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Abstract

We describe a modular system able to track players and
ball rebound locations during a tennis match in real
time, using a single, fixed medium resolution camera.
The main challenge consists in obtaining a set of effi-
cient detectors for use with low-cost equipment to per-
form object and event tracking in a tennis match. Each
algorithm is described and system accuracy and module
execution times are evaluated.

Introduction

Match analysis is an important means for tennis players
to improve their skills, whether they play professionally or
recreationally. Analytics can be performed during the match,
such as correct posture, ball rebound (bounce) location or
mobility, or after the match has finished via statistical player
data. In the case of professional matches, where referees are
in charge of observing the game, conflicts may occur due
to differences of opinion on rebound locations (in or out),
while amateur matches may not be refereed at all. To address
these issues, computer vision systems have been developed
to perform tracking, conflict resolution and match analysis.
During a typical tennis match, the ball is shot – sometimes
at velocities exceeding 200km/h – by each of the players
onto their opponent’s court. Solo training matches are also
common, where players attempt to improve their skills on
particular zones of the court. The main functionality of a
tracking system is to detect the ball and its trajectory as well
as the players from video input. In order to evaluate line
calls or to provide feedback on the zone that was hit, such
a system is also required to estimate the coordinates of the
tennis court in the video. While complex systems exist for
automatic tracking and analysis in high-end tennis champi-
onships, we focus on solving this problem with inexpensive
equipment that is easily accessible for amateur and recre-
ational players. Hardware costs, execution speed and easy
calibration are important. Raspberry Pi boards and associ-
ated camera modules are low cost hardware widely avail-
able and easy to use, which we use for video capture in our
approach.
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Related Work

There are several systems that are already out on the mar-
ket that resemble the one we describe in this work. While
the topic of tennis match analysis has long been of inter-
est (Pingali, Jean, and Carlbom 1998; Pingali, Opalach, and
Jean 2000), one of the most notable systems that is in di-
rect relation with our work is Hawk-Eye (Owens, Harris,
and Stennett 2003) – a complex computer system that is
officially used in numerous sports including tennis, in or-
der to visually track the trajectory of the ball, perform line
calls and display a record of its statistically most likely
path in virtual reality reconstructions. Hawk-Eye uses an
ensemble of up to ten high-speed cameras placed at vari-
ous locations around the tennis court which require careful
calibration. The costs of installing this system (rough esti-
mate of more than 60.000 USD) are far beyond the mate-
rial capabilities of medium or lower ranked tennis cham-
pionships. Since, a number of approaches have been pro-
posed to solve the challenges posed by tracking players and
tennis balls. Ball tracking was discussed in terms of both
single lower resolution camera (Yan, Christmas, and Kittler
2005) and multiple cameras (Conaire et al. 2009; Renò et
al. 2016), most of which perform background subtraction to
limit the computational costs of the system (Mao, Mould,
and Subramanian 2007). A particularly useful strategy is to
compute the trajectory over a time window of possible ball
candidates (Zhou et al. 2015). Player tracking is achieved
in a similar way to ball detection, using only regions of
the video stream that change and therefore contain mo-
tion (Teachabarikiti, Chalidabhongse, and Thammano 2010;
Archana and Geetha 2015), but color-based segmentation
has also been proposed (Jiang et al. 2009). Other commer-
cial analysis tools for tennis games exist such as Mojjo
(Mojjo 2017), allowing club members to analyze and re-
play the matches they have played on a specially prepared
field (using landmarks). This application is able to perform
the ball detection, remove breaks during the game to cre-
ate a montage of important moments and to prepare relevant
game statistics. Being much less expensive than Hawk-Eye
(∼3000 USD), this system targets small clubs but can still be
considered expensive for recreational amateur games. Mojjo
does not offer real time feedback, the game is recorded and
post-processed to create the final annotated video for use by
the players. Another system called In/Out (In/Out 2018) of-
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fers an affordable solution (∼200 USD) for real time match
analysis to amateur players. It consists in a custom built de-
vice with two cameras which can be fastened to a tennis net
post and is designed for line calls. Its custom hardware and
closed source and is difficult to reproduce with widely avail-
able components. In/Out uses computer vision models used
in self-driving cars to provide line and pedestrian detection,
however its error margin is much larger than Hawk-Eye’s.

Hardware and Image Correction

The camera used in our system is a 5 megapixel sensor for
Raspberry Pi I equipped with a 170◦ angle fisheye lens. The
price for this particular camera is currently around 30 USD.
The fisheye lens is important as it allows the entire court to
be in sight, but requires additional system resources to cor-
rect for radial and tangential distortions and project detec-
tions on a 2D “map” of the match. Due to radial distortion,
straight lines will appear curved and the distortion will in-
crease proportionally to the distance from the focal point in
the image. This poses difficulties for the line detection used
to recognize the tennis court. The second type of distortion
is the tangential distortion which occurs because of the cur-
vature of the lens; this has the effect that some areas in image
may appear nearer than expected. To correct this distortion,
the lens’ distortion coefficients must be estimated as well as
taken into account technical information about the camera,
such as its intrinsic and extrinsic parameters. Intrinsic pa-
rameters include information directly related to the camera
model such as focal length, optical centers, etc. – this is also
called the camera matrix. It depends on the camera only, so
once calculated, it can be stored for future purposes. It is ex-
pressed as a 3x3 matrix. Extrinsic parameters correspond to
rotation and translation vectors which transform the coordi-
nates of a 3D point to a coordinate system. The correction
of these distortions is done by providing samples of a well
defined pattern; in our case, we used a chessboard pattern.
By measuring known sized squares of the chessboard in an
input image we can compute its distortion coefficients and
therefore correct this distortion for any given point or the
entire image.

Real Time Tracking

The main constraint that we impose on our approach is that
it should run in real-time on low-cost equipment i.e., acces-
sible video capture hardware and a machine with average
computing resources. The system is composed of several
specialized modules that perform certain tasks. Each mod-
ule may require input and provide output structured data.
For instance, ball detection requires that the video frame is
captured and is able to provide the estimated ball location
as well as bounces. An application of the system consists
in the choice of a list of compatible modules which com-
municate between them via data messages. In the following
we describe the main modules (Figure 1) that constitute the
proposed system (Figure 2).

Figure 1: Output of main detection modules: (a) court detec-
tion, (b) player detection and (c) ball detection.

Court Detection

Due to the fact that court detection is only needed to cal-
ibrate the system and is done only once provided that the
camera stands still (as is our case), the system can afford to
spend more processing resources on this task. The module
first computes a color-based segmentation of the input im-
age, to extract the court region, assuming it is the largest ob-
ject in the scene. This limits the search space and eliminates
outliers. Then, color is used again to compute a segmenta-
tion of the lines under the assumption that line color is white,
which is the case for all standard tennis courts; this could be
changed for a custom designed court. After segmentation,
we apply blur, edge detection (Canny 1986) and dilation to
remove outliers and obtain smooth lines. We then use Hough
transform line detection to obtain a collection of local ap-
proximations of the field (Figure 1.a). Finally, we use the de-
tections to find corners on the field, which we later map to a
2D representation via a perspective transformation. A more
detailed description of the perspective transform is given in
subsection “2D and 3D Visualization”. This approach to de-
tecting the tennis court is particularly slow, as we show in the
“Evaluation” section, but provides a robust approach to cor-
rect localization given various possible camera placements
(i.e., different orientations of the court in the video stream).
Court detection is used to calibrate the system and is only
performed once at startup, or in the event that the camera is
moved (in our setup we used a fixed camera), and therefore
does not have an impact on the overall execution speed of
the system.

Player Tracking

The player detection module uses motion-based background
subtraction to find the most likely locations of each player in
the game on which it performs tracking. For our purposes,
we considered the case of 1-vs-1 matches, i.e., one player
in each half of the field, although the approach can be ex-
tended to 2-vs-2 games. First, contours are computed on the
image resulting from motion segmentation. Assuming play-
ers are the largest moving objects, the module selects the
first largest blobs, depending on the number of players. The
center of the bounding rectangles of these regions provides
the location information for each player. To distinguish be-
tween players and local noise caused by changes in light-
ing, tracking is obtained by apply a Kalman filter on each of
the frame-wise detections (Joshi and Thakore 2012). Having
more than one player introduces a correspondence problem
between each detection (largest blobs) and the approximated
player positions (Kalman filter models). The module solves
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Figure 2: Overall system architecture, featuring task-specific modules and message passing between them. From online video
stream (pipe) or offline files, each detection is combined into the final output for display, further analysis or saving to a log file.

this problem using a nearest-neighbor approach where new
detections are associated with the nearest modeled player
instance. The result of this approach is illustrated in Fig-
ure 1.b. While this method has low computational costs (see
“Evaluation” section), there are situations in which it does
not give accurate results due to lack of player motion while
changing lighting conditions. The module alleviates this is-
sue to some extent by using a speed limit for player location
estimations so that random noise is less likely to influence
predictions and, in the case of nearby noise, the tracker is
able to recover more quickly.

Ball Tracking

Ball detection consists in a series of transformations applied
to a sequence of motion frames. As each motion frame rep-
resents the relative motion from a given frame to the next, we
merge all motion within a time window to obtain the trace of
the ball by taking the maximum at each pixel of the frame.
This is similar to flattening the axis of time over a short inter-
val (we found 10 frames or 1/3 seconds given a 30fps video
to be sufficient) which results in all motion being visible in
a single frame. The following step involves reducing the cu-
mulative noise caused by merging the motion frames. Mo-
tion outliers often occur due to slight changes in luminosity,
but are usually sparse. Under the assumption that true mo-
tion is consistent in time, we expect that actual noise to occur
but remain sparse, while real motion remain structured. To
reduce noise, we apply erosion to eliminate sparse outliers
and then dilation (Joshi and Thakore 2012) to recover and
enhance motion traces that are likely to correspond to real
movement in the video. To avoid more outliers coming from
outside the field, based on results from the Court Detection
module we can limit the search space to the area containing
the tennis court. This reduces both computation time and
false positives from spectators or light conditions. Next, we
reduce the data to be processed from 2D to 1D by retaining
only columns in the motion frame that contain a small num-
ber of pixels which most likely represent the ball trajectory
and saving their average height to a 1D array. Note that no
information about the trajectory is lost, since the height of
the trajectory at each horizontal point is retained as a value in
the array, while the array length corresponds to the width of

Figure 3: 2D/3D view of a tennis match. Visualization illus-
trates rebound locations over time, and last zone hit (top left)
and custom zones defined during a training exercise (top
right). 3D virtual reality reconstruction of ball rebound lo-
cation (bottom). It can be used by players or referees in real
time to make line calls.

the frame. To further remove outliers, two smoothing steps
are applied over a small and large window respectively in
which outlying values relative to the moving average are re-
moved. In order to detect bounces, we compute local trajec-
tory slope using linear interpolation. This finally enables us
to detect changes in slope that correspond to locations of ball
bounces. The final result of ball detection is shown in Figure
1.c which illustrates the trajectory, past and current rebound
of the ball.

2D and 3D Visualization

After applying distortion correction to account for the fish-
eye lens, the perspective must be canceled also in order to
transform from camera view to a flat 2-dimensional map of
the court. Having a 2D representation of the match is re-
quired for event analysis and statistics during the game. The
perspective transformation matrix is computed using four
corners of the tennis court found by the field detection mod-
ule and the corresponding locations on the known 2D map.

Because this type of transformation does not account for
distorted images, the detections are first corrected for lens
distortion and then used to compute the perspective trans-
form. We note that performing detection on distorted images
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and only correcting the results gives a very important advan-
tage in terms of overall execution speed of our approach. The
resulting 2D view is illustrated in Figure 3 (top) in which the
zone in the last rebound occurred is highlighted.

The system can also be used for training, by defining
zones on the field where the player has to send the ball (Fig-
ure 3 top right). Zones of various size can be designated at
different locations for which the system detects whether the
shots were correctly made and provides this information to
the player. Using the location of a rebound and the estimated
direction of the ball, the system can provide a 3D virtual re-
ality replay of the shot (Figure 3 bottom) to better visualize
the point of impact for line calls.

Evaluation
Tests on multiple videos of recorded tennis matches showed
that our system is able to detect, on average, 9 out of 10 re-
bounds correctly (approximately 90% accuracy). We inves-
tigated the cases in which failure occurs and noted that due
to the average camera quality, the ball is not visible at all
the times during shots. Currently, the ball detection module
performs local prediction of the ball trajectory and requires
improvements to obtain better results. We evaluated the exe-
cution speed of the main modules (Table 1) on a mainstream
laptop computer. The video was provided by the Raspberry
Pi camera module at a resolution of 1280 × 720 and a rate
of 25 frames per second. Evaluation showed that the system
is able to process the video at a faster rate than that at which
it was captured and can also alleviate delays due to network
streaming.

Motion Ball Players Court

10.2 ms 7.2 ms 5.3 ms 54.6 ms

Table 1: Average execution time in milliseconds for back-
ground extraction, ball, player and court tracking on a
1280× 720 video.

The system was tested live during a professional tennis
championship, where a sizable screen was installed to dis-
play the detection output as well as the 2D representation
for spectators, while the players were in a match. The Rasp-
berry Pi camera module was fixed on a wall on the side of
the tennis court, and the video was streamed through the net-
work to a laptop computer for processing, which displayed
the results on the screen.

Conclusions and Future Work
In this work we proposed a set of detectors for the real time
analysis of a tennis match, consisting in ball trajectory and
rebound detection, player tracking and court detection for
automatic calibration. We described each task-specific algo-
rithm and integrated them in an extensible, modular frame-
work. Our focus was on affordable hardware that can be eas-
ily acquired by the large public and evaluated our approach
in terms of execution time and tracking performance. We
obtained a fast system that is able to provide information to
players in real time with reasonable accuracy, with equip-
ment available to the majority of amateur and recreational

tennis players. The main line for improvement is increasing
rebound detection accuracy. This can be obtained through a
data-driven approach by using machine learning models to
classify whether portions of the ball trajectory contain a re-
bound. As the problem itself is not highly nonlinear and rel-
atively low-dimensional, we expect to obtain better results
with this method in the future.
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