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Abstract

The development of microarray technology has made it possi-
ble to assemble biomedical datasets that measure the expres-
sion profile of thousands of genes simultaneously. However,
such high-dimensional datasets make computation costly and
can complicate the interpretation of a predictive model. To
address this, feature selection methods are used to extract bi-
ological information from a large amount of data in order to
filter the expression dataset down to the smallest possible sub-
set of accurate predictor genes. Feature selection has three
main advantages: it decreases computational costs, mitigates
the possibility of overfitting due to high inter-variable cor-
relations, and allows for an easier clinical interpretation of
the model. In this paper we compare three methods of fea-
ture selection: iterative Bayesian Model Averaging (BMA),
Random Survival Forest (RSF) and Cox Proportional Hazard
(CPH) and five methods of survival analysis: Analysis Ran-
dom Survival Forest (RSF), Cox Proportional Hazard (CPH),
Alan Additive Filter (AAF), DeepSurv (neural network), and
CbrSurv (case-based reasoning), which we introduce in this
paper. Features selected by these methods are compared with
a hand selected set of features. All the data we used came
from the Metabric breast cancer dataset. Our results indicate
that feature selection improves the performance of survival
analysis methods. Overall, the best survival analysis perfor-
mance was obtained by combining RSF for feature selection
and CbrSurv, closely followed by DeepSurv, for survival pre-
diction.

Introduction
The goal of this project was to assess the impact of a subset
of genes and proteins on breast cancer severity. It focused
on analyzing publicly available oncology genetic datasets
to determine the effects of a group of genes or proteins on
a specific type of cancer, its severity, pathways associated,
and subgroups of patients with differential risk factors. Re-
search on cancer heavily relies on genetic information. The
goal of survival analysis is to estimate the life expectancy of
patients from genetic and/or clinical information. This con-
sists in practice in dealing with survival curves which repre-
sent the chance for patients of being still alive as a function
of time. This project introduces CbrSurv, a novel survival
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analysis method based on case-based reasoning and com-
pares it with Deep Learning methods (DeepSurv), Random
Survival Forests (RSF) and with classical survival methods
Cox Proportional Hazards (CPH) and Alen Additive Filter
(AAF). Vast amounts of genetic data are now available for
researchers working on cancer. The dimension of data-sets
can be extremely high. Some data-sets contain 100 as many
features as observations, which can lead to overfitting, inter-
pretation problems and high computational cost. For these
reasons, bioinformatics researchers apply feature selection
methods to reduce the dimension of the data-sets by keeping
the most relevant features only. This project worked with
three of those methods, Bayesian Model Averaging (BMA),
Random Survival Forest (RSF) and Cox Proportional Haz-
ards (CPH).

Survival Analysis
Survival Analysis Principles
Survival analysis is about predicting how likely an event is
to happen over time (Klein and Moeschberger 2003). All
survival methods provide a survival curve which represents
how likely the event is to have not already happened over
time. In our case the event we are interested in is the death of
the cancer patient. In survival analysis, we do not necessarily
know how long has each patient lived as the experiment may
have stopped before they are all dead.

The individuals in a population who have not been subject
to the death event are labeled as right-censored. We observe
either the survival time, if we have the death date, or a cen-
sured time if we do not have the date of the death but only
the date of the last visit to the doctor. An instance in the sur-
vival data is usually represented as (xi, ti, δi) where xi is
the feature vector, ti is the observed time, δi is the indica-
tor: 1 is for an uncensored instance, which means the patient
is dead, and 0 is for a censored instance, which is a patient
being alive. The survival function S(t) = P (O > t|x) rep-
resents the probability of being still alive after time t, where
O represents the survival time. We can also define the hazard
function λ as :

λ(t) = lim
δt→0

P (t < O ≤ t+ δt|O > t)

δt
(1)
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Figure 1: Survival curves estimated with Kaplan-Meier esti-
mate. They represent how likely patients with or without al-
teration on query genes are surviving disease free over time.

This function represents how the risk of an event per time
unit changes over time. Also, as

λ(t) =
−S′(t)
S(t)

(2)

We get :

S(t) = exp(−
∫ t

0

λ(z)dz) (3)

for any survival function.
The point of survival analysis is making estimations on

data-sets where the target is unknown for certain patients.
For those patients only a minimum value of their life dura-
tion is known.

Kaplan-Meier Estimator

The Kaplan Meier method permits to estimate an average
survival curve related to a population. It consists in defining
the survival function as follows :

S(t) =
∏
ti<t

ni − di
ni

(4)

where di is the number of death events at time t and ni is
the number of subjects at risk of death just prior to time t.
This method does not take any co-variance into account such
as gene expressions or age of patients. It only takes as input
the survival or censured times of the entire population and
predicts an average curve relative to the whole population.
cBioportal.org uses this function to display survival curves
which permit to make an estimation of the effect of partic-
ular gene alterations. The genes can be selected through a
user interface and are called query genes.

Figure 2: Illustration of generating Y and W from the origi-
nal label in a simple survival data-set.

Cox Model
The Cox Proportional hazards model is among the most
popular methods for survival analysis. It models the hazard
function as (Lin 2012) :

λ(t|x) = λ0(t)exp(β
Tx) (5)

where β = (β1, .., β2)
T is a vector of parameters and λ0(t)

is a baseline hazard function. It must be evaluated separately.
We can also define h(x) = βTx as a risk function.

However, the Cox model has some limitations. The ratio
of risk between two individuals does not depend on time as
we assume λ0 equal for every individual. In other words, ev-
ery survival curve has the same shape. The baseline hazard
function λ0 has to be estimated separately, which induces
more errors. Also, in the real world there are too many com-
plex interactions and scenarios that can affect the event of in-
terest in various ways. Thus, in practice, choosing an appro-
priate theoretical distribution to approximate survival data
is very difficult, if not impossible. Multi-task learning can
permit to overcome these weaknesses.

Multi-task Learning
The primary motivation of transforming the survival anal-
ysis into a multi-task learning problem is that the depen-
dency between the outcomes at various time-points can be
accurately captured through a shared representation across
related tasks in this multi-task transformation, which could
reduce the prediction error on each task. Therefore, multi-
task learning methods permit to overcome the weaknesses
of Cox Proportional hazards.

Multi-task learning is a sub-field of machine learning in
which multiple learning tasks are solved at the same time,
while exploiting commonalities and differences across tasks.
Multi-task learning permits to improve the performance of
multiple classification tasks by learning them jointly (Ar-
gyriou and Evgeniou 2007; ?). To apply it to our problem
of survival analysis we must apply a transformation to the
problem (Li and Wang 2016). It consists in replacing each
label into a k-column vector as shown on figure 2.
Y is the target matrix and W the indicator matrix. Then

a natural way to solve the multi-task learning problem is by
determining B̂ such as :
B̂ = argminB

1
2 .‖Y −XB‖2F +R(B)
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where R(B) is a regulation term which helps to avoid
over-fitting. To handle the question marks in the target
matrix, we resort to W and redefined our optimization
problem as :

B̂ = argminB
1
2 .‖ΠW (Y −XB)‖2F +R(B)

where ΠW is a function defined as :

(ΠW (U))i,j =

{
Ui,j if Wi,j = 1,

0 if Wi,j = 0.

Alan Additive Filter
Alan Additive filter works the same way as Cox Proportional
Hazard but instead it uses as regression function (Aalen
1989):

λ(t) = β0(t) +

T∑
i=1

βi(t).xi (6)

Random Survival Forest (RSF)
Random Forest is a method that operates by constructing a
multitude of decision trees at training time and outputting
the class (in case of a classification analysis) or the mean
regression value (in case of a regression analysis). This pop-
ular machine learning method was adapted to survival analy-
sis in the R package randomForest (Ehrlinger 2016). Ran-
dom forest also permits to rank features and so it provides
another feature selection method.

DeepSurv
DeepSurv is a deep learning method for survival analysis
based on Faraggi and Simon network (Katzman et al. 2016).
The implementation of the model is based on Theano and
Lasagne. It uses a Log Likelihood as a loss function. The
team which developed DeepSurv also performed feature se-
lection on a database of breast cancer patients. With this fea-
ture selection, they were able to reach a concordance index
of 0.69. DeepSurv is also able to recommend treatments. It
performs this by comparing the risk with and without each
treatment.

In survival analysis we do not have the label of every ob-
servation. The likelihood is used as a loss function in most
survival analysis methods. It is defined as :

L(β) =

K∏
k=1

(
exp(hβ(xk))∑K

m=k exp(hβ(xm))

)δi

(7)

where β is a parameterized weight of the network on
which the learning is made, hβ is the risk function of a cox
model, and K the number of patients in the data-set. The
hazard function is then λ(t|x) = λ0(t)exp(h(x))

Concordance-index
We can not use a classical loss function such as L2 as we do
not possess the curve which represents the probability of dy-
ing in our data but only the time at which the patient actually
died. Instead, one performance measure traditionally used is

the c-index, or concordance index. (Steck et al. 2008) (Gerds
et al. 2013) This measure evaluates the ordering of predicted
times: how correct is the ordering? It is interpreted as fol-
lows: 0.5 is the expected result from random predictions, 1.0
is perfect concordance and, 0.0 is perfect anti-concordance
(multiply predictions with -1 to get 1.0).

Case-based Survival Analysis
This paper introduces case-based reasoning (Bichindaritz
and Marling 2006) as a new method for survival analysis.
We formulate the case-based reasoning framework in this
situation as follows.

Given an instance of survival analysis to solve as < pbi >,
where pbi is the feature vector representing the problem situ-
ation of a new case, we want to reuse previously encountered
solved instances in the form of < pbj , solj , δj >, where pbj
is the feature vector representing a solved problem, solj is
the observed survival time, or solution to the problem, and
δj is the indicator: 1 is for an uncensored instance, which
means the patient is dead, and 0 is for a censored instance,
which is a patient being alive.

We adopt an algorithm similar to case-based regression as
presented in EAR system (Zhang and Yeung 2012), however
with important modifications for survival analysis.

Algorithm 1 Overall Algorithm
Input:
New: new case to solve < pbi >
CB: case base with solved cases < pbj , solj , δj >

Output:
estimated length of survival

1: RetrievedCases ←
NeighborhoodSelection(pbi, CB)

2: AdaptationRules ← RuleGenerationStrategy(
3: pbi, RetrievedCases, CB)
4: for all c ∈ RetrievedCases do
5: RankedRules ← RuleRanking(
6: AdaptationRules, c, pbi)
7: V alEstimate(c) ←
8: AdaptationCombination(RankedRules, c)
9: end for

10: return CombineV als(V alEstimate(c)
11: for c ∈ RetrievedCases)

Retrieval
Based on the work by Jalali and Leake (2013), a local re-
trieval based on feature matching between memorized cases
and the new case often performs as well as more complex
retrieval schemes. In our case, where the number of features
can be high, this type of search and retrieval has been chosen
for its efficiency. The optimal number of cases is not fixed
but determined by a maximal distance measure to consider,
which is a parameter of our system, and which can also be
set by default in the following manner. If we have n cases
in the case base, the number of unordered pairs of different
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cases is n * (n-1) / 2. By calculating the distance between
each of these pairs of cases, and averaging these distances,
we obtain an average distance d for the case base, which rep-
resents the radius chosen to retrieve the local neighbors of a
new case.

RetrievedCases = {c ∈ CB such that

dist(c,New) < d} (8)

where dist(c, New) represents the distance between pbj and
pbi.

Adaptation
The adaptation follows the Case Difference Heuristic ap-
proach introduced by Hanney and Keane (1996), which gen-
erates adaptation rules from pairs of cases by mapping be-
tween the differences between problem situations and the
differences between the solutions. In our particular situation,
we not only take into account the features of the case as rep-
resented in pbj but also in the δj additional feature indicating
whether the memorized case was alive or not. The adaptation
proceeds through several steps :

1. Generating adaptation rules. From the retrieved set of
cases, the Local cases - Local neighbors strategy de-
scribed by Jalali and Leake (2013) has been chosen and
adapted to survival analysis. An adaptation rule is created
for each pair of cases in the retrieved cases set according
to the Case Difference Heuristic:

IF (Δ in features between pbk and pbl)

∧(δk = δl) THENΔsurvival
(9)

2. Adaptation rules ranking. The set of generated rules
AdaptationRules is then ranked according to the con-
text of use as in EAR (?). To summarize this method, the
adaptation context of a case is its neighborhood as pre-
viously defined, and the covariance between each feature
and the case solution is calculated over the set of cases in
the neighborhood. where Covk represents the covariance
between featurek and the case solution. Given a case c in
the case base, EAR calculates its adaptation context as a
vector based on comparing c to the n cases in a neighbor-
hood containing its nearest neighbor cases. For each case
feature, the covariance between the feature and the case
solution is calculated over the set of cases in the neigh-
borhood. The adaptation context for a case c is defined
as:

AdaptationContext(c) = (Cov1, Cov2, ..., Covf )
(10)

The ranking of rules is based on the similarity between
the new case and the source case. The ranking score is
calculated as the euclidean distance between two element
wise products (Zhang and Yeung 2012):
1) product of the adaptation context vector of the source
case to adapt and the new case, and
2) product of the context vector of the adaptation rule and
the vector representing feature differences of the compos-
ing cases of that rule.

3. Survival estimation for each retrieved case. For each case
in the RetrievedCases set, an adapted survival length is
calculated by taking the average of the survival lengths
generated by the top N adaptation rules, in ranked order.
The number N is a system parameter. V alEstimate(c)
is simply the average of all the survival lengths generated
from the adaptation rules.

4. Survival estimation for new case. The survival length for
New, also represented by soli, is then calculated as the
average of the survival lengths V alEstimates(c) for all
retrieved cases in its neighborhood.

Feature Selection
We want to apply feature selection before applying the
model or neural network. We aim to extract biological in-
formation from high dimensional data and to filter the ex-
pression data-set down to the smallest possible subset of ac-
curate predictor genes. It also permits to hinder the effect of
the curse of dimensionality (Keogh and Mueen 2011). The
improvement can be both effectiveness and efficiency.

Feature Selection Principles
There are three categories of feature selection methods: fil-
ter methods, wrapper methods and embedded methods. Fil-
ter techniques easily scale to very high-dimensional data-
sets, they are computationally simple and fast, and they are
robust to over-fitting. They have two main disadvantages:
they are independent from the problem considered and most
proposed techniques are uni-variate. Uni-variate means that
each feature is considered separately, ignoring feature de-
pendencies, which may lead to redundancy between selected
features. On the other hand, wrapper methods are specific to
a given problem. Wrapper methods evaluate subsets of vari-
ables which allows, unlike filter approaches, to detect the
possible interactions between variables. Two main disadvan-
tages of these methods are: the increasing over-fitting risk
when the number of observations is insufficient and the sig-
nificant computation time when the number of variables is
large. Embedded methods have been recently proposed that
try to combine the advantages of both previous methods.

Bayesian Model Averaging
When several different models all fit the data but lead to
different estimated effect sizes, standard errors, or predic-
tions, we can’t just choose one. We need to consider all of
them regarding their respective likelihood. Bayesian averag-
ing problems provide a way to do this.

With high dimensions, many feature subsets selected can
represent the data equally well. We call model a set of se-
lected features. Bayesian Model Averaging (BMA) is a well-
known feature selection method in bioinformatics. Instead
of choosing a single model and proceeding as if the data
were actually generated from it, BMA combines the effec-
tiveness of multiple models by taking the weighted average
of their posterior distributions. The core idea of Bayesian
model averaging holds in the following equation :
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number of Patients Number of Features
1,894 24,375

P (Δ|D) =
K∑

k=1

P (Δ|Mk, D)P (Mk|D) (11)

where Δ is the quantity of interest, D is the data and Mk

is the kth model. The probability of the quantities is assumed
to be the mean given by all models weighted by their own
probability. There are three issues at this point : obtaining the
subsets of relevant models {Mk}, determining P (Δ|Mk, D)
and determining P (Mk|D). The BMA algorithm resolves
these as described in (Yeung, Bumgarner, and Raftery 2005).
Once we have P (Mk|D) we can deduce the likelihood of
feature xi by :

P (xi|D) =
∑

Mk/xi∈Mk

P (Mk|D) (12)

The number of models to consider can be very large. If
there are G candidate explanatory genes in the expression
set, then there are 2G possible models to consider. Yet the
number of genes in microarray datasets varies from 102 to
104.

Bayesian Model Averaging for High Dimensional
Data
The algorithm described above can only deal with data of
dimension lower than 30. The usual practice of employ-
ing stepwise backward elimination to reduce the number of
genes down to 30 is not applicable in a situation where the
number of predictive variables is greater than the number of
samples. Yeung et al (Yeung, Bumgarner, and Raftery 2005)
developed an iterative BMA algorithm that takes a rank-
ordered list of genes and successively applies the traditional
BMA algorithm until all genes have been processed. They
use Cox Proportional Hazards regression to rank genes.

Cox Proportional Hazards for feature selection
COX Proportional Hazards permit also to perform feature
selection. The method consists in ranking the features in de-
scending order of their log likelihood.

Experimental Results
Dataset
Every experiment was conducted on the Molecular
Taxonomy of Breast Cancer International Consortium
(METABRIC) dataset, which originally used expression
profiles to identify new breast cancer subgroups in an effort
to help physicians provide better treatment recommenda-
tions. This data-set consists of 24,375 gene expression data
and clinical features for 1,894 patients, 43.85% of which
have had an observed death due to breast cancer (with a me-
dian survival time of 1,907 days).

Experiments
We applied our three feature selection algorithms on this
dataset. We also reproduced the manually selected feature
set of size 16 presented by the DeepSurv authors which
contains : four prognostic meta-genes (CIN, MES, LYM,
and FGD3-SUSD3), the age at diagnosis, the number of
positive lymph nodes, the tumor size, the ER status, the
HER2 status, four indicators known to be predictive of
breast cancer: ERBB2, MKI67, PGR and ESR1, and the pre-
scribed treatment (i.e., chemotherapy, radiotherapy, or hor-
monotherapy) (Katzman et al. 2016). Meta-genes are sets
of genes co-expressed in multiple cancer types. Those fea-
tures are calculated from gene expressions. The four prog-
nostic meta-genes were previously found to predict accu-
rately the survival time of patients by the winners of the Sage
Bionetworks-DREAM Breast Cancer Prognosis Challenge
(Cheng, Yang, and Anastassiou 2013).

Test results were obtained by implementing a bootstrap-
ping validation on an average of 100 experiments. This script
automatically and randomly generates a train and a test set
of 99

100 and 1
100 sizes respectively and saves the result and

all parameters in a file. For DeepSurv however, a smaller set
of experiments was performed due to time limitations, this
algorithm being considerably slower than any of the others.

Selected Features
It is interesting to know which selected features are in com-
mon with the hand selected features (see Table1).

Table 1: Selected features characteristics
BMA RSF CPH

CHEMOTHERAPY ER STATUS 3 CIN
RADIO THERAPY HER2 STATUS 1 FGD3-SUSD3
HORM THERAPY

It is interesting to note that each method seems special-
ized in a particular type of feature. BMA has selected only
clinical features in common with the hand selected features.
More exactly it has selected only clinical features related to
treatment. RSF includes the two selected hormone-related
features ER (estrogen) and HER2 (human epidermal growth
factor receptor), which are known to be related to breast can-
cer. CPH selected four genes related to the meta-genes CIN
and FGD3-SUSD3 (Cheng, Yang, and Anastassiou 2013).

Results Summary
We can see from Tables 2 and 3 that :
• The RSF feature selection clearly outperforms every other

methods on any survival analysis methods.
• The best concordance index of 71.9 is reached with Cbr-

Surv on a data-set of 62 features, result in close tie with
DeepSurv on a set of 64 features. These results are signif-
icantly better than those of the other survival methods.

Discussion
Although considerable work has been carried out in tempo-
ral case-based reasoning (Montani and Portinale 2006), very
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Table 2: Best survival analysis method for each feature se-
lection method

Selection Features Analysis CI
BMA 20 RSF 62.8
RSF 64 DeepSurv 71.7
RSF 62 CbrSurv 71.9
CPH 128 RSF 70.4

Table 3: Best feature selection method for each survival
analysis method

Selection Features Analysis CI
RSF 64 DeepSurv 71.7
RSF 62 CbrSurv 71.9
RSF 50 RSF 70.5
RSF 12 CPH 65.6
RSF 12 AAF 66.1

little work has addressed the specific concepts of survival
analysis. Bichindaritz (Bichindaritz and Annest 2010) pre-
sented a comparison of different feature selection methods
for case-based survival analysis. Her results indicated that
survival prediction was improved significantly by select-
ing features prior to applying case-based survival. The cur-
rent paper confirms these results, however with more recent
methods of feature selection specialized in survival analy-
sis. This current paper also compares CBR as a method of
choice for survival analysis in comparison with deep learn-
ing. Although both methods compare similarly in terms of
effectiveness, CBR is much more efficient.

Conclusion
The research carried out introduces CbrSurv, a case-based
reasoning method for survival analysis using multi-task
learning and gives a baseline of comparison between differ-
ent selection and survival methods in the context of breast
cancer. Other data-sets than Metabric should be used to fur-
ther this comparison. Feature selection methods are also sub-
ject to randomness. Studying subsets of sets randomly gen-
erated by the same algorithm seems important to have more
reliable estimation of the performance. Combining different
feature selection methods by gathering their best features
could also be explored.

Although more work is needed to reach a definitive con-
clusion, these results indicate that feature selection can play
a helpful role when performing survival analysis on high-
dimensional data. In particular, CbrSurv adaptation rule gen-
eration would need efficient optimization methods to run on
large numbers of features, and DeepSurv was not able to
handle the complete dataset either. In addition to the un-
contested role in decreasing computational costs, the sur-
vival prediction shows improved concordance index. RSF
though takes advantage of the information contained in a
moderate additional number of features. Overall, the best
survival analysis performance was obtained by combining
RSF for feature selection and CbrSurv for survival predic-
tion, closely followed by DeepSurv, the latter with consider-

ably higher computational costs.
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