the elements in the same position of the
rows. If wi and wj are elements in the same position of the
rows i and j respectively, their combination is given by the
rule wi⊗wj . The combination of two columns of the matrix
M(AF ) is similar as the combination of two rows.

For a w-conflict-free subset Z = i1, i2, . . . , ik, we
can contract the sub-block M cf (Z) into a single entry in
the matrix. This new entry will have the same status as
M cf (Z) w.r.t. the extension-based semantics. Thus the ma-
trix M(AF ) can be reduced into another matrix Mr

Z(AF )
with order n − k + 1 by applying the following rules: let
1 ≤ t ≤ k, for each s such that 1 ≤ s ≤ k and s �= t,
1. combine rows is to the row it;
2. combine column is to the column it;
3. delete row is and column is.

The matrix Mr
Z(AF ) obtained in this way is called the

reduced matrix w.r.t. the conflict-free subset Z. Also, the
original WAF can be reduced into a new one with n− k+1
arguments by applying the following rules. Let A \ Z =
{j1, j2, . . . , jh} and 1 ≤ t ≤ k. For each s such that 1 ≤
s ≤ k and s �= t, and each q such that 1 ≤ q ≤ h, set
W ((it, jq)) = 0 and W ((jq, it)) = 0. Then,
1. if (is, jq) ∈ R, combine (it, jq) to R and set
W ((it, jq)) = W ((it, jq))⊗W ((is, jq));

2. if (jq, is) ∈ R, combine (jq, it) to R and set
W ((jq, it)) = W ((jq, it))⊗W ((jq, is));

3. delete (is, jq) and (jq, is) from R.
Let Rr

Z denote the new relation and Ar
Z = {it} ∪ (A \

Z), then (Ar
Z , R

r
Z) is a new AF called the reduced AF w.r.t.

Z. Obviously, the reduced matrix Mr
Z(AF ) is exactly the

matrix obtained from Ar
Z and Rr

Z .

Theorem 4. Given F = 〈A, R,W, S〉 with A = 1, 2, . . . , n,
let Z = {i1, i2, . . . , ik} ⊆ A be conflict-free and 1 ≤ t ≤
k. Then Z is stable (resp. admissible, complete, preferred)
in AF iff {it} is stable (respectively admissible, complete,
preferred) in the reduced F = 〈Ar

Z , R
r
Z ,W, S〉.

Matrix reduction by division

Let F = 〈A, R,W, S〉 be a WAF. The w-grounded ex-
tension of F can be viewed as the union of two subsets
IAF and E: IAF consists of the initial arguments of F
and E is the w-grounded extension, w-defended by F ,
of the remaining sub-AF w.r.t. IAF (that is F |B , where
B = A \ (IAF ∪ R+(IAF ))). On the other hand, a w-
preferred extension coincides with an admissible extension
E, w-defended by F , from which the associated remain-
ing sub-AF F |C (where C = A \ (E ∪ R+(E))) has no
nonempty admissible extension. We have the following the-
orem.

Theorem 5. Let F = 〈A, R,W, S〉 be a WAF, Z ⊆ A be a
w-admissible extension of F , and B = A \ (Z ∪ R+(Z)).
If T ⊆ B is a w-admissible (resp. w-stable, w-complete,
w-preferred) extension, w-defended by F , of the remaining
sub-AF w.r.t. Z (F |B), then Z ∪ T is a w-admissible (resp.
w-stable, w-complete, w-preferred) extension of F .

a b

c

d

5
2

8

Figure 5: Example of a WAF with S = Sweighted .

Example 6. Given F in Figure 4, consider Z = {a} and
T = {d}, with T ⊂ B = A \ (Z ∪ R+(Z)) = {c, d}. Z
is w-admissible in F and T is w-admissible in F |B . Then,
for Theorem 5, Z ∪ T = {a, d} is a w-admissible extension
of F .

Building w-grounded extensions

A w-grounded extension can be built incrementally by start-
ing from a w-admissible extension. Let I1 be the set of ini-
tial arguments of F , then I1 is a w-admissible extension. If
F has no initial arguments, then the w-grounded extension
Z of F is empty. Otherwise, let Ii be the set of initial argu-
ments of F |Bi−1 . We proceed to construct Z by computing
the sets Bi as follows:
1. B0 = A;
2. B1 = B0 \ (I1 ∪R+(I1)) and Z = I1;
3. (a) compute Ii ⊆ Bi−1;

(b) Ei = Ii ∩ Dw(Z), Z = Z ∪ Ei, Fi = Ii \ Ei,
Fi0 = Fi;

(c) ∀a ∈ Fij (with 0 ≤ j ≤ |Fi|), if a ∈ Dw(Z) then
Z = Z ∪ {a} and Fij+1 = Fij \ {a};

(d) repeat (c) until Fij = Fij−1 ;
(e) Bi = Bi−1 \ {Ii ∪R+(Ii)}, with 2 ≤ i ≤ n;

4. repeat 3. until Bi = ∅ or Ei = ∅.
This process can be done repeatedly until, for some t,

Et = ∅, where 2 ≤ t ≤ n. From Theorem 5, we
know that the set union between w-admissible extensions
is a w-admissible extension in turn. At this point, the set
Z = I1 ∪ E2 ∪ · · · ∪ Et−1 is the w-grounded extension of
F . Note that the set Bi coincides with the set of undec ar-
guments in the labelling of Bi−1 where Ii is the set of in
arguments.
Example 7. Let F = 〈A, R,W, S〉 be a WAF as in Figure 5.
We have I1 = {a} �= ∅, so we look for the sets Bi. B1 = A\
{a, b} = {c, d}, so I2 = {c, d}, E2 = {c} and F2 = {d}.
Consider B2 = {c, d} \ {c, d} = ∅ that implies E3 = ∅.
Z = {a} ∪ {c} = {a, c} is the w-grounded extension of F .

Building w-preferred extensions

A w-preferred extension can be built incrementally by start-
ing from some w-admissible extension. Since the w-
preferred semantics admits more extensions, different w-
preferred extensions can be built, depending on both the
initial extension and the selection of the nonempty w-
admissible on each step of the procedure. Let Zi be any
w-admissible extension of F |Bi−1

and compute:
1. B0 = A;
2. B1 = B0 \ (Z1 ∪R+(I1)) and Z = Z1;
3. (a) compute Zi ⊆ Bi−1;
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(b) Ei = Zi ∩ Dw(Z), Z = Z ∪ Ei, Fi = Zi \ Ei,
Fi0 = Fi;

(c) ∀a ∈ Fij (with 0 ≤ j ≤ |Fi|), if a ∈ Dw(Z) then
Z = Z ∪ {a} and Fij+1

= Fij \ {a};
(d) repeat (c) until Fij = Fij−1

;
(e) Bi = Bi−1 \ {Zi ∪R+(Zi)}, with 2 ≤ i ≤ n;

4. repeat 3. until Bi = ∅ or Ei = ∅.
This process can be done repeatedly until, for some t,

Et = ∅, where 2 ≤ t ≤ n. At this point, by Theorem 5,
the set Z = Z1 ∪E2 ∪ · · · ∪Et−1 is the w-preferred exten-
sion of F .

Example 8. Let F = 〈A, R,W, S〉 be a WAF as in Figure 5.
Let’s consider the w-admissible extension Z1 = {a} of F .
Thus B1 = {c, d}, E2 = {c} and F2 = {d}. Since B2 = ∅
and E3 = ∅, Z = {a} ∪ {c} = {a, c} is the w-preferred
extension of F .

Computational Complexity. We analysed the above de-
scribed algorithms from the computational point of view.
The first algorithm, which computes w-grounded exten-
sions, has an overall time complexity of O(n4). The algo-
rithm for w-preferred extensions reveals worse performance
than the first one, with a time complexity of O(2n ·n5). This
is due to the fact that an admissible extension has to be found
at each execution of step 3. A more extended study of the
complexity is left for future work.

Conclusion and Future Work

In this work, we introduce a matrix approach for studying
extensions of semiring-based semantics. A WAF is rep-
resented as a matrix in which all elements correspond to
weights assigned to relations among arguments. In partic-
ular, by extracting sub-blocks from this matrix, it is possible
to check if a set of arguments is an extension for some se-
mantics. Also, we describe an incremental procedure for
building w-grounded and w-preferred extensions and we
study how to reduce the number of arguments of a WAF
in order to obtain a contracted matrix with the same status
as the original one (w.r.t. the semantics). A possible appli-
cation for this approach could be the identification of equa-
tional representation of semiring-based extensions, by using
the method proposed in (Gabbay 2011). We plan to extend
our current implementation4 (Bistarelli and Santini 2011a;
2011b) with the proposed approaches, and to test their per-
formance on real applications. Finally, we would like to in-
vestigate whether such methodologies can be applied when
considering coalitions of arguments (Bistarelli and Santini
2013).
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