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Abstract 
Many organizations with an in-house information 
technology department rely on a trouble ticket system to 
track network issues. The goal of an effective trouble ticket 
system is to prioritize limited support personnel, 
responsively address each issue, and maintain user 
satisfaction. This paper presents a machine learning system 
that predicts ticket resolution time to provide users with an 
expected resolution time for their issue upon ticket 
submission. Classification and regression models were 
developed using boosted regression trees and artificial 
neural networks (ANNs). Evaluating on 12,303 trouble 
tickets, the classification model accuracy from the boosted 
regression tree was 74.5%. As a regression problem, the 
ANN model achieved the best result, with a mean absolute 
error (MAE) of 24.8 hours. 

1.0 Introduction   
Most enterprise networks use trouble ticket systems to 

resolve network outages. A trouble ticket is an e-record that 

documents outage data, actions taken, and workflow.  

During outages, users are unable to use their equipment and 

often are unaware of how long resolution will take. This 

uncertainty leads to wasting resources on work-arounds for 

short outages or insufficient planning for long outages. 

Predicting resolution time at the time of trouble ticket 

submission enables better mitigation decisions.  

We explore both classification and regression models to 

predict trouble ticket resolution time. The prediction uses 

standardized fields within trouble ticketing systems. Of the 

algorithms tested, the boosted regression tree model 

obtained the highest classification accuracy of 74.5%. A 

feed-forward ANN had the best regression performance 

with a mean absolute error (MAE) of 24.8 hours. 

2.0 Related Work 

In the early years of enterprise-level outage 

management, most automated attempts at diagnosing 
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tickets fell into the category of rule-based reasoning, or 

expert systems (Lewis and Dreo, 1993). One of the 

difficulties with analyzing trouble tickets is that most of the 

relevant information is contained in free-text fields. This 

can be resolved by 1) using only the portions of the ticket 

with categorical or numeric fields, or 2) using natural 

language processing (NLP) techniques to parse free text.  

Temprado, et al. (2008) performed classification on 

trouble ticket data to predict whether a technician was 

needed onsite and whether its severity would be escalated 

within its lifetime. In addition to set form fields, they used 

techniques such as stemmer algorithms, entity-relationship 

models, frequency recount, and stop lists to extract 

information from free-form text. The two-class 

classification predicted whether on-site technicians were 

needed with 94% accuracy and found that Bayesian 

Networks, Naïve Bayes, C4.5 Decision Trees, and 

Decision Tables all produce similar accuracy results, while 

Decision Stumps and Hyper Pipes were less accurate. 

 Symonenko, et al. (2006) analyzed tickets manually, 

with n-gram analysis and contextual mining, to identify 

characteristics of the unique sublanguage related to trouble 

tickets. They were able to categorize the parts of each ticket 

(e.g. the complaint, the job referral) with a 1.4% error rate. 

Medem, et al. (2009) created Trouble Miner, which applied 

clustering techniques to classify types of tickets to aid 

troubleshooting. Trouble Miner was able to draw several 

conclusions, including that over half of all tickets are 

maintenance-related and that most of these maintenance 

tickets concern cables and routers. 

Potharanju and Nitarotaru (2013)’s NetSieve used   NLP, 

ontology modeling, and knowledge representation 

techniques to extract data categorizations of problems, 

troubleshooting activities, and resolution actions from free 

text. Overall, NetSieve was able to achieve between 89% 

and 100% accuracy in categorization on the test dataset.  
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3.0 Data Preparation 
The data used in this study consisted of 12,303 trouble 

tickets; each ticket has 64 distinct fields. Data preparation 

removed fields that were free text or sparsely populated 

(< 10% contained data). Table 1 shows the retained fields. 

Most of the fields are categorical, with only a few 

numerical fields. Dummy variables were generated for 

categorical fields with more than two possible values, with 

one variable for each possibility which contains a 1 if that 

field contained that value, and a 0 otherwise. In total, 88 

features were used in this analysis. Table 2 presents 4 

representative tickets. Although all categories could have 

predictive value, the categorization tiers are most 

descriptive about the work conducted for the resolution.   

Table 1: List of Data Features with Example Data 

 
Assnd_Spt_Org Cat_Tier_1 Cat_Tier_2 Cat_Tier

_3 
Impact
_No 

Reported
_Src 

Svc_Type Urgency_
No 

Res_
Time 
(hrs) 

Res_
Time
_Cat 

Infrastructure 

Support 

Repair/Rest

ore 

Workstation Connectiv

ity 

4 Systems 

Mgmt 

User Svc 

Restoration 

4 358 2 

Client Service 

Center 

Create/Add Share 

Drive/SAN 

Share 

Drive 

Access 

4 Systems 

Mgmt 

User Svc 

Request 

4 24 0 

Information 

Assurance 

Provision/E

nable 

Share 

Drive/SAN 

Share 

Drive 

Access 

4 [Blank] User Svc 4 176 2 

Operations Deprovision

/Disable 

Account 

Mgmt 

User 

Account 

4 Walk In User Svc 

Request 

4 181 2 

 

A histogram of the resolution time, shown in Figure 1, 

identified resolution-time bins for classification. Notably, 

there are two large spikes; tickets tend to be resolved within 

5 hours or between 24 and 120 hours. However, a small 

percentage of tickets had resolution times greater than 120 

hours.  This observation suggested partitioning tickets into 

three resolution-time categories: less than 24 hours, 

between 24-120 hours, and over 120 hours. Successfully 

classifying tickets into these categories provides the user 

with a sufficient granularity about their ticket resolution 

time, since it matches up closely with human work 

timelines (same day, work week, next week).  

4.0 Methodology 
This work evaluated several classification and regression 

models to predict trouble ticket resolution time. Although 

the use of artificial neural networks has not been conducted 

in this domain, its effectiveness in other domains prompted 

its exploration. 

4.1 Classification 
Several machine learning techniques were used to solve the 

3-class problem: logistic regression, linear discriminant 

analysis (LDA) (James, et al., 2013), boosted regression 

trees (Elith, et al., 2008), and ANNs (Goodfellow, Bengio, 

and Courville, 2016). Five-fold cross-validation was 

conducted for all methods, both for testing and selecting 

hyperparameters. For logistic regression and linear 

discriminate analysis (LDA), no hyperparameter 

optimization was conducted. For regression trees, 

optimization was conducted to find the best maximum 

depth and learning rate using the combinations of the 

following values: Max Depth = [1,2,3,4,5], Learning Rate 

= [0.01,0.05,0.1,0.2].  

Figure 2 shows the core architecture of all ANNs used. 

Since the data has no particular topological structure or 

sequencing and truth values are known for outputs, a fully 

connected feed-forward network was used (Goodfellow, 

Bengio, and Courville, 2016). A rectified linear unit 

(ReLU) activation function was used in the hidden layers, 

which fed into a 3-node output layer with a Softmax 

activation function. The Adam optimization function was 

always used with a cyclic learning rate—although the base 

learning rate was a tested hyperparameter, the max learning 

rate was always equal to five times the base. Dropout was 

conducted between hidden layers, using the dropout rates 

indicated in Table 3. 

 

 

Field Name Example Data Unique 
Values 

Assnd_Spt_Org Infrastructure Support, Client Service 

Center 

28 

Cat_Tier_1 Repair/Restore, Request, Move/Change 8 

Cat_Tier_2 Workstation, Network/Infrastructure, 

Messaging 

13 

Cat_Tier_3 Connectivity, Hardware/Appliance, User 

Account 

29 

Impact_Number 1,2,3,4,5 3 

Reported_Source Walk In, Email, Direct Input 9 

Service_Type Service Restoration, Infrastructure Event 4 

Urgency_Number 1,2,3,4,5 4 

Res_Time 326.76,299.62 5790 

Res_Time_Cat 0,1,2 3 

Table 2: Example Ticket Data 

Figure 1: Histogram of Data Resolution Time Frequency 
with 3-Classification Bins and Percentage of Tickets in 

Each Bin 

<24 hrs 
49.5% 

24-120 hrs 
48.9% 

>120 hrs 
1.62% 

Figure 2: Architecture Diagram for Regression 
and Classification ANNs. 
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In addition to the ANN characteristics above, there were 

several other hyperparameters that could take on multiple 

values, which led to the testing of many combinations of 

hyperparameter values: hidden layer width and depth, 

learning rate, and dropout. Table 3 shows a list of these 

hyperparameters. In the validation phase, ANNs for 

regression and classification were created for all possible 

hyperparameter combinations, and a 5-fold cross-

validation was used to determine the best performing 

ANNs. The best performing ANN for each fold was then 

given test data. 

 
Hyperparameters Values 

Base Learning Rate 0.001, 0.0001 

Hidden Layers 2,3 

Nodes per Hidden Layer 8,10,12 

Dropout Level 0.0,0.1,0.2 

4.2 Regression 
Linear regression, lasso regression (Tibshirani, 2007), 

boosted regression trees, and ANNs were used. Parameters 

for each technique were tuned to produce the lowest MAE 

value for comparison to capture the totality of prediction 

error for each ticket. Again, 5-fold cross-validation was 

used on all models. The lasso weight penalty 

hyperparameter (alpha) was selected from the following 

range: α = [0.00001,0.0001,0.001,0.01,0.1,1,10]. 

Regression tree boosting was conducted across all 

combinations of the following values of max depth and 

learning rate: Max Depth = [1,2,3,4,5], Learning Rate = 

[0.01,0.05,0.1,0.2].  The process used for regression ANNs 

was identical to that for classification, with the exception 

of the output layer. As seen in Figure 2, the core ANN 

architecture, the output layer consists of one node with a 

ReLU activation function. Correspondingly, the 

hyperparameter values tested for classification can be 

found in Table 3. 

5.0 Results 
The primary measure of models will be test set accuracy 

for the 3-classification ANN and MAE for the regression 

ANN. However, with uneven distribution of data, a raw 

accuracy score is misleading. Cohen’s Kappa statistic will 

be calculated to better contextualize the performance of the 

classification models given the data distribution. 

5.1 Classification 

Table 4 presents the 3-class classification results for the 

four algorithms. Logistic regression and LDA achieved test 

set accuracies of 72.7% and 71.3%, respectively. The 

boosted regression tree classified the data most effectively, 

with an accuracy of 74.5%. The ANN also performed well, 

yielding an average accuracy of 73.9%.  

Cohen’s kappa analysis was conducted on both the 

classification ANN and the boosted regression tree model. 

The expected accuracy was 48.9% for the ANN and 48.7% 

for the regression tree. With observed accuracies of 73.9% 

and 74.5%, respectively, this results in kappa values of 

0.489 and 0.503 for the ANN and regression tree. Although 

there are no standard interpretations of kappa values, 

values between 0.4 and 0.6 indicate moderate agreement 

(Landis and Koch, 1977) and that values between 0.4 and 

0.75 represent “fair to good agreement beyond chance” 

(Fleiss, 2003). 
Table 5 presents a confusion matrix of the ANN to better 

understand the sort of classification these models are 

performing, and the errors that they made. The confusion 

matrix highlights the model’s tendency to predict many 

tickets between 24 and 120 hours, which makes it identify 

these tickets with an accuracy of 85.7%. However, this also 

leads to poor accuracy on shorter and longer tickets; tickets 

which were resolved in less than 24 hours were only 

correctly identified 64.2% of the time, and tickets longer 

than 120 hours were only identified 11.1% of the time. 

 

5.2 Regression 
The test MAE for all three models are shown in Table 6. 

The linear regression model performed poorly, with a 

MAE of 1.30 x 1012 hours, indicating that a linear model is 

insufficient for this data, possible due to the prevalence of 

dummy variables and irrelevant features. When optimizing 

lasso regression, an α of 0.00001 was found to be the best 

fit on the validation data. This value corresponds to a 

severe reduction of the features, which supports the poor 

linear regression results. The lasso model achieved a MAE 

of 38.97 hours on the test data, falling short of the 24-hour 

objective, but verges on usable, as an average of 39 hours 

Technique Accuracy 
Logistic Regression 72.7% 

LDA 71.3% 

Boosted Regression Trees 74.5% 
ANN 73.9% 

 Predicted Label (hours) 

<24 24-120 >120 

True 

Label 

(hours) 

<24 0.642 0.353 0.005 

24-120 0.139 0.857 0.003 

>120 0.567 0.322 0.111 

Table 3: ANN hyperparameter values tested 

Table 5: Confusion matrix of the classification 
ANN’s performance on test data  

Table 4: 3-Class Classification Accuracy Results 
for All Techniques 
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away from the actual resolution time between one and two 

working days.  

The boosted regression tree model was found to be 

optimal at a max depth of 4 and a learning rate of 0.05. This 

model achieves a MAE of 37.86 hours on the test data, 

making it just better than the lasso model, but still not 

within the objective range of 24 hours. Finally, the ANN 

approach proved to be superior, producing a MAE of 24.78 

hours on test data, almost achieving the goal of 24 hours. 

Although some tickets took over 300 hours to be resolved, 

the ANN never predicted a resolution time of over 150 

hours—performance is poor on very high values, although 

they are uncommon. Further, when the actual resolution 

time is close to 0 there are many misclassifications where 

the model predicts between 60 and 100 hours. However, a 

large proportion of points occur between 24 and 120 hours, 

and most of them are classified somewhere in that range. 

 
Technique MAE (hrs) 

Linear Regression 1.3  1012 

Lasso Regression 38.97 

Boosted Regression Trees 37.86 

ANN 24.78 

5.3 Feature Importance 
Regression trees and lasso regression models both provide 

a list of the importance of all feature values. Table 7 lists 

the top 5 most important features for each model. None of 

the top 10 features from each technique overlap. The lack 

of feature correspondence across models indicates that 

very few individual features have a high degree of 

correlation with the underlying phenomenon. 

 
Feature Lasso 

Importance 
Rank 

Regression 
Tree 

Importance 
Rank 

Average 
Importance 

Rank 

Assigned_Support_Org: GSU- 13 3 8 

Assigned_Support_Org: West  12 5 8.5 

Assigned_Support_Org: 

Network Operations 

19 1 10 

Reported_Source: System 

Management 

8 14 11 

Reported_Source: Direct Input 2 25 13.5 

Assigned_Support_Org: GSU- 21 9 15 

Assigned_Support_Org: 

Cable/Antenna Systems 

26 4 15 

Assigned_Support_Org: A6 18 13 15.5 

Cat_Tier_3: Computer Account 29 2 15.5 

Reported_Source: Phone 6 31 18.5 

6.0 Conclusions and Future Work 
Accurate prediction of trouble ticket resolution time 

enables organizations to make better decisions when an 

issue occurs. We explored classification and regression 

models to predict resolution times. For classification, the 

best models achieved accuracy up to 74.5%. In the case of 

regression, the ANN achieved the lowest MAE of 24.8 

hours. This improvement suggests the possibility of 

deploying a model to the network that proactively 

estimates user outage duration. 

This work shows that for some trouble ticket systems 

analysis can be conducted with only fixed fields, without 

requiring free text. Future work includes gathering data 

from other networks to examine generalizability and find 

utility in the tickets’ data fields to integrate free text 

analysis to improve upon current results or in instances 

where standardized fields are unavailable.  
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