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Abstract

Plants have become an important source of energy, and
are a fundamental piece in the puzzle to solve the prob-
lem of global warming. However, plant diseases are
threatening the livelihood of this important source. Con-
volutional neural networks (CNN) have demonstrated
great performance (beating that of humans) in object
recognition and image classification problems. This pa-
per describes the feasibility of CNN for plant disease
classification for leaf images taken under the natural en-
vironment. The model is designed based on the LeNet
architecture to perform the soybean plant disease clas-
sification. 12,673 samples containing leaf images of
four classes, including the healthy leaf images, were
obtained from the PlantVillage database. The images
were taken under uncontrolled environment. The imple-
mented model achieves 99.32% classification accuracy
which show clearly that CNN can extract important fea-
tures and classify plant diseases from images taken in
the natural environment.

Introduction

Agriculture has become much more than simply a means to
feed ever growing populations. However, plant diseases are
threatening the livelihood of this important source. Plant dis-
eases cause major production and economic losses in agri-
culture and forestry. For example, soybean rust (a fungal dis-
ease in soybeans) has caused a significant economic loss and
just by removing 20% of the infection, the farmers may ben-
efit with an approximately 11 million-dollar profit (Sankaran
et al. 2010). Therefore, early detection and identification of
plant diseases plays the utmost important role to take timely
measures.

There are several ways to detect plant pathologies. Some
diseases do not have any visible symptoms associated, or
those appear only when it is too late to act. In these cases,
it is necessary to perform sophisticated analysis, usually by
means of powerful microscopes. In some cases, the signs can
only be detected in parts of the electromagnetic spectrum
that are not visible to humans (Barbedo 2013).

Most diseases, however, generate some kind of manifes-
tation in the visible spectrum. The diseases may exhibit
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symptoms on different parts of the plant, i.e. leaves, stem,
fruits/seeds etc. This research focuses on detection and clas-
sification of soybean plant diseases based on the symptoms
of the diseases that show signs on the leaves of the plant. In
most cases, the diagnosis, or at least a first guess about the
disease, is performed visually by humans (Barbedo 2013).
Trained experts may be efficient in recognizing the disease.
Unfortunately, most of the time there are no experts in the
area to give a data based analysis and advise to the farm-
ers. Therefore; looking for a fast, automatic, less expensive
and accurate method to detect plant diseases is of great im-
portance. Since the late 1970s, computer-based image pro-
cessing technology applied in the agricultural engineering
research has become a common practice (Al Bashish, Braik,
and Bani-Ahmad 2011).

Machine learning methods, such as artificial neural net-
works (ANNs), Decision Trees, K-means, k nearest neigh-
bors, and Support Vector Machines (SVMs) have been ap-
plied in agricultural research (Rumpf et al. 2010). The tradi-
tional approach for image classification tasks has been based
on hand-engineered features such as SIFT (Lowe 2004),
HoG (Dalal and Triggs 2005), SURF (Bay et al. 2008), etc.,
and then to use some form of learning algorithm in these
feature spaces. This led to the performance of all these ap-
proaches depending heavily on the underlying predefined
features (Atabay 2016b). However, a recent trend in ma-
chine learning has demonstrated that learned representations
are more effective and efficient. The main advantage of rep-
resentation learning is that algorithms automatically analyze
large collections of images and identify features that can cat-
egorize images with minimum error (Reyes, Caicedo, and
Camargo 2015).

Recently convolutional neural networks(CNN) have been
used for object recognition and image classification(Atabay
2016b; Reyes, Caicedo, and Camargo 2015; Hanson, Joy,
and Francis 2017; Mohanty, Hughes, and Salathé 2016). A
convolutional neural network is a type of deep neural net-
work (DNN) inspired by the human visual system, used for
processing images. Various CNN architectures were pro-
posed to be used for object recognition. Among them LeNet
(LeCun et al. 1998) and AlexNet (Krizhevsky, Sutskever,
and Hinton 2012) have been considered as a baseline for
various tasks (Atabay 2016a).

In this paper, the feasibility of CNN to classify plant dis-
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eases from leaf images taken under uncontrolled environ-
ment has been studied. The models are designed based on
the LeNet architecture. The dataset for training is down-
loaded from PlantVillage (Hughes, Salathé, and others 2015)
database. Since CNN requires large amount of data, data
augmentation is used to increase the training data.

The paper is organized as follows; part II deals with the
previous works conducted in the similar area. Part III de-
scribes the steps and the materials used to perform the ex-
periment. The results obtain is presented in part IV and it
concludes by recommending methods for future improve-
ment.

Literature Review

In this section the recent trends in using CNN and deep
learning architectures in agricultural application are dis-
cussed. Prior to the advent of deep learning, image pro-
cessing and machine learning techniques have been used
to classify different plant diseases (Barbedo 2013; Pydi-
pati, Burks, and Lee 2005; Camargo and Smith 2009b;
2009a). Generally, most of these systems follow the follow-
ing steps:

First digital images are acquired using digital camera.
Then image processing techniques, such as image enhance-
ment, segmentation, color space conversion and filtering, are
applied to make the images suitable for the next steps. Then
important features are extracted from the image and used as
an input for the classifier (Al-Hiary et al. 2011).

The overall classification accuracy is therefore dependent
on the type of image processing and feature extraction tech-
niques used. However, latest studies have shown that state of
the art performance can be achieved with networks trained
using generic data.

CNNs are multi-layer supervised networks which can
learn features automatically from datasets. For the last few
years, CNNs have achieved state-of-the-art performance in
almost all important classification tasks. It can perform both
feature extraction and classification under the same architec-
ture (Atabay 2016b).

A CNN is a special kind of neural networks that has been
widely applied to a variety of pattern recognition problems,
such as computer vision, speech recognition, etc. The CNN
is based on the human visual system; first inspired by (Hubel
and Wiesel 1962) and continually implemented by many re-
searchers. CNNs combine three architectural ideas to ensure
some degree of shift, scale, and distortion invariance: local
receptive fields, shared weights and spatial or temporal sub-
sampling (LeCun et al. 1998). Various CNN architectures
were proposed to be used for object recognition eg. LeNet,
AlexNet, GoogLeNet etc.

The LeNet architecture is the first CNN introduced by
LeCun et al. to recognize hand written digits (LeCun et al.
1998). It consists of two convolutional layers and two sub-
sampling layers followed by a fully connected MLP.

Few researchers proposed the use of CNN for leaf
recognition and plant disease classification. Atabay (Atabay
2016b) designed a convolutional neural network architec-
ture to identify plants based on leaf images. The proposed

architecture consists five layers. After each convolutional
layer a Rectified Linear Unit (ReLU) or Exponential Linear
Unit (ELU) activation function is used and for each pool-
ing layer, MaxPooling approach is applied. The proposed
system is applied on Flavia (Wu et al. 2007) and Swedish
(Söderkvist 2001) leaf datasets containing 32 plant species
with 1907 samples and 15 species with 1125 samples re-
spectively. The images in the dataset are pictures of a single
leaf taken at uniform background. All the input images are
160x160 pixel grayscale images. The model achieved a clas-
sification accuracy of 97.24% and 99.11% accuracy for each
dataset. The results showed that the proposed architecture
for CNN-based leaf classification is closely competing with
the latest extensive approaches on devising leaf features and
classifiers.

Angie K. Reyes et al. (Reyes, Caicedo, and Camargo
2015), used a deep learning approach in which the com-
plete system was learned without hand-engineered compo-
nents. The designed system has 5 Conv layers followed by
2 fully connected layers. The CNN is trained using 1.8 mil-
lion images from ILSVRC 2012 dataset 1 and used a fine-
tuning strategy to transfer learned recognition capabilities
from general domains to the specific challenge of Plant Iden-
tification task. The dataset is combination of images of a
plant or part of a plant taken both under a controlled environ-
ment as well as in the natural environment. They obtained an
average precision of 0.486.

Sharada P. Mohanty et al. (Mohanty, Hughes, and
Salathé 2016), used the existing deep CNN architectures,
i.e AlexNet (Krizhevsky, Sutskever, and Hinton 2012) and
GoogLeNet (Szegedy et al. 2015) to classify plant diseases.
Using a public dataset of 54,306 images of diseased and
healthy plant leaves collected under controlled conditions,
the CNN was trained to identify 14 crop species and 26 dis-
eases (or absence thereof). The models achieved 99.35% ac-
curacy. When tested on a set of images taken at a different
environment than the images used for the training, however,
the model’s accuracy dropped to 31.4%. Overall the result
demonstrates the feasibility of deep CNN for plant disease
classification.

Materials and Methods

To classify soybean plant diseases a large collection of the
plant’s leaf images is required. The images are downloaded
from the PlantVillage database 2. In this section the method-
ology followed is discussed in detail.

Dataset

Proper and large dataset is required for all classification re-
search during the training and the testing phase. The dataset
for the experiment is downloaded from the PlantVillage
database which contains different plant leaf images and their
labels. It contains a collection of images taken at differ-
ent environment. A dataset containing 12,673 leaf images
of four classes including healthy leaves is downloaded. The
samples per class of the dataset is summarized in Table 1.

1http://www.image-net.org/challenges/LSVRC/2012/
2https://plantvillage.org
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No. Type of Disease Number

1 Healthy Leaf 6234
2 Septorial leaf blight 3565
3 Frogeye leaf spot 2023
4 Downy Mildew 851

Total 12673

Table 1: Dataset used for the classification

Figure 1: Sample images from the database a) healthy leaf
image taken under a constant background b) healthy leaf im-
age taken under uncontrolled environment [c-e] leaf images
from a plant affected by: c) septorial leaf blight d) frogeye
leaf spot e) downy mildew

Figure 2: Sample segmented images resized to 64x64 pixels
a) healthy leaf image taken under a constant background b)
healthy leaf image taken in uncontrolled environment [c-e]
leaf images from a plant affected by: c) septorial leaf blight
d) frogeye leaf spot e) downy mildew

Few samples from the database are shown in figure 1. To
prepare the dataset for the training, the images originally at
different resolution are re-sized to 128x128 pixels.

Since the images were taken in the uncontrolled environ-
ment the different lighting condition and background in the
training images may bias the neural network. To test this, the
experiment was also performed using the grayscale and the
segmented version of the database. Sample images of the
gray and segmented leaf images are shown in figure 2 and
figure 3 respectively.

Figure 3: Sample grayscale images size 128x128 pixels a)
healthy leaf image taken under a constant background b)
healthy leaf image taken in uncontrolled environment [c-e]
leaf images from a plant affected by: c) septorial leaf blight
d) frogeye leaf spot e) downy mildew

Layer Type Filter Size Stride Output size

L1
Conv 3x3 1 128x128x32
Pool 2x2 2 64x64x32

L2
Conv 4x4 1 61x61x64
Pool 2x2 2 64x64x32

L3
Conv 1x1 1 30x30x128
Pool 2x2 2 15x15x128

Table 2: Architecture of the proposed model

The proposed CNN model

CNN architectures vary with the type of the problem at hand.
The proposed model consists of three convolutional lay-
ers each followed by a maxpooling layer. The final layer is
fully connected MLP. ReLu activation function is applied to
the output of every convolutional layer and fully connected
layer.

The first convolutional layer filters the input image with
32 kernels of size 3x3. After maxpooling is applied, the out-
put is given as an input for the second convolutional layer
with 64 kernels of size 4x4. The last convolutional layer
has 128 kernels of size 1x1 followed by a fully connected
layer of 512 neurons. The output of this layer is given to
softmax function which produces a probability distribution
of the four output classes. The architecture of the proposed
model is shown in Table 2.

The model is trained using adaptive moment estimation
(Adam) with batch size of 100 for 1000 epochs.

Experimental Results

The dataset is divided 70% for the training, 10% for vali-
dation and 20% for testing. Different models with different
architectures and learning rate are tested. The parameters of
the network like the kernel size, filter size, learning param-
eter were selected by trial and error. ReLu activation func-
tion is used since researches have shown that ReLU result
in faster training (Krizhevsky, Sutskever, and Hinton 2012).
The result obtained is shown in Table 3 below.
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Architecture Validation
accuracy

Test ac-
curacy

Grayscale

[3X3, 4X4] 77.60% 78.74%
[5X5,5X5] 70.20% 70.07%
[3X3, 4X4] 77.20% 78.67%
[3X3, 2X2] 77.60% 77.87%

Color

[3X3,4X4, 1X1] 89.30% 88.20%
[3X3,2X2,2X2] 89.50% 86.90%
[3X3,4X4,3X3] 89.90% 88.00%

[3X3,4X4] 88.00% 85.50%
[3X3,2X2] 87.30% 85.30%

Segmented
[5X5, 3X3] 87.40% 86.00%
[3X3,4X4] 87.60% 85.90%
[3X3,2X2] 87.00% 85.50%

Table 3: Classification result from different models

Figure 4: Training vs validation accuracy of the base model

As we can see from the result, the classification accu-
racy from the color images is better than the gray scale and
the segmented images. This shows the color feature is im-
portant to extract important features for classification. The
model that provides good classification accuracy contains
three convolutional layers each followed by max pooling
layer. ReLu activation function is used for each layer. We
used this model as a base model for further improvements.

The graphs of the training accuracy versus validation ac-
curacy of the model is shown in figure 4. It can be seen from
the graphs that the model is overfitting. Overfitting happens
when the model fits too well to the training set. It then be-
comes difficult for the model to generalize to new examples
that were not in the training set.

Several techniques have been developed to overcome
overfitting, such as data augmentation, introducing weight
penalties of various kinds such as L1 and L2 regularization
and dropout (Srivastava et al. 2014).

Experiments were conducted to see the effect of each
technique on the performance of the model. Since the dataset
is too small when compared to the total number of trainable
parameters of the model, the first experiment we did is to
increase the training data by rotating, flipping, re-scaling of
the images. The data augmentation is performed only on the
training data. The result obtained when using data augmen-
tation is shown in figure 5.

The result shows that data augmentation alone solves
overfitting significantly. It also increases the validation ac-

Figure 5: Training vs validation accuracy of the models.

Model Validation
accuracy

Test ac-
curacy

Base model with aug. and
dropout

99.21% 99.32%

Base model with aug. and
L2 regularization

98.62% 98.73%

Table 4: Effect of dropout and regularization

Precision Recall f1-score Support

Healthy 1.0 1.0 1.0 1228
Septorial 0.99 1.0 1.0 718
Frogeye 0.99 0.97 0.98 407

Downy Mildw 0.98 1.0 0.99 182
Avg/total 0.99 0.99 0.99 2535

Table 5: Performance metrics of the best model

curacy to 98.82%. This explains the original dataset was so
small compared to the total number of trainable parameters
of the model. Dropout and L2 regularization is also per-
formed and the result is summarized in Table 4 below. Both
models showed a slight improvement over the performance
of the model.

Therefore, adding a dropout layer after the MLP with a
probability of 0.5 results in a good classification accuracy.
The classification metrics of the proposed model is summa-
rized in Table 5.

Figure 6b shows the visualization of the filters in the first
activation layer in response to the image in figure 6a during
the forward pass. It can be seen from the figure that the net-
work has detected the diseased symptoms on the leaf. The
visualization of some of filters in first, second and third ac-
tivation layers is shown in figure 7.

Conclusions

In this study convolutional neural network is used to de-
tect and classify soybean plant diseases. The Network is
trained using the images taken in the natural environment
and achieved 99.32% classification ability. This shows the
ability of CNN to extract important features in the natural
environment which is required for plant disease classifica-
tion. As far as our knowledge this is the first attempt which
used the images taken in the wild environment and achieved
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Figure 6: Visualization of feature maps in the first activation
layer a) sample image b) feature maps of the first activation
layer

Figure 7: Visualization of activated filters in the three acti-
vation layers

remarkable performance. The experiments also show that
applying data augmentation on the training set improves the
performance of the network when the dataset is very small.
The effect of dropout and regularization to overcome over-
fitting also validated.

The data sample used in this work is unbalanced, i.e
49.19% of the data is of class 1, 28.13% class 2, 15.96%
class 3 and 6.72% class 4. For future work, deep learning
methods to solve sample imbalance will be implemented
(Huang et al. 2016). (Yin et al. 2017) suggested the use
of batch normalization to speed up the training process and
boost accuracy, therefore we will also investigate batch nor-
malization in the future.
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ing deep learning for image-based plant disease detection.
Frontiers in plant science 7.
Pydipati, R.; Burks, T.; and Lee, W. 2005. Statistical and
neural network classifiers for citrus disease detection us-
ing machine vision. Transactions of the ASAE 48(5):2007–
2014.
Reyes, A. K.; Caicedo, J. C.; and Camargo, J. E. 2015. Fine-
tuning deep convolutional networks for plant recognition. In
CLEF (Working Notes).

150



Rumpf, T.; Mahlein, A.-K.; Steiner, U.; Oerke, E.-C.;
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