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Abstract

Current solutions to multimedia modeling tasks feature se-
quential models and static tree-structured models. Sequen-
tial models, especially models based on Bidirectional LSTM
(BLSTM) and Multilayer LSTM networks, have been widely
applied on video, sound, music and text corpora. Despite their
success in achieving state-of-the-art results on several multi-
media processing tasks, sequential models always fail to em-
phasize short-term dependency relations, which are crucial
in most sequential multimedia data. Tree-structured models
are able to overcome this defect. The static tree-structured
LSTM presented by Tai et al. (Tai, Socher, and Manning
2015) forcingly breaks down the dependencies between el-
ements in each semantic group and those outside the group,
while preserves chain-dependencies among semantic groups
and among nodes in the same group. Though the tree-LSTM
network is able to better represent the dependency structure
of multimedia data, it requires the dependency relations of
the input data to be known before it is fed into the network.
This is hard to achieve since for most types of multimedia
data there exists no parsers which can detect the dependency
structure of every input sequence accurately enough. In order
to preserve dependency information while eliminating the ne-
cessity of a perfect parser, in this paper we present a novel
neural network architecture which 1) is self-expandable and
2) maintains the layered dependency structure of incoming
multimedia data. We call our new neural network architecture
Seq2Tree network. A Seq2Tree model is applicable on clas-
sification, prediction and generation tasks with task-specific
adjustments of the model. We prove by experiments that our
Seq2Tree model performs well in all the three types of tasks.

Figure 1: A tree-structured model with three layers. Hidden
states of lower-level nodes are inherited from parent nodes.
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Introduction

Multimedia signal modeling is the basis of multimedia sig-
nal processing tasks across a wide range of research fields
such as Computer Vision, Natural Language Processing,
and Sound Signal Processing. However on sequential-data-
related research remain not fully developed due to flexibil-
ity in structure of sequential data. In this paper, we aim at
tackling the problems static neural network solutions have
in modeling sequential signals with a dynamically self-
adjustable neural network architecture.

In sequential data each unit contributes to the prediction
of all its following units, so traditional sequential models
such as Hidden Markov Model (HMM) and Recurrent Neu-
ral Networks (RNN) are the first choice when processing
this kind of data. With the ability of weakening gradient van-
ishment and explosion problems, Long Short Term Memory
(LSTM) network has been very popular in sequential data
processing tasks. Seq2seq network (Sutskever, Vinyals, and
Le 2014), one of the most famous applications of LSTM
network for example, has thus attracted much attention in
machine translation research (Luong et al. 2015). Its use has
also been extended to multiple other tasks such as speech to
text conversion (Zhang, Chan, and Jaitly 2017). Moreover,
HMM achieves high performance in music style classifica-
tion task, especially when differentiating composer charac-
teristics (Buzzanca 2002; Chai and Vercoe 2001).

However, simple sequential models over single data
points can sometimes misrepresent complex multimedia sig-
nals. Thus, some variants of the sequential models are in-
troduced. Bidirectional LSTM (BLSTM) network (Schuster
and Paliwal 1997) for example, combines two LSTM net-
works each accepting the input forwards and backwards. Be-
cause of the backward LSTM, BLSTM is able to foresee
possible boundaries of unit patterns in the future. The cur-
rent state-of-the-art results in speech and noise separation
task, as is reported in the 2nd CHiME challenge (Vincent et
al. 2013), is achieved by a BLSTM-based system (Erdogan
et al. 2015). Multilayer LSTM is another popular variant of
the original LSTM network. This neural network architec-
ture allows different features to sit on different layers of the
network, so as to divide a sequence into patterns based on
learnt boundary characteristics. As an example, a three-layer
Seq2seq model achieves over 95% accuracy in the evalua-
tion of constituent parsers (Vinyals et al. 2015).
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Nevertheless, both BLSTM and Multilayer LSTM are ad-
ditive combinations of multiple original LSTM networks
which easily lose geometric information of the units. This
undermines the performance of systems based on BLSTM
and Multilayer LSTM. With careful examination of multi-
ple multimedia data samples we found that most multime-
dia signals share two characteristics: 1) inner-group depen-
dencies are stronger for every meaningful unit group and
2) meaningful groups form a chain-structured dependency
path. These characteristics of temporally successive multi-
media data lead us to a natural selection of a tree-structured
representation which 1) expands along one direction and 2)
branches only when a pattern starts while 3) ends a branch
and continues expanding on higher level when it reaches the
end of current pattern.

This special tree structure satisfies our needs of modeling
multimedia signals in terms of meaningful segments but not
single units by locating the units of the same semantic group
in the same subtree. We call these meaningful unit groups
segments. Currently no existing model works for bounding
segments with flexible length. To build up such tree struc-
ture from sequential input, we highlight the ability of our
self-expandable tree model to find boundaries of segments
by branching at proper positions. We call this novel neural
network architecture Seq2Tree network.

For generosity, we fit our tree model to three different
types of tasks, namely classification, prediction and gen-
eration tasks with necessary modifications to the network.
We designed experiments to prove the correctness of the our
tree-structured models built by Seq2Tree network and its ad-
vancement over the traditional LSTM-based models.

Seq2Tree networks were introduced by (Ma et al. 2018).
The structure has also been used in AI tasks such as signal
processing (Ma et al. 2017).

Multimedia Signal Modeling

Among all types of multimedia signals we concentrate on
temporally successive signals. To be more specific, in this
paper we focus on text, video, music and sound signals. We
mainly study mainly three types of tasks, namely classifica-
tion, prediction and generation tasks.

Classification Model

Figure 2: A tree-structured classification model. Information
from every top-level node is summarized into the top node.
The hidden state of the top node can be fed into a classifier.

As is shown in Figure 2, in the classification model there
is one root node above the entire tree structure. The root

node incorporates the hidden state of all top-level nodes in
the original tree structure.

For the classification model we build a softmax classifica-
tion model by adding a softmax layer on top of the root node
subject to the error function:

p(y|htop) = softmax(U (c)htop + b(c)),

ytop = argmaxyp(y|htop)

where U (c) is the classification matrix, b(c) is the bias and
htop is the hidden state at the top of the tree.

The cost function we choose here is the cross-entropy loss
of the predicted label y:

J(θ) = − 1

C

C∑

i=1

p(y|htop)logp(y|htop)

where C is the number of classes.
In our experiments we test our classification model on

a text classification task. The task requires classification of
Arxiv paper abstracts into their categories. Our data on this
task is collected from Arxiv.

Generative Model

Figure 3: The generative version of a tree-structured model.
Renders one output at every time step. All inputs come from
the seed.

In our generative model we yield one output at every node
in the tree with one fixed input and an inherited hidden state.
Parent nodes are updated every time a signal is generated at
their children nodes so the order of nodes affects the gener-
ation result.

Since in our model parent nodes are always temporally
preceding units of their children nodes, the generation is
done post-orderly but the final results are stacked according
to the original temporal order.

In our experiments we apply Seq2Tree network, which we
will introduce in the next section, as the generator and Long
Short Term Memory (LSTM) network as discriminator to
build a Generative Adversarial Network (GAN) (Goodfel-
low et al. 2014). The generation goal is music signal given a
seed vector representing the music style of Bach and several
real music pieces by Bach. In training the model we use the
original GAN loss function:

J(θ) = − 1

N

N∑

i=1

logD(ri) +
1

M

M∑

i=1

logD(G(si))
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where N and M are the sizes of real music signals in the
training set and the generated musics, respectively. D(ri)
stands for the discriminator output for the i-th real music,
while D(G(si)) is the discriminator output given the gener-
ated music with the seed si.

Predictive Model

Figure 4: A predictive model with tree structure. Requires
one output at every node. The inputs are independent at dif-
ferent time steps.

The predictive model is slightly different from the gener-
ative model in the sense that each node gets different input.
Data processing order and output reformation are both sim-
ilar to what the generative model does.

In the experiments we evaluate our predictive model on
a speech feature extraction task. The goal of this task is to
extract key features from audio files. Our solution to this
task is by applying an autoencoder on the original sound
signal directly. The two ends of the autoencoder are both
implemented using Seq2Tree network. For comparison we
also implemented an LSTM-LSTM autoencoder on the same
task. Our data for the speech feature extraction task comes
from the ComParE challenge.

The autoencoder is optimized with the absolute difference
loss between the decoded signal and the original speech sig-
nal:

J(θ) = − 1

N

N∑

i=1

‖siggen − sigorig‖

where N is the size of training set, and siggen and sigorig
are the generated sound signal and the original sound signal,
respectively.

Seq2Tree Network

Theoretically our tree-structured model fits multimedia sig-
nal modeling well because of its ability to emphasize local
relatedness while keeping track of global chain dependency.
However none of the existing neural network architectures is
able to deal with dynamic branching of previously unknown
depth. This motivated us to design a new neural network ar-
chitecture which could discover tree-structured dependency
relations from sequential data.

To satisfy the needs of modeling multimedia data with
non-fixed tree structure, the network architecture has to be
able to dynamically decide the depth each new state is on.
We reduce the problem of node layering to that of choos-
ing the preceding state from all the former nodes in time
sequence.

To maintain the tree-structured dependency, each new
node introduces new information that influences all the an-
cestor nodes of the new unit. Similar to the definition in tree-
structured LSTM network, we pass this update information
through the forget gates of the ancestor nodes. The transition
functions of our neural network architecture then becomes
as follows:

dt = σ(W (d)xt + U (d)hparents + b(d)),

hparent = dthparents,

cparent = dtcparents,

it = σ(W (i)xt + U (i)hparent + b(i)),

ft = σ(W (f)xt + U (f)hparent + b(f)),

ot = σ(W (o)xt + U (o)hparent + b(o)),

ut = tanh(W (u)xt + U (u)hparent + b(u)), (1)
ct = it � ut + ft � cparent,

ht = ut � tanh(ct),

Δft = σ(W (f)xt + U (f)ht + b(f)),

Δct = Δft � ct,

lt = σ(W (l)ht + U (l)hparents + b(l)),

cparents = cparents + lt �Δct,

hparents = oparents � tanh(cparents).

where d is the direction gate of Seq2Tree network, l gate
calculates the influence distribution of ht over hparents and
cpaents. i, f, o gates, c cell and the hidden state h follow the
same definition as is in the original LSTM network.

Experiments and Discussion

Arxiv Text Classification

For the text classification task we collected over 3 mil-
lion abstracts from 18 classes of papers from Arxiv with a
80%/20% split for training/test sets.

Model Precision (%) UAR (%)

LSTM 16.64 N/A
Seq2Tree 22.32 42.60

Table 1: Arxiv text classification results.

In Table 1 we list the overall precision and the Un-
weighted Average Recall (UAR) of the text classification
task on the test set. Though the precision scores of the
Seq2Tree model and the LSTM model are close, the LSTM
model produces no valid UAR score because it is not able
to discriminate texts from different classes. This proves that
our tree-structured model could better model text data than
the sequential LSTM model.

In Figure 5 we show one example parsed by our Seq2Tree
model. In the classification model we included only phrase-
level attention which, according to our analysis, is not able to
advise the network in learning sentence-level features. The
wrongly-ordered words, on the other hand, should be caused
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Figure 5: An example of the tree-structured model built by
Seq2Tree network. Green nodes are correctly layered, while
the red ones show incorrectly or inversely located nodes. The
yellow nodes are misplaced, but the dependency relations
are maintained.

by the lack of strong enough boundaries in parent node se-
lection when inserting new nodes.

Music Generation

In the music generation task we evaluate the music generated
by GAN with Seq2Tree network and LSTM network as gen-
erator, respectively. The initial point of the generation is ran-
domized and the seed vector is extracted from the last hidden
layer of a music composer classifier which performs 96.86%
accuracy in our 10-class composer-based music classifica-
tion task. The two GAN’s share the same LSTM-based dis-
criminator network. The real data we use in this experiment
comes from 50 Bach-composed musics and we limited the
lengths of these musics to be 500.

Model Precision (%)

LSTM-GAN 54
Seq2Tree-GAN 72

Table 2: Evaluation results of generated music signals using
a pre-trained composer-based music classification model.

We tested a composer-based music signal classifier on the
generated musics. The generation result is tagged as good
if the prediction result is Bach. As is mentioned earlier in
this paper, our classifier claims a 96.86% overall accuracy
on the music composer classification task. The classification
results are listed in Table 2. Though the experiment is not a
formal metric to evaluate music generation models, the bet-
ter results our Seq2Tree-GAN got reveals the higher ability
of the Seq2Tree model to represent music signal flows.

Speech Feature Extraction

Our data for the speech feature extraction experiment comes
from the Addressee data in the ComParE challenge. As pre-
processing we do MFCC over the audio files and pad them
all to length 100. We examine the performance of our au-
toencoders by training an audio classifier with the output of
the autoencoders.

Model Precision (%) UAR (%)

Original 14.16 N/A
Seq2Seq Autoencoder 18.44 N/A
Seq2Tree Autoencoder 22.32 42.60

Table 3: Sound signal classification results.

In this experiment we are using an autoencoder as a filter
of features before classifying audio signals. In Table 3 we
list the precisions and UAR’s for all three cases, which are
sound signal only, Seq2Tree autoencoder and Seq2Seq au-
toencoder, respectively. It is clear that without feature selec-
tion the classifier does not have any ability to classify those
instances in the challenge dataset (all instances tagged with
the same label). With the help of both autoencoders the clas-
sifier is able to produce valid UAR scores, while the per-
formance of the classifier appears to be better when work-
ing with the Seq2Tree autoencoder. This is to say that the
tree-structured model generated by Seq2Tree network better
simulates the actual way the sound signals are constructed
by phoneme units.

Conclusion

In the paper we present a novel way of modeling multimedia
signals using a tree-structured model. In multimedia signals,
meanings are usually expressed by segments of units. This
makes the model theoretically more advanced than tradi-
tional sequential models especially on temporally successive
data, because it helps separate local inner-segment depen-
dencies from the chain-structured global dependency paths.
We designed experiments to prove the actual applicability of
the tree-structured models in multimedia processing tasks.
To build such models we introduce a new neural network
architecture that works specifically on segment-based data.
We call this network architecture Seq2Tree network. From
all the three sets of experimental results we can see that tree-
structured modeling of data helps improve the performance
of classification, generation and prediction tasks. This im-
plies the correctness of the tree-structured model and en-
courages us to examine deeper into the nature of temporally
successive multimedia signals. In our future work we are
going to build a Seq2Tree based dependency parser. Depen-
dency parsers have been utilized in quite a few NLP tasks
such as Relation Extraction and Event Extraction systems.
For example, (Cao, Li, and Grishman 2015) introduces de-
pendency regularizations on dependeny parsers. (Cao, Li,
and Grishman 2016) (Cao 2016) include syntactic relations
with dependency regularizations in event detection systems.
Deep neural networks have also applied in semantic rela-
tions such as Abstract Meaning Representation parsers. The
Seq2Tree structure can also be applied in AMR parsing be-
cause the AMR semantic structure is also a tree. AMR parser
is widely explored with different NLP tasks such as event
detection (Li et al. 2015) and natural language generation
(Flanigan, Dyer, and Smith 2016).
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