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Abstract

The amount of data generated and collected every day is in-
creasing continuously. With it, the task of sorting and ana-
lyzing this vast aggregation of information is of growing im-
portance. In particular, it is of interest to discover interrela-
tions between observations—a process known as data min-
ing. Usually, quantitative data mining is performed, assign-
ing concrete weights or percentages to the extracted pieces
of information, which, albeit easier to process by machines,
does not coincide well with the way humans think and reason.
The latter is achieved more fittingly via qualitative data min-
ing, extracting rules such as “If it is a bird, it usually flies”
without the need for any modifying numeric quantifiers. In
this article, we recall two established approaches to qualita-
tive data mining. Subsequently, we introduce a novel dis-
tance measure as well as, built thereupon, a preference rela-
tion yielding a context-aware ranking of approaches to data
mining. This measure is then used to evaluate and compare
the aforementioned approaches to one another. Finally, we
show that both approaches produce fundamentally different
results, and show by way of example which kinds of applica-
tions each one is better suited for.

1 Introduction and Overview

Approaches summarized under the term Data Mining are
processes that extract knowledge in the form of relation-
ships, patterns, or rules from a set of data samples or ob-
servations (see, e.g., (Fayyad, Piatetsky-shapiro, and Smyth
1996)). The majority of data mining approaches are quanti-
tative in nature as they generate probabilistic rules in forms
such as “The conditional probability of B given A is x.”
Qualitative rules in the form of “If A then usually B”,
on the other hand, are building blocks of qualitative and
semi-quantitative commonsense, or nonmonotonic, reason-
ing. Formalized as conditionals with a trivalent interpreta-
tion, they are capable of being used in a context with human
reasoners. One reason for this is that human reasoning is
sometimes prone to fallacies when dealing with probabilities
(e.g., (Bar-Hillel 1980)) while “commonsense reasoning”,
using default rules without quantifiers, can be more accessi-
ble (e.g., (Ragni et al. 2017)). Approaches to qualitative data
mining thus are helpful in scenarios where human reasoners
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and data mining processes are to cooperate. Examples in-
clude, but are not limited to, conditional knowledge bases
set up by an expert which are to be revised with the data
mining results, data mining results that are to be assessed by
human experts, or mined rules that are to be used as qualita-
tive and human-readable explanations for the observations.
There are only few approaches to qualitative data mining.
In this article, we recall two established approaches, namely
the Big-stepped Probabilities method (BSP for short, (Ben-
ferhat et al. 2003)) and the (qualitative variant of the) CON-
DORCKD approach (Kern-Isberner et al. 2009). We show
that, even if the general structure of these approaches is sim-
ilar and, at a first glance, modular, the internal methods are
tailored to either approach and cannot be substituted eas-
ily. We further illustrate that, since both approaches generate
sets of conditionals of different formats, they cannot be com-
pared by just observing their input-output-behavior. Thus,
we compare both approaches semantically based on the epis-
temic states induced by the resulting conditional rules. To
this end, we define a context aware distance measure as
well as a preference relation over epistemic states encoded
as ordinal conditional functions, using the latter to show in
which scenario which of the presented approaches is the bet-
ter choice. The rest of this paper is structured as follows.
We start out with a brief recapitulation of the formal pre-
requisites to the presented approaches in Sect. 2. Next, we
recall the BSP method and the QCKD approach in Sect. 3.
In Sect. 4, we introduce a means of comparing qualitative
data mining approaches, and apply this method to the two
approaches presented in the preceding section. Finally, we
conclude with both a concise summary of our findings and
an outlook on future work on the subject at hand in Sect. 5.

2 Preliminaries and Basic Techniques

In this paper, we use a propositional language L via closure
of a set of propositional variables Σ = {V1, . . . , Vm} under
conjunction (∧) and negation (¬). We abbreviate conjunc-
tion by juxtaposition, writing AB for A ∧ B, and negation
by overlining, writing A for ¬A. Interpretations or possi-
ble worlds ω are represented as complete conjunctions over
literals v̇i ∈ {vi, vi} of variables in Σ, the set of all pos-
sible worlds is denoted by Ω. The evaluation of a formula
A in a world ω (�A�ω), satisfaction and entailment (|=), the
material implication (⇒), and semantic equivalence (≡) are
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defined as usual, as are the symbols for tautology (�) and
contradiction (⊥).

A conditional (B|A) is a three-valued logical entity with
an evaluation (Finetti 1974) �(B|A)�ω = true iff ω |= AB
(verification), �(B|A)�ω = false iff ω |= AB (falsifi-
cation), and �(B|A)�ω = undefined iff ω |= A (non-
applicability). Conditionals (B|A) establish connections be-
tween a premise A and a conclusion B, formalizing the
defeasible rule “If A then usually B.” Conditionals (v̇|A)
where v̇ is a literal and A is a conjunction of literals are
called single-elementary conditionals. For a conditional
(B|A) we call A ⇒ B its material counterpart. A finite set
of conditionals Δ = {(B1|A1), . . . , (Bn|An)} ⊆ (L | L) is
called a knowledge base. A set of conditionals Δ tolerates
a conditional (B|A) iff there is a world that verifies (B|A)
without falsifying any conditional (Bi|Ai) in Δ.
Example 2.1 (Employee Benefits) Consider a company
that offers its employees rank-based benefits. While most
are cubicle workers, some have an office of their own,
a company car, or even access to the private company
jet. We encode these benefits using the set of vari-
ables Σoffice = {C, J,O}. Hence, possible sets of
employee benefits (i.e., possible worlds), are Ωoffice =
{cj o , c j o , c j o , c j o , c j o , c j o , c j o , c j o}. We formu-
late the defeasible rule “If a person may use the company
jet, they also get a company car,” formally δ1 = (c |j ). Sim-
ilarly, someone who does not even have an office likely has
no company car nor access to the jet, formally δ2 = (cj |o).
A plausible scenario, c j o , that is, an employee with an of-
fice and a car but no access to the jet, falsifies none of the
above rules. On the other hand, c j o falsifies both rules;
therefore, it is considered odd for someone with access to a
jet and an office to not have access to a car. The company
could aggregate these rules regarding its employee benefits
in the form of a knowledge base Δoffice = {δ1, δ2}.

Let Δ = {(B1|A1), . . . , (Bn|An)} ⊆ (L | L) be a
knowledge base and let F(Δ) = {a+1 , a−1 , . . . ,a+n , a−n }
be a set of abstract symbols (Kern-Isberner 2001). The
function σΔ,i : Ω → F(Δ) ∪ {1} assigns to each ω ∈ Ω
a symbol out of {a+i , a−i , 1} based on the evaluation of
the conditional (Bi|Ai) in ω, such that σΔ,i(ω) = a+i iff
�(Bi|Ai)�ω = true , σΔ,i(ω) = a−i iff �(Bi|Ai)�ω = false,
and σΔ,i(ω) = 1 iff �(Bi|Ai)�ω = undefined . In this
way, the set F(Δ) is an indicator set for the verification or
falsification of each individual conditional in Δ. Using this
set as a set of generators, we define the free Abelian group
(F(Δ), ·, 1) with the invertible, associative, and commuta-
tive connective · and neutral element 1. The conditional
structure (Kern-Isberner 2001) σΔ : Ω → (F(Δ), ·, 1)
of a world ω based on a given knowledge base Δ is the
combination of all indicator functions σΔ,i, 1 ≤ i ≤ n, on
ω inside this group, that is, σΔ(ω) =

∏n
i=1 σΔ,i(ω).

From the elements of Ω we generate the free Abelian
group Ω̂ = 〈ω | ω ∈ Ω〉, containing all words ω̂ =∏

1≤i≤|Ω| ω
ri
i where ωi ∈ Ω and ri ∈ Z. We call a word

ω̂ ∈ Ω̂ a generalized world iff all its exponents are positive,
in other words, iff it corresponds to a multiset of worlds.

This way, we can represent elements of Ω̂ as fractions ω̂1

ω̂2

of generalized worlds by grouping together the worlds with
positive (negative) exponents to form ω̂1 (ω̂2), and by omit-
ting any world whose exponent is zero. We overload σΔ

for generalized worlds ω̂ = ω̂1

ω̂2
∈ Ω̂ (allowing only trivial

cancellations) and define

σΔ(ω̂) = σΔ

(
ω̂1

ω̂2

)
=

(∏
ω∈ω̂1

σΔ(ω)
)
/
(∏
ω∈ω̂2

σΔ(ω)
)
. (1)

Example 2.2 The knowledge base Δoffice given in Exam-
ple 2.1 induces the conditional structures on Ω shown in
Table 1. The structural relationship between the employ-
ees who have access to the company jet but do or do
not enjoy a company car is formalized by the generalized
world ω̂ = cj o ·cj o

cj o ·cj o and induces the conditional structure

σΔoffice
(ω̂) =

σΔoffice
(ω̂1)

σΔoffice
(ω̂2)

=
a+
1 1 ·a+

1 a−2
a−1 1 ·a−1 a−2

=
a+
1 a+

1

a−1 a−1
.

As trivalent logical entity, the evaluation function �·�ω is
not sufficient to give appropriate semantics to condition-
als. Hence, conditionals have to be considered within richer
structures such as epistemic states in the sense of (Halpern
2005) which can be represented as total transitive order-
ings on the sets of worlds. In this paper, we use orderings
that originate from plausibility and possibility orderings of
worlds.

Ordinal conditional functions (OCF, (Spohn 2012)) κ :
Ω → N∞0 assign an implausibility rank κ(ω) to each world
ω ∈ Ω, that is, the higher κ(ω) is, the less ω is believed by
the agent, with the normalization constraint that there have
to be maximally plausible worlds, that is, the pre-image of
0 must not be empty, κ−1(0) �= ∅. The rank of a for-
mula A is the minimal rank of all worlds satisfying the
formula, κ(A) = min{κ(ω) | ω |= A}, and the rank of
a conditional is the rank of its verification normalized by
that of the premise, formally κ(B|A) = κ(AB) − κ(A).
A ranking function κ accepts a conditional (B|A), written
κ |= (B|A), iff the verification of the conditional is more
plausible than its falsification, κ(AB) < κ(AB), and κ
is admissible with respect to a conditional knowledge base
Δ = {(B1|A1), . . . , (Bn|An)} ⊆ (L | L), written κ |= Δ
iff κ accepts all conditionals in Δ.

A ranking function κ that is admissible with respect to a
knowledge base Δ can be generated inductively, given that
Δ is consistent; we here recall the established approach of
System Z (Pearl 1990). For this, the knowledge base Δ is
partitioned algorithmically into inclusion-maximal disjoint
ordered subsets (Δ0 � · · · �Δm) = Δ such that each con-
ditional in a subset is tolerated by all conditionals contained

Table 1: Conditional Structure for the Employee Benefits
Example (Example 2.2).

ω verif. falsif. σΔ(ω) ω verif. falsif. σΔ(ω)

cj o δ1 a+1 1 cj o δ1 a−1 1
cj o δ1 δ2 a+1 a

−
2 cj o δ1, δ2 a−1 a

−
2

cj o 1 1 cj o 1 1
cj o δ2 1 a−2 cj o δ2 1 a+2
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in the union of its subset and all subsets of a higher order,
formally, for all 1 ≤ i ≤ m and for all (B|A) ∈ Δi, there is

an ω ∈ Ω s.t. ω |= A∧B ∧
m∧
j=i

( ∧
(D|C)∈Δj

C ⇒ D
)
. Given

this partitioning, the rank of a world ω is the highest ordi-
nal of subsets in the partition which contains conditionals
falsified by ω, increased by 1, i.e.,

κZ
Δ(ω) =

{
0 iff ω does not falsify conditionals in Δ

arg max
0≤i≤m

{ω |= AB | (B|A) ∈ Δi}+1 o/w.

Under possibility theory (Dubois and Prade 2015) worlds are
ordered with functions π : Ω → [0, 1] representing the pos-
sibility that ω is the real world on a scale from rejected (or
impossible, π(ω) = 0) to totally possible (π(ω) = 0). Here,
the normalizing condition is that there have to be worlds
that are totally possible, that is, the pre-image of 1 must not
be empty, π−1(1) �= ∅. The possibility of a formula A is
the supremum of the possibilities of all worlds satisfying A,
π(A) = sup{π(ω) | ω |= A}. Given a t-norm ◦ (usually
either the minimum or the product), for conditionals (B|A)
it is defined that π(AB) = π(B|A) ◦ π(A). We define a
possibility distribution to accept a conditional (B|A), writ-
ten π |= (B|A), iff the verification of the conditional is more
possible than its falsification, π(AB) > π(AB).

The, so to say, classical way of representing epistemic
states are probability measures P : L → [0, 1] on propo-
sitional logic which are defined in the usual way such that
0 ≤ P (ω) ≤ 1, 0 ≤ P (A) =

∑
ω|=A P (ω) < 1,

P (⊥) = 0, P (�) = 1, and P (A) + P (A) = 1. On top of a
probability measure we define by P a function that maps
a generalized world to a value in R+

0 using a probability

measure P similarly to (1) such that P(ω̂) = P
(

ω̂1

ω̂2

)
=(∏

ω∈ω̂1
P (ω)

) · (∏ω∈ω̂2
P (ω)

)−1
.

3 Qualitative Data Mining

The data mining approaches inspected in this paper can, on
an abstract level, be generalized to a degree where they con-
sist of two separate phases: A clustering phase in which data
points are aggregated by a cluster analysis algorithm so that
objects of a common type (with a certain degree of free-
dom) are grouped together and a rule mining phase in which
each of these clusters is analyzed for relationships between
its contained observations to generate rules from.

The Big-stepped Probabilities (BSP) approach (Benferhat
et al. 2003) uses non-linear big-stepped probability distribu-
tions (nlbsp) to cluster input data such that the i-th stacked
cluster (stratum) is more probable than all following strata
combined.
Definition 3.1 (Non-linear Big-stepped Probability Dis-
tribution (Benferhat et al. 2003)) Let Ω be the set of pos-
sible worlds over V and let P : Ω → [0, 1] be a proba-
bility distribution over Ω. Then, P is called a non-linear
big-stepped probability distribution iff there exists a parti-
tioning Ω = E1 � · · · � Em into strata Ei with rank i, s.t.
|Ei| ≥ 1 for all i ∈ {1, . . . ,m}, |Em| = 1 or P(Em) = 0,
and P(Ei) > P(Ej) iff i < j for all i, j ∈ {1, . . . ,m}.

Additionally, BsP relies on so-called common and (minimal)
discriminating factors:

Definition 3.2 (Common, Minimal Discriminating Fac-
tors (Benferhat et al. 2003)) Let Ω = E1 � · · · � Em be
a partitioning of the set of possible worlds into strata Ei

of rank i s.t. P is an nlbsp. Then, the set of common
factors of Ei is the set comm(Ei) = {v̇ | ∀ω ∈ Ei :
ω |= v̇}. Based on the set of discriminating factors of Ei,
disc(Ei) = {D ⊆ comm(Ei) |

∨
ω∈Ej ,j<i ω �|= ∧

v̇∈D v̇},
the set of minimal discriminating factors of Ei is the set
disc↓(Ei)={D∈disc(Ei) |�D′∈disc(Ei) :D

′�D}.
The original publication (Benferhat et al. 2003) proposed
computing nlbsp’s by iteratively merging (sets of) worlds
until the resulting partition conforms to Definition 3.1.
Given an nlbsp (E1, . . . , Em) for some data set, a rule set
ΔBSP can be computed from comm(Ei) and disc↓(Ei) via

ΔBSP =

{( ∧
v̇∈comm(Ei)\{D}

v̇
∣∣ ∧

v̇′∈D
v̇′
)}

(2)

where D ∈ disc↓(Ei), 1 ≤ i ≤ m.

Example 3.3 (Employee Benefits) We extend Example 2.1,
assuming that the corporation has 100,000 employees of
which most do not receive any benefits. The 2,000 managers
are provided with a company car and an office of their own.
The 30 members of the board of directors may additionally
access the company jet. The three employment tiers form
strata of an nlbsp, the common factors being the respective
tier’s benefits and the discriminating factors listing benefits
that set a tier apart from those beneath it. Table 2 lists those
strata in more detail. Using Equation (2), we extract the
rule ( c j o |�) from the first stratum, that is, an employee is
generally assumed to not receive any particular privileges.
From E2, we extract ( c j | o ) and ( j o | c ), that is, an
employee receiving an office tends to receive a car, and vice
versa, but not access to the jet. Finally, from E3 we extract
( c o | j ), i.e., anyone with access to the jet tends to also
get an office and a car. Thus, we end up with the knowledge
base ΔBSP

office = {(cj o |�), (cj |o), (j o |c), (co |j ), }.

While the results obtained with BSP in Example 3.3 seem
plausible given the data, this is not the case for BSP in gen-
eral, as shown in Example 3.4.

Example 3.4 (Equivalence) Consider the distribution in
Table 3 for the set Σeq = {A,B}. A human observer
might easily conclude that a ⇔ b holds in 98% of all cases.
The BSP approach, however, will attempt to form an nlbsp
by combining either of the 49%-worlds with either of the

Table 2: Strata for Example 3.3.
Worlds Freq. P(Ei) comm(Ei) disc↓(Ei)

E1 cj o 97970 97.97% {c , j , o} {∅}
E2 cj o 2000 2.00% {c , j , o} {{o}, {c}}
E3 cj o 30 0.03% {c , j , o} {{j}}
E4 others 0 0.00% ∅ ∅
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Table 3: Input Distribution for Example 3.4.
ω Freq. P(ω) ω Freq. P(ω)

ab 49 49% ab 1 1%
ab 49 49% ab 1 1%

1%-worlds. This fails to generate a stratum containing the
absolute majority of observations, thus requiring another
merge. The two non-merged strata are the only ones with
at least one common factor, thus they are merged to form
a 50 : 50-split of observations. These two strata still do
not form an nlbsp; merging them results in a single stra-
tum equal to Ω. This, however, is a vacuous nlbsp since
comm(Ω) = disc↓(Ω) = ∅. The only rule extractable from
Ω is (�|�), causing any admissible OFC to assign 0 to any
and all worlds in Ω.

The qualitative CONDORCKD approach (Kern-Isberner
et al. 2009) (QCKD) starts out with an equidistant cluster-
ing on the negative logarithms of the relative frequencies of
all individual worlds. Unlike BSP, which clusters by com-
mon literals first, QCKD attempts to find and group together
worlds with “similar enough” probabilities of occurrence.

To extract rules from some input data set, QCKD first
finds a set of minimal null conjunctions NC, the short-
est conjunctions of literals appearing only in unobserved
worlds. The world clusters induce a set ker0 P of world
products, or generalized worlds, such that the multiplied
probabilities of these worlds yield a value close enough to
1. The margin of “close enough” is given by the initial clus-
tering of the worlds.

A set of starting rules Δ0 is generated for each positive lit-
eral vi ∈ Σ such that the (most long) conjunctions of other
literals together with vi do not satisfy any of the null con-
junctions.

With some rule set Δi, QCKD first determines the con-
ditional structure σΔi(Ω), then searches for generalized
worlds in ker0 P where most but not all conditional ef-
fects cancel out. Since world pairs in ker0 P behave (al-
most) identically, the remaining conditional effects can be
assumed to do so, too, permitting to merge two rules (if the
generalized world’s numerator and denominator both verify
or both falsify one of them) or to delete a rule (if the numer-
ator verifies and the denominator falsifies it, or vice versa).
This process is repeated iteratively until no more modifica-
tions are possible.

Finally, the extracted conditionals are annotated with
ranks. For purely qualitative data mining, the concrete val-
ues of these ranks are of no importance; however, negative
ranks are used to negate a rule’s conclusion, i.e., a condi-
tional ( b | a ) with a rank x < 0 corresponds to ( b | a ) with
rank |x|. This licenses for the discovery of rules with nega-
tive conclusions even though the starting rules were limited
to positive ones. For more detailed technical information,
we refer to (Kern-Isberner et al. 2009).

Example 3.5 (Equivalence Revisited) Example 3.4 ex-
posed a pitfall for BSP. Returning to Example 3.4, we now

Table 4: System Z OFC of Examples 3.4 and 3.5.

ω κBSP(ω) κCKD(ω) ω κBSP(ω) κCKD(ω)

ab 0 0 ab 0 1
ab 0 1 ab 0 0

Table 5: System Z OCF of Examples 3.3 and 3.6.
ω κBSP(ω) κCKD(ω) ω κBSP(ω) κCKD(ω)

cj o 2 1 cj o 3 2
cj o 3 1 cj o 3 2
cj o 1 0 cj o 2 1
cj o 2 1 cj o 0 0

apply the QCKD method, instead. As there are no worlds
with a frequency of 0, the set NC is empty. The starting
rules are ΔCKD

0 = {δ1 = ( a | b ), δ2 = ( a | b ), δ3 =

( b | a ), δ4 = ( b | a )}. The kernel of P contains ω̂1 = ab
ab

and ω̂2 = ab
ab

. We have σΔCKD
eq

( ab
ab ) =

a+
2 a−3

a−1 a+
4

, allowing for

no further reductions, as is the case with ω̂2. QCKD assigns
negative ranks to δ2 and δ4, yielding ΔCKD

eq = {δ1, δ′2 =

(a |b), δ3, δ′4 = (b |a)}, which precisely describes a ⇔ b.

Example 3.6 (Employee Benefits Revisited) The handling
of Example 3.3 using QCKD is slightly more complex. As
null conjunctions, we have NC = { c o , c o , c j o },
and the highly different frequencies of the three observed
scenarios result in an empty kernel ker0 P . We therefore
do not iterate over Δ0 and end up directly with ΔCKD

office =

{δ1 = ( c | j ), δ2 = ( c | j o ), δ′3 = ( j | c o ), δ4 = ( o | c )},
with δ′3 originating from the negatively-ranked starting rule
δ3 = (j |co).

4 Comparing the Approaches

Our goal is to have a means of comparing BSP with QCKD,
ideally one allowing us to prefer one over the other. As
the examples from the previous section show, the formats
of the mined rule sets are substantially different, as BSP
yields conditionals with short premises and longer conclu-
sions while QCKD yields single-elementary conditionals
with literals for conclusions and premises of varying length.
The material counterparts of the latter are a slight gener-
alization of Horn clauses whereas the prior form far more
complex formulas. So, since both differ in the structure of
extracted rules, the remaining viable option is to investigate
the corresponding epistemic states. Infinitely many possi-
ble ranking functions matching the same rule set may exist.
Therefore, we focus on the System Z ranking functions (see
Table 4 for Examples 3.4 and 3.5, and Table 5 for Exam-
ples 3.3 and 3.6), only. This, while again revealing similar-
ities and discrepancies between the approaches, provides us
with an ordinal basis of comparison. Table 5 reveals that in
this example, QCKD considers managers and basic employ-
ees to be equally plausible, even though their frequencies
differ by a factor of almost 50, suggesting that QCKD fails
to properly reflect the input data distribution. On the other
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hand, BSP fails to discover coimplicatory relationships be-
tween literals (cf. Table 4). Hence, ranking functions alone
do not yet offer a viable basis of comparison. To construct
a sound preferential framework for approaches to qualita-
tive data mining, we propose the notion of inherent ranking
functions that act as our ideal or desired epistemic state and
allow us to apply a context-aware distance measure.

Definition 4.1 (Inherent Ranking Functions (Niland
2017)) Let P be a frequency distribution over the set of
worlds Ω. The inherent ranking functions κ↓, κ↑ : Ω → N∞0
are defined as

• κ↓(ω) = 0 if P(ω) > 0 and P(ω) = max
ω′∈Ω

P(ω′), or

P(ω) = 0

• κ↓(ω) = κ↓(ω′) + 1 iff P(ω′) > P(ω) > 0 and �ω′′ ∈
Ω : P(ω′) > P(ω′′) > P(ω)

• κ↑(ω) = κ↓(ω) iff P(ω) > 0,
• κ↑(ω) = 1 + max

P(ω′)>0
κ↓(ω′) if P(ω) = 0.

Less formally, ranks are assigned to observed worlds in
the inverse order of their frequencies. In this way, κ↑ treats
the raw data as an unbiased, representative sample of ad-
equate size, treating unobserved scenarios as maximally
implausible (closed world assumption), whereas κ↓ treats
unobserved worlds as maximally plausible, implying that is
not clear whether the raw data cover the whole sample space
(open world assumption).

Assuming either of these inherent ranking functions to be
the ideal ranking function κ0, one computed OCF (and thus
one approach) may be favored over another if it differs less
from said ideal than the other does. To this end, we define
the concepts of context-aware local and global distance, and
an induced preferential order over all ranking functions over
a shared set of worlds.

Definition 4.2 (Context-aware Local and Global Dis-
tance) Let κ, κ′ be ranking functions over a common set of
worlds Ω. Then, for any ω ∈ Ω, the local distance from κ to
κ′ in the context of ω is distω(κ, κ

′) = |κ(ω) − κ′(ω)|,
and the global distance from κ to κ′ is dist(κ, κ′) =∑

ω∈Ω distω(κ, κ
′).

Definition 4.3 (Context-aware Preference) Let κ0, κ1, κ2

be ranking functions over a common sets of worlds Ω. Then,
κ1 is preferred over κ2 in the context of κ0, written κ1 �κ0

κ2, iff dist(κ0, κ1) ≤ dist(κ0, κ2).

The global distances of κBSP and κCKD to the inherent
ranking functions κ↓ and κ↑ calculated according to Defi-
nition 4.2 for both running examples are given in Table 6,
showing that the choice of how to interpret unobserved sce-
narios may invert the order of preference between the two
approaches: For the office example, we prefer the result of
BSP (the OCF κBSP

office ) to the result of QCKD (κCKD
office ) un-

der closed world assumption (i.e., compared to κ↑), whilst
otherwise (i.e., compared to κ↓), the preference is reversed.
For the equivalence example, this effect does not show up.
In other words, whether or not one approach is considered to
be better than another strongly depends on both the context

Table 6: Global Distances between Ranking Functions.

from�to κ↓eq κ↑eq from�to κ↓office κ↑office

κBSP
eq 2 2 κBSP

office 13 2

κCKD
eq 0 0 κCKD

office 9 10

given by the input data and on the intention of the person
using them; an approach is therefore not judged in general
but always with the task at hand in mind.

Since both the BSP and QCKD approaches start by a clus-
tering of worlds followed by some rule extraction method
based on said clustering, the idea comes to mind that a
recombination of the clustering and extraction methods of
both approaches could improve upon their results. However,
these stages are heavily tailored to one another within each
approach (e.g., the BSP extraction relies on common and
discriminating factors, which are completely ignored in the
QCKD clustering), yielding worse results in either of the
two recombinations, up to the point of empty rule sets.

5 Conclusion

In this paper, we recalled two approaches to qualitative data
mining, BSP and CONDORCKD. Both are constructed fol-
lowing the same schema. Still we could show that the
approaches yield results in form of conditionals that, by
themselves, are incomparable. Thus, to compare both ap-
proaches, we concentrated not on the generated conditionals
but rather on the epistemic states encoded by these condi-
tionals. To this end, we defined a context-aware distance
measure which allowed us to determine the distance of the
resulting epistemic states to the inherent ranking functions
of the raw data.

On top of this distance, we proposed a context-sensitive
preference relation based on both the input data and the
choice of how to interpret missing or unobserved scenar-
ios by computing a desired epistemic state from the input
and determining which of the approaches extracts a more
similar epistemic state. This relation revealed that neither
of the approaches is generally superior to the other, but that
ranking them is possible under consideration of the concrete
application of the approach: When unobserved scenarios are
considered to be highly unlikely (κ↑, closed world assump-
tion), the better choice appears to be to use the big-stepped
method, and when unobserved scenarios are not to be penal-
ized in terms of likelihood (κ↓, open world assumption), the
CONDORCKD results more aptly describe the potentially
underlying knowledge. This means that, for concrete appli-
cations of approaches to qualitative data mining where we
can assume that each possible outcome has been observed
(but not necessarily with the correct frequencies), that is,
that it is highly unlikely that any future event might yield
an outcome not represented in the raw data, our results rec-
ommend using BSP, whilst if we do not know whether the
raw data covers the whole sample space, our results recom-
mend using CONDORCKD. Additional examples and anal-
yses in (Niland 2017) support this observation; future work
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includes comparing the approaches using examples from the
standard set of benchmarks for approaches to data mining.
We omitted these in this article due to their increased vari-
able and sample sizes and instead used compact examples
to illustrate the methodological differences rather than the
statistical details.

Further work includes testing how this relation behaves
for different pairs of approaches, different examples, or
some other “ideal” epistemic state, along with a for-
mal rather than empiric approach to these questions, as
well as more sophisticated distance measures. Recent
work (Beierle, Eichhorn, and Kern-Isberner 2017) points up
ways of normalizing knowledge bases. This step could be
used as post processing of the compared methods. More-
over, it would be interesting to test the presented approaches
against “classical” probabilistic methods under this aspect.
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