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Abstract

Conflicting information in an agent’s knowledge base may
lead to a semantical defect, that is, a situation where it is im-
possible to draw any plausible conclusion. Finding out the
reasons for the observed inconsistency (so-called diagnosis)
and/or restoring consistency in a certain minimal way (so-
called repairs) are frequently occurring issues in knowledge
representation and reasoning. In this paper we provide a se-
ries of first results for these problems in the context of abstract
argumentation theory regarding the two most important rea-
soning modes, namely credulous as well as sceptical accep-
tance. Our analysis includes the following problems regard-
ing minimal repairs/diagnosis: existence, verification, com-
putation of one and enumeration of all solutions. The latter
problem is tackled with a version of the so-called hitting set
duality first introduced by Raymond Reiter in 1987. It turns
out that grounded semantics plays an outstanding role not
only in terms of complexity, but also as a useful tool to reduce
the search space for diagnosis regarding other semantics.

1 Introduction
A well-known problem in knowledge representation and
reasoning is the semantical collapse of an agent’s knowl-
edge base K, i.e. K is inconsistent and thus does not allow
any plausible conclusion. Hansson coined the term consoli-
dation and defined it as an operation that withdraws parts of
K in such a way that, first, the resulting knowledge base K′
is consistent and secondly, the change is as small as possible
(Hansson 1994). Even earlier, Reiter introduced the presum-
ably first formal treatment of this problem in his seminal
paper (Reiter 1987). The so-called diagnostic problem for
a given system arises whenever we observe that the system
does not behave as it should. Reiter used first-order logic
as representation formalism and his definition of a diagno-
sis contains the concepts of consistency as well as mini-
mality. Since then the problem of restoring consistency un-
der the requirement of minimal change has been considered
for many other formalisms like situation calculus (Mcilraith
1999), logic programs (Sakama and Inoue 2003), description
logic including non-monotonic versions (Lembo et al. 2011;
Bienvenu 2012; Eiter, Fink, and Stepanova 2013) as well as
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probabilistic conditional logic (Potyka and Thimm 2014) to
mention a few.

In this paper we focus on the non-monotonic theory of
abstract argumentation (Dung 1995). More precisely, we
consider an abstract argumentation framework (AF) as an
agent’s knowledge base and the associated extensions cor-
respond to her beliefs (cf. (Coste-Marquis et al. 2014;
Nouioua and Würbel 2014; Diller et al. 2018) for similar
approaches). In brief, Dung-style AFs consist of arguments
and attacks which are treated as primitives, i.e., the internal
structure of arguments is not considered. The major focus
is on resolving conflicts. To this end a variety of semantics
have been defined, each of them specifying acceptable sets
of arguments, so-called extensions, in a particular way.

The starting point of our study is a semantical defect of an
agent’s AF which prevents her from drawing any plausible
conclusion in the sense that nothing is accepted. Our aim is
to obtain an agent which is able to act. Therefore we want to
know what are minimal diagnoses of the given knowledge
base, i.e., which parts are causing the semantical defect. The
knowledge about these diagnoses may make it easier to de-
cide what to do next. For instance, a certain minimal diagno-
sis may consist of arguments which are somehow out of date
in comparison to the others. Consequently, one may tend to
discard these arguments. This is why our repair approach
focusses on removal of certain arguments. In general, it is
easily conceivable that one may create a certain internal hi-
erarchy over the stored arguments encoding the willingness
to drop them. For instance, let us assume that dropping ei-
ther the argument A1 or the argument A2 represent minimal
repairs. Let us further assume that A1 represents ”Do not
drive over the lawn, because this would destroy the lawn.”
and A2 stands for “Drive over the lawn, whenever you may
save lifes with this action.” In this situation it might be rea-
sonable to drop A1.

Let us consider an abstract example under the most promi-
nent semantics, namely the stable one. Informally, a set of
arguments is a stable extensions if there are no conflicts be-
tween them and moreover, all other arguments are attacked
by at least one argument of the set.

Example 1.1 (Semantical Collapse). The AF F does not
possess any stable extension, i.e., stb(F ) = ∅.
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The main aim is to study such semantical defects with
regard to the following naturally arising questions/tasks:

1. Diagnosis – Which sets of arguments are causing the col-
lapse?

2. Computation – How to compute one/all diagnoses?
3. Properties – Do diagnoses always exist? Are there certain

preferred diagnoses? How computationally costly is it to
verify a candidate diagnosis?

4. Repair – How to use this information to obtain an agent
which is indeed able to act?

Example 1.2 (Diagnosis and Repair). One may argue that
the arguments e and f together can be seen as a diagnosis for
the semantical defect of F since ignoring these arguments
and their corresponding attacks result in a meaningful AF
denoted by F{e,f}. In particular, stb

(
F{e,f}

)
= {{d, b}}.

a

b

c

dF{e,f} :

Note that neither of both arguments can be omitted since
the resulting frameworks would collapse too. In this sense,
the presented diagnosis {e, f} and the corresponding repair
F{e,f} are minimal.

The main results of the paper are as follows: After dis-
cussing necessary preliminaries for abstract argumentation
in Section 2 we tackle the second question in Section 3,
namely: How to systematically find all minimal diagnoses
of a given AF under a given semantics. In particular, we will
see that the considered AF F indeed possesses further mini-
mal repairs. These formal results are mainly due to the well-
known hitting set duality first introduced in (Reiter 1987)
and a recently generalized version of it (Brewka, Thimm,
and Ulbricht 2017). In the subsequent Section 4 we consider
the question of existence of minimal diagnoses and we pro-
vide relations between diagnoses w.r.t. different semantics.
Grounded semantics plays a central role here since its min-
imal diagnoses represent bounds for diagnosis of other se-
mantics. We also briefly discuss subclasses of AFs, namely
symmetric, compact and acyclic frameworks. Afterwards,
we study the computational complexity for the associated
existence and verification problem. In the subsequent Sec-
tion 6 we briefly discuss repair strategies for stable and pre-
ferred semantics. Finally, we conclude as well as discuss
some related work in Section 7. In almost all cases we pro-
vide full proofs. If not available we included some short
comments indicating how to prove the statement in question.

2 Background in Abstract Argumentation
In the original formulation (Dung 1995), an abstract argu-
mentation framework is a directed graph F = (A,R) where
nodes in A represent arguments and the relation R models
attack, i.e., for a, b ∈ A, if (a, b) ∈ R we say that a attacks
b or a is an attacker of b. We say that F is self-controversial
if any argument attacks itself. In this paper we restrict our-
selves to non-empty finite AFs (cf. (Baumann and Spanring
2015; 2017) for a treatment of unrestricted AFs). Moreover,
for a set E we use E+ for {b | (a, b) ∈ R, a ∈ E} and de-
fine E⊕ = E ∪ E+. A further essential notion in argumen-
tation is defense. Formally, an argument b is defended by
a set A if each attacker of b is counter-attacked by some
a ∈ A. For a given set S ⊆ A we use FS as a shorthand for
F |A\S = (A \ S,R|A\S).

An extension-based semantics σ is a function which
assigns to any AF F = (A,R) a set of sets of ar-
guments σ(F ) ⊆ 2A. Each one of them, so-called σ-
extension, is considered to be acceptable with respect
to F . Besides conflict-free and admissible sets (abbr.
cf and ad ) we consider stage, stable, semi-stable, com-
plete, preferred, grounded, ideal and eager semantics (abbr.
stg , stb, ss, co, pr , gr , il and eg respectively). A recent
overview can be found in (Baroni, Caminada, and Giacomin
2011).

Definition 2.1. Let F = (A,R) be an AF and E ⊆ A.

1. E ∈ cf (F ) iff for no a, b ∈ E, (a, b) ∈ R,
2. E ∈ad(F ) iff E ∈cf (F ) and E defends all its elements,
3. E ∈stb(F ) iff E ∈cf (F ) and E⊕ = A,
4. E ∈ss(F ) iff E ∈ad(F ) and for no I ∈ad(F ),E⊕⊂I⊕,
5. E ∈ co(F ) iff E ∈ ad(F ) and for any a ∈ A defended

by E , a ∈ E ,
6. E ∈pr(F ) iff E ∈co(F ) and for no I ∈co(F ), E⊂I,
7. E ∈gr(F ) iff E ∈co(F ) and for any I ∈co(F ), E⊆I,
8. E ∈ il(F ) iff E ∈ co(F ), E ⊆

⋂
pr(F ) and there is no

I ∈co(F ) satisfying I⊆
⋂
pr(F ) s.t. E ⊂ I,

9. E ∈ eg(F ) iff E ∈ co(F ), E ⊆
⋂
ss(F ) and there is no

I ∈co(F ) satisfying I⊆
⋂
ss(F ) s.t. E⊂I.

We say that a semantics σ is universally defined if σ(F ) 6=
∅ for any F ∈ F . If even |σ(F )| = 1 we say that σ is
uniquely defined. All semantics apart from stable one are
universally defined. In addition, grounded, ideal and ea-
ger semantics are examples of uniquely defined semantics.
Stable semantics may collapse, i.e. there are AFs F , s.t.
stb(F ) = ∅ (cf. running example F depicted in Exam-
ple 1.1). For two semantics σ and τ we write σ ⊆ τ if for
any AF F , σ(F ) ⊆ τ(F ). For instance, it is well-known that
stb ⊆ ss ⊆ pr ⊆ co ⊆ ad ⊆ cf .

In the present paper we are interested in situations where
a given AF F = (A,R) does not possess accepted argu-
ments. To make the notion of acceptance precise, we utilize
the following two alternative reasoning modes, namely cred-
ulous as well as sceptical acceptance. Note that we require
σ(F ) to be non-empty for sceptical reasoning in order to
avoid the (for our purpose) unintended situation that every
argument is sceptically accepted due to technical reasons.
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Set-theoretically the intersection over the empty family of
sets would yield any argument (cf. (Baumann and Spanring
2015, Section 2) for more information). However, in our set-
ting it makes sense to define it as the empty set since the
(sceptical or credulous) acceptance of an argument should
imply the existence of at least one set containing a.
Definition 2.2. Given a semantics σ, an AF F = (A,R)
and an argument a ∈ A. We say that a is

1. credulously accepted w.r.t. σ if a ∈
⋃
σ(F ),

2. sceptically accepted w.r.t. σ if a ∈
⋂
σ(F ) and σ(F ) 6= ∅.

3 A Hitting Set Duality for AFs
In his seminal paper (Reiter 1987), Reiter establishes – for
his setting of a given system description – a duality result
between the set of all minimal repairs and the minimal con-
flicts. Recently, it was shown (Brewka, Thimm, and Ulbricht
2017) that Reiter’s duality can be generalized to arbitrary
logics given that the knowledge bases in question can be
modeled as finite set of formulas. In order to capture even
non-monotonic logics a refinement of the notion of incon-
sistency was necessary. In this section we will demonstrate
how to utilize this generalized duality for the non-monotonic
theory of abstract argumentation.

For the result in (Brewka, Thimm, and Ulbricht 2017) a
generic definition of a logic is used. However, the only prop-
erty we require in order to apply the hitting set duality from
(Brewka, Thimm, and Ulbricht 2017) is the ability to express
a given AF as a finite set of formulas (a “knowledge base”).
We do this as follows.
Definition 3.1. Given an AF F = (A,R) with A =
{a1, . . . , an}we callK = {a1, . . . , an} the atom-based rep-
resentation of F . In this case, a subset H ⊆ K is the repre-
sentation of the framework F |H .

Of course, given a set A of arguments, the corresponding
framework F = (A,R) is ambiguous. This is why we may
only make use of the atom-based representation of an AF F
whenever the framework in question is given.

The hitting set duality we aim at makes explicit use of
consistent and inconsistent subsets of a given knowledge
base (resp. AF in our case). Hence, the following definition
is central.
Definition 3.2. Given an AF F = (A,R) with atom-based
representation K. Let σ be a semantics. We call K incon-
sistent w.r.t. credulous resp. sceptical reasoning whenever
there is no argument a that is credulously resp. sceptically
accepted.

Now we turn to the notion of strong inconsistency and
how it induces a hitting set duality for our setting. The fol-
lowing definition naturally applies to both credulous and
sceptical reasoning.
Definition 3.3. Let F = (A,R) be an AF with atom-based
representation K. Let σ be any semantics. For H ⊆ K, H
is called strongly K-inconsistent if H ⊆ H ′ ⊆ K implies
H ′ is inconsistent (w.r.t. credulous resp. sceptical reason-
ing). H is minimal strongly K-inconsistent if H is strongly
K-inconsistent and H ′ ( H implies that H ′ is not strongly
K-inconsistent.

Let SImin(K) denote the set of all minimal strongly
K-inconsistent subsets of K. Note that the definition of
SImin(K) depends on the reasoning mode. Given an AF F ,
an atom-based representation K might have different incon-
sistent subsets w.r.t. credulous reasoning than w.r.t. sceptical
reasoning. The reason is that “inconsistency” in the former
case means that no argument is credulously accepted while
“inconsistency” the latter case means that no argument is
sceptically accepted.
Example 3.4 (Strongly Inconsistent Subsets). Consider
the running example F with atom-based representation
{a, b, c, d, e, f}. Let us focus on credulous reasoning. We
already observed that F has no stable extension, i.e., K it-
self is strongly K-inconsistent w.r.t. stable semantics. The
subset H1 ⊆ K with H1 = {a, b, c} corresponds to the
odd circle contained in F . However, H1 is not strongly K-
inconsistent since the supersetH2 withH1 ⊆ H2 ⊆ K given
as H2 = {a, b, c, d} has the stable extension {b, d} (cf. AF
F{e,f} depicted in Example 1.2). One may easily verify that
SImin(K) = {{a, b, c, e}, {a, b, c, f}}.

We proceed with the well-known concepts of (minimal)
hitting sets and (maximal) consistent subsets.
Definition 3.5. LetM be a set of sets. We call S a hitting
set ofM if S ∩M 6= ∅ for each M ∈M. A hitting set S of
M is a minimal hitting set ofM if S ′ ( S implies S ′ is not
a hitting set ofM.
Definition 3.6. Let F = (A,R) be an AF with atom-based
representation K. Let σ be any semantics. We say H ⊆ K
is a maximal consistent subset of K if H is consistent and
H ( H ′ ⊆ K implies H ′ is inconsistent. We denote the set
of all maximal consistent subsets of K by Cmax (K).

In Example 1.2 we informally discussed the notions of
diagnoses and repairs. The following central definition cap-
tures these intuitions in a formally precise way. Please note
that the need for a diagnosis is given whenever we are faced
with a semantical situation which does not resolve any con-
flict with regard to the considered reasoning mode (seman-
tical defect). This means, in case of credulous reasoning, ei-
ther no extensions or the empty extension is considered to
be acceptable only and in case of sceptical reasoning, either
there are no extensions or no argument is supported by all
extensions.
Definition 3.7. Given a semantics σ an AF F and a rep-
resentation K of it. We call S ⊆ K a σ-cred-diagnosis of
F iff K \ S is consistent w.r.t. credulous reasoning. More-
over, we call the AF FS as well as K \ S a σ-cred-repair
of F . We use the terms minimal and least for ⊆-minimal or
⊆-least σ-diagnosis as well as the associated σ-repairs. We
define (minimal, least) σ-scep-diagnosis and σ-scep-repair
analogously.

We omit the terms “cred” resp. “scep” whenever the type
of reasoning is implicitly clear or unimportant. We will
thus in most cases simply speak of σ-diagnoses and σ-
repairs. We are now ready to phrase the duality theorem
from (Brewka, Thimm, and Ulbricht 2017) within our set-
ting. Note that it applies to both credulous and sceptical rea-
soning.
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Theorem 3.8. (Brewka, Thimm, and Ulbricht 2017) Let
F = (A,R) be an AF with atom-based representation K.
Let σ be any semantics. Then, S is a minimal hitting set of
SImin(K) if and only if S is a minimal σ-diagnosis of F .
Example 3.9 (Maximal Consistent Subsets via Hitting Set
Duality). Consider again the running example F with stable
semantics and credulous reasoning. We already checked
that SImin(K) = {{a, b, c, e}, {a, b, c, f}}. According
to Definition 3.5 we obtain four minimal hitting sets,
namely {a}, {b}, {c} and {e, f}. Observe that {e, f} is
the already found stb-diagnosis presented in Example 1.2.
The minimal hitting sets for F can be interpreted as
follows: Either one argument from the odd circle needs
to be removed or both e and f to facilitate d. In fact,
the maximal consistent subsets of F are Cmax (K) =
{{a, b, c, d}, {a, b, d, e, f}, {a, c, d, e, f}, {b, c, d, e, f}}.
These sets correspond to the stb-repairs F{e,f} (consid-
ered in Example 1.2) as well as F{c}, F{b} and F{a}
depicted below. We obtain, stb

(
F{c}

)
= {{e, f, a}},

stb
(
F{b}

)
= {{e, f, c}} and stb

(
F{a}

)
= {{e, f, b}}.

a

b

d

f

eF{c} :

a

c

d

f

eF{b} :

b

c

d

f

eF{a} :

4 On the Existence of Repairs
In the last section we dealt with a characterization of all min-
imal diagnoses of a given framework. Clearly, before com-
puting potential repairs one may wonder whether there are
minimal diagnoses at all. In this section we provide the for-
mal results w.r.t. this problem and in particular, we give an
affirmative answer for all considered semantics given that
the framework in question is not self-controversial. Unfortu-
nately, the existence of a least repair is not guaranteed which
leads to follow-up question of how to repair? which will be
considered in the subsequent section.

Relations between Credulous and Sceptical
Reasoning Mode
We start with some general relations between credulous and
sceptical diagnoses. The following theorem applies to any

semantics. It states that minimal credulous diagnoses can be
found as subsets of sceptical diagnoses.

Theorem 4.1. Given an AF F and a semantics σ. If S is
a scep-σ-diagnosis of F , then there is a minimal cred-σ-
diagnosis S′ of F , s.t. S′ ⊆ S.

Proof. Let S be a scep-σ-diagnosis of F . This means,⋂
σ(FS) 6= ∅. Consequently, σ(FS) 6= ∅ and therefore⋃
σ(FS) 6= ∅. Thus, S is a cred-σ-diagnosis of F . More-

over, by finiteness of S we deduce the existence of a mini-
mal cred-σ-diagnosis S′ of F with S′ ⊆ S concluding the
proof.

Vice Versa, sceptical diagnosis can be found as super-
sets of credulous ones. We want to mention two issues.
First, in contrast to the theorem before, the proof of Theo-
rem 4.2 requires semantics specific properties and thus, does
not hold for any argumentation semantics. Secondly, it is an
open question whether even minimality can be claimed for
the considered universally defined semantics. We conjecture
that minimality can be shown but we did not find a proof so
far (cf. Conjecture 4.3).

Theorem 4.2. Given an AF F and a semantics σ ∈
{stg , stb, ss, co, pr , gr , il , eg}. If S is a cred-σ-diagnosis of
F , then there is a scep-σ-diagnosis S′ of F , s.t. S ⊆ S′.

Proof. Let S be a cred-σ-diagnosis of F = (A,R). This
means,

⋃
σ(FS) 6= ∅. Consequently, there is an argument

a ∈
⋃
σ(FS) 6= ∅. Define S′ = A \ {a}. Obviously, S ⊆

S′ and FS′ = ({a}, ∅) since σ-extensions are conflict-free.
Moreover, σ(FS′) = {{a}} for any considered semantics σ.
This implies

⋂
σ(FS′) 6= ∅ justifying the assertion that S′

is a scep-σ-diagnosis of F .

Conjecture 4.3. Given an AF F and a semantics σ ∈
{stg , stb, ss, co, pr}. If S is a minimal cred-σ-diagnosis of
F , then there is a minimal scep-σ-diagnosis S′ of F , s.t.
S ⊆ S′.

Finally, we show two helpful, but not unexpected relations
between different semantics and their reasoning modes.

Theorem 4.4. Given two semantics σ and τ , s.t. σ ⊆ τ and
σ is universally defined. For any AF F we have:

1. If S is a cred-σ-diagnosis of F , then there is a minimal
cred-τ -diagnosis S′ of F , s.t. S′ ⊆ S.

2. If S is a scep-τ -diagnosis of F , then there is a minimal
scep-σ-diagnosis S′ of F , s.t. S′ ⊆ S.

Proof. We prove the second item only. Let S be a scep-τ -
diagnosis of F . This means,

⋂
τ(FS) 6= ∅. Since σ ⊆ τ is

assumed we deduce ∅ 6=
⋂
τ(FS) ⊆

⋂
σ(FS). Since σ is

universally defined we have σ(FS) 6= ∅ which implies that
S is a scep-σ-diagnosis of F . Moreover, by finiteness of S
we deduce the existence of a minimal scep-σ-diagnosis S′
of F with S′ ⊆ S concluding the proof.
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Uniquely Defined Semantics
Please note that in case of uniquely defined semantics we
have that any (minimal) sceptical diagnosis is a (minimal)
credulous one and vice versa.1 Thus, Conjecture 4.3 is ful-
filled by any uniquely defined semantics.

We proceed with grounded semantics since these results
will play a central role for all other semantics considered
in this paper. Dung originally defined the grounded exten-
sion of an AF F = (A,R) as the ⊆-least fixpoint of
the so-called characteristic function ΓF : 2A → 2A with
E 7→ {a ∈ A | a is defended by E}. Moreover, he showed
that this definition coincides with the ⊆-least complete ex-
tension (Dung 1995, Theorem 25) as introduced in Defi-
nition 2.1. Since ΓF is shown to be ⊆-monotonic we may
compute the unique grounded extension G stepwise, i.e.,
applying ΓF iteratively starting from the empty set. More
precisely, G =

⋃|A|
i=1 ΓiF (∅) (cf. (Baumann and Spanring

2017, Section 3.2)). For instance, the unique grounded ex-
tensions of F{c} and F{a} are {e, f, a} = Γ2

F{c}
(∅) and

{e, f, b} = Γ1
F{a}

(∅), respectively. Consequently, an AF
possesses a non-empty grounded extension if and only if
there exists at least one unattacked argument.
Fact 4.5. For any AF F which is not self-controversial there
exists a gr -repair.

The subsequent main theorem claims the existence of
minimal σ-diagnoses for the considered uniquely defined
semantics (recall that we do not need to distinguish be-
tween credulous and sceptical reasoning for those seman-
tics). The facts that ideal semantics accepts more arguments
than grounded semantics and eager semantics is even more
credulous than ideal semantics combined with the above fact
yield the existence of diagnoses. Moreover, the restriction to
finite AFs even gives us the existence of minimal ones. As
an aside, the main theorem does not carry over to infinite
AFs.2

Theorem 4.6. For any semantics σ ∈ {gr , eg , il} and any
not self-controversial AF F there exists a minimal σ-repair.
Example 4.7. The following simple framework G demon-
strates that least σ-repairs does not necessarily exist. For
σ ∈ {gr , eg , il} we have σ(G) = {∅}, i.e. nothing is credu-
lously/sceptically accepted.

aG : b bG{a} : aG{b} :

The ⊆-incomparable sets S1 = {a} and S2 = {b} are min-
imal σ-diagnosis which yield the σ-repairs G{a} and G{b}.
Clearly, both possess non-empty σ-extensions, namely {b}
or {a}, respectively.

Finally, diagnoses for ideal and eager semantics can be
found as subsets of a grounded diagnosis.
Lemma 4.8. Let σ ∈ {il , eg}. If S′ is a gr -diagnosis of
an AF F , then there is a minimal σ-diagnosis S of F , s.t.
S ⊆ S′.

1Formally, if |σ(F )| = 1, then
⋂
σ(F ) =

⋃
σ(F ).

2It can be checked that the AF L = (N, {(i, j) | i < j})
possesses gr -repairs but no minimal ones.

Universally Defined Semantics
Let us consider now semantics which provide us with at least
one acceptable position. The following lemma shows that
for these semantics minimal credulous as well as sceptical
diagnoses are guaranteed, whenever there is a grounded di-
agnosis.
Lemma 4.9. Let σ ∈ {ss, pr , co}. For any AF F there ex-
ists a minimal σ-diagnosis S, whenever there exists a gr -
diagnosis S′ of F . Moreover, even S ⊆ S′ can be guaran-
teed.

Proof. Let σ ∈ {ss, pr , co} and S′ a gr -diagnosis of F .
Hence, gr(FS′) = {G} with G 6= ∅. Since G is the ⊆-least
fixpoint of ΓFS′ we deduce G ⊆ C for any C ∈ co(FS′).
Due to ss ⊆ pr ⊆ co and the universal definedness of σ we
have ∅ 6= G ⊆

⋂
σ(FS′) as well as ∅ 6= G ⊆

⋃
σ(FS′).

Hence, S′ is a sceptical as well as credulous σ - diagnosis of
F . Due to finiteness of F , there exists a minimal σ - diagno-
sis S ⊆ S′ concluding the proof.

Combining Theorem 4.6 and Lemma 4.9 yields the sub-
sequent main theorem for the considered universally defined
semantics.
Theorem 4.10. For any semantics σ ∈ {ss, pr , co} any not
self-controversial AF F possesses a minimal σ-repair.

The following example shows, as promised in Lemma 4.9,
that already computed grounded diagnoses can be used to
find minimal preferred diagnoses. Moreover, in contrast to
uniquely defined semantics we observe that minimal scepti-
cal and minimal credulous diagnoses do not necessarily co-
incide.
Example 4.11. Consider the following AF L. Since we
have no unattacked arguments we deduce gr(L) = {∅},
i.e., nothing is accepted. Moreover, the same applies to L{a}
and L{d}. Consequently, L{a,d} is a minimal gr -repair since
gr(L{a,d}) = {{c}}. Note that {a, d} is even a scepti-
cal as well credulous preferred diagnosis of L. These diag-
noses are not minimal for preferred semantics since pr(L) =
{{a, d}, {c}} implies

⋃
pr(L) 6= ∅ as well as pr(L{a}) =

{{c}} entails
⋂
pr(La) 6= ∅. Altogether, we have strict sub-

set relation (∅ ( {a} ( {a, d}) between minimal cred-
ulous preferred, minimal sceptical preferred and minimal
grounded diagnoses.

L :

a b

c d

L{a} :

b

c d

L{a,d} :

b

c

Collapsing Semantics
Stable semantics is the only prominent semantics which may
collapse even for finite AFs (cf. running example F ). How-
ever, in terms of existence of repairs we do not observe
any differences to all other considered semantics since the
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conflict-freeness of at least one non-empty set ensures the
existence of repairs.

Fact 4.12. Any not self-controversial AF F possesses a min-
imal stb-repair.

In contrast to all other considered semantics we have that
stable diagnoses can not be necessarily found as subsets of
an already computed grounded one (Lemmata 4.8, 4.9).
For instance, the running example F possesses the unique
grounded extension {e, f}. Consequently, we have the triv-
ial (least) gr -diagnosis, namely the empty set. As we have
already seen in Example 3.9 all minimal stb-diagnoses are
non-empty. Nevertheless, credulous as well as sceptical di-
agnoses for stable semantics can be found as supersets of
grounded ones.

Lemma 4.13. If S′ is a gr -diagnosis of an AF F , then there
is a stb-diagnosis S of F , s.t. S′ ⊆ S.

Proof. Given S′ as gr -diagnosis of F = (A,R), i.e.
gr (FS′) = {E} with E 6= ∅. Consider now E⊕ w.r.t.
the attack-relation of FS′ . Obviously, S′ ⊆ A \ E⊕ and
moreover, gr

(
FA\E⊕

)
= {E}. Obviously, by construction

E ∈ stb
(
FA\E⊕

)
. Furthermore, since E is non-empty we

deduce that there is at least one unattacked argument a ∈ E.
Hence, for any E′ ∈ stb

(
FA\E⊕

)
we have a ∈ E′. Conse-

quently, A \ E⊕ serves as a credulous as well as sceptical
diagnosis for stable semantics.

Please note that Lemma 4.13 does not claim minimality
of the stb-diagnosis S. Indeed, the following example illus-
trates that minimality is not obtained in general.

Example 4.14. Consider the following AF I

dc

a

bI :

Since every argument is attacked we infer that empty set can-
not be a gr -diagnosis. A possible one is the set {a}. Indeed,
this is also a stb-diagnosis (w.r.t. credulous as well as scep-
tical reasoning), but not minimal since I itself possesses the
sceptically accepted argument d.

Subclasses of AFs
We may obtain more advanced results by restricting the AF
under consideration. Let us start with so-called symmetric
AFs. According to (Coste-Marquis, Devred, and Marquis
2005) an AF F = (A,R) is symmetric if R is symmet-
ric, nonempty and irreflexive. In case of stable, semi-stable
and preferred semantics we obtain a very useful property,
namely any argument a ∈ A belongs to at least one exten-
sion (Coste-Marquis, Devred, and Marquis 2005, Proposi-
tion 6). Consequently, we may show the following proper-
ties.

Proposition 4.15. Given a semantics σ ∈ {stb, ss, pr}, a
symmetric AF F = (A,R) and a set S ⊆ A.

1. ∅ is the least cred-σ-diagnosis and
2. S is a (minimal) scep-σ-diagnosis iff S is a (minimal) gr -

diagnosis.
Let us assume that our current knowledge base underlies

further external revision processes (cf. (Coste-Marquis et al.
2014; Baumann and Brewka 2015; Diller et al. 2018) for be-
lief revision in abstract argumentation). Both items can be
gainfully used if we know that certain types of revision do
not affect the symmetry of an AF. More precisely, the items
1 and 2 ensure that we have either nothing to do (if inter-
ested in credulous reasoning) or we may act according to
grounded semantics instead of σ (if sceptical reasoning is
chosen). Regarding our setup we note that removing argu-
ments does not affect the symmetry status of an argument.
Example 4.16. Let us consider the following symmetric
version of I presented in Example 4.14.

dc

a

bJ :

We have stb(J) = {{a, d}, {b, d}, {c}}. This means, no ar-
gument is sceptically accepted. In order to repair regarding
grounded semantics we have to ensure the existence of at
least one unattacked argument. Consequently, the least scep-
gr -repair is given as J{c}. As promised by Item 2 in Propo-
sition 4.15 this indeed coincides with the least stb-repair.

Let us briefly consider two further classes of frameworks,
namely so-called compact and acyclic ones. The first one is
semantically defined and characterized by the feature that
each argument of the AF occurs in at least one extension of
the AF (Baumann et al. 2014). For instance, the AF J de-
picted in Example 4.16 is compact w.r.t. stable semantics.
Compact frameworks obviously fulfill item 1 of Proposi-
tion 4.15 and thus build an interesting subclass of AFs if in-
terested in credulous reasoning. The second class is syntac-
tically defined and as expected an AF is acyclic if it does not
contain any cycles. Such frameworks are known to be well-
founded (Dung 1995) which means, they possess exactly one
complete extension which is grounded, preferred and stable
(Coste-Marquis, Devred, and Marquis 2005, Propositions 1
and 2). This means, the agent is able to act (in both reasoning
modes) whenever we are faced with an acyclic AF.

Due to space restrictions, we leave a further intensive
study of this issue for future work.

5 Computational Complexity
In this section we discuss the computational complexity of
two decision problems that naturally arise, namely the exis-
tence problem as well as the verification problem regarding
minimal repairs. We assume the reader to be familiar with
the polynomial hierarchy. Furthermore, we consider the dif-
ferences class Dp1 = {L1 ∩ L2 | L1 ∈ NP, L2 ∈ coNP}
as defined in (Papadimitriou 1994). In the following let σ be
a semantics and � one of the considered reasoning modes,
i. e., � ∈ {cred, scep}.
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EX-MIN-REPAIRσ,�
Input: A knowledge base K
Output: TRUE iff there is a minimal σ-�-diagnosis for K
VER-MIN-REPAIRσ,�
Input: A knowledge base K, S ⊆ K
Output: TRUE iff S minimal σ-�-diagnosis for K

To keep this section varied and within a reasonable space,
we mainly focus on gr , ad , co, pr and stb semantics.

Credulous Reasoning
We start with the problem of deciding whether a minimal
repair exists. As we know from Theorems 4.6, 4.10 and
Fact 4.12 it suffices to perform a simple syntactical check,
which can be done in linear time. We thus find:

Proposition 5.1. For σ ∈ {ad , gr , eg , il , ss, pr , co, stb},
the problem EX-MIN-REPAIRσ,cred can be solved in linear
time.

The problem of verifying a potential minimal σ-diagnosis
for a given AF F is a bit more challenging. Considering the
computational complexity of different reasoning problems
in AFs, it is quite unsurprising that VER-MIN-REPAIRA,σ
is intractable for most semantics σ as it requires checking
whether a non-empty extension exists. For the semantics ad ,
stb, pr and co this is NP-hard as it requires guessing and
verifying a non-empty extension (see e. g. (Dimopoulos and
Torres 1996)). Due to the additional minimality check we
require, our problem turns out to be in the corresponding
difference class.

Theorem 5.2. VER-MIN-REPAIRσ,cred is Dp1-complete for
semantics σ ∈ {ad , stb, pr , co}.

However, given an AF (and a potential diagnosis), we
know that the grounded extension is non-empty if and only
if there is an argument which is not attacked. Thus, verify-
ing that S is a gr-diagnosis is quite easy. It turns out that
minimality is tractable as well.

Proposition 5.3. VER-MIN-REPAIRgr ,cred is in P.

Let us briefly discuss the subclasses of AFs we men-
tioned in Section 4. If the AF in question is symmetric,
EX-MIN-REPAIRσ,cred trivializes for any σ we considered
in this paper since irreflexivity ensures that the AF is not
self-controversial. The problem VER-MIN-REPAIRσ,cred is
trivial for σ ∈ {ad , stb, pr , co} since any symmetric AF
possesses a credulousyl accepted argument. Hence, (H,K)
is a positive instance of VER-MIN-REPAIRσ,cred (with
σ ∈ {ad , stb, pr , co}) iff H = K. It is easy to see that
VER-MIN-REPAIRgr ,cred can be solved in linear time. If the
framework is compact or acyclic, there is inherently nothing
to solve w.r.t. credulous reasoning.

Sceptical Reasoning
We now turn to sceptical reasoning. It is not hard to see that
EX-MIN-REPAIRσ,scep is basically the same since there is
a repair if and only if at least one argument does not attack
itself.

Proposition 5.4. For σ ∈ {ad , gr , eg , il , ss, pr , co, stb},
the problem EX-MIN-REPAIRσ,scep can be solved in linear
time.

We thus turn to VER-MIN-REPAIRσ,scep. This problem is
more involved (and presumably more interesting) than in the
credulous case. One reason is the following: The decision
problem VER-MIN-REPAIRσ,scep involves checking all su-
persets of H within K. In Theorem 5.2 we had a situation
where this resulted in moving to the corresponding differ-
ence class. However, the reason was that the underlying de-
cision problem, i. e., “is the framework consistent w.r.t. cred-
ulous reasoning?” is in NP. Thus, verifying inconsistency is
in coNP. Now, verifying inconsistency for all supersets H ′
with H ⊆ H ′ ⊆ K does not induce a quantifier alterna-
tion. That is why the upper bounds in Theorem 5.2 are (un-
der standard assumptions) below Πp

2. This is not always the
case anymore since for the decision problem “is the frame-
work consistent w.r.t. sceptically reasoning?” we naturally
face coNP resp. Πp

2 lower bounds.
First observe that for ad semantics, the problem is triv-

ial since any framework possess an empty admissible exten-
sion. For gr semantics the problem is equivalent to the cor-
responding one for credulous reasoning since the extension
is unique, anyway.

Proposition 5.5. VER-MIN-REPAIRgr ,scep is in P.

Recall that the unique grounded extension of an AF F is
complete as well. Moreover we have gr(F ) ⊆

⋂
co(F ).

Hence, any framework F possesses a sceptically accepted
argument w.r.t. grounded semantics if and only if this is the
case for complete semantics. This yields:

Proposition 5.6. VER-MIN-REPAIRco,scep is in P.

Now we consider pr semantics. Recall that decid-
ing whether an argument is sceptically accepted is Πp

2-
complete (Dvorák and Dunne 2018). Thus, given a frame-
work K and a subset H ⊆ K, the decision problem
VER-MIN-REPAIRpr ,scep involves checking whether for all
H ′ with H ⊆ H ′ ⊆ K the framework H ′ does not possess
a sceptically accepted argument. Since the latter check is in
Σp2 for each H ′, we immediately see a Πp

3 upper bound for
VER-MIN-REPAIRpr ,scep. Indeed, hardness holds as well.

Theorem 5.7. VER-MIN-REPAIRpr ,scep is Πp
3-complete.

Proof. (Sketch.)
Membership was sketched above. Recall the construction
from (Dvorák and Dunne 2018) with the property that the
AF accepts an argument sceptically w.r.t. preferred seman-
tics if and only if a formula Φ = ∀Y ∃X : φ(X,Y ) in CNF
evaluates to true.

In order to prove hardness in Πp
3 for our problem

we somehow need to simulate an additional quantifier.
This, however, comes natural since the decision problem
VER-MIN-REPAIRpr ,scep involves consideration of all su-
persets H ′ of a given subset H ⊆ K. Given a formula
Ψ = ∃Z ∀Y ∃X : ψ(X,Y, Z) in CNF we augment the con-
struction from (Dvorák and Dunne 2018) with the intention
that Ψ evaluates to true if and only if (K, H) is a “no” in-
stance of VER-MIN-REPAIRpr ,scep (that is, there exists a
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superset H ′ with H ⊆ H ′ ⊆ K such that H ′ possesses
a sceptically accepted argument w.r.t. preferred semantics).
The choice of the superset H ′ with H ⊆ H ′ ⊆ K corre-
sponds to the choice of an assignment ω : Z → {0, 1}
which allows us to recycle the construction from (Dvorák
and Dunne 2018) in a rather smooth way. The main idea
now is to include the following gadget for any Z variable:

Di,3 Di,4

zi z′i

Di,1

¬zi ¬z′i

Di,2

The dummy argumentsDi,1 andDi,2 as well as their attacks
are depicted with dotted lines to illustrate that they do not
occur in H , but in K \H . Including Di,1, for example, en-
sures that zi and z′i are never defended and thus occur in no
preferred extension. Hence, this choice corresponds to let-
ting zi be false. The Di,3 and Di,4 are auxiliary arguments
to ensure that at least one of Di,1 and Di,2 needs to be cho-
sen. Moreover, the arguments corresponding to Z variables
attack the arguments corresponding to the clauses within ψ
in the natural way. Now, there is a superset H ′ of H (cor-
responding to an assignment ω : Z → {0, 1}) where an
argument is sceptically accepted if and only if Ψ evaluates
to true. The details are omitted due to space restrictions.

We turn to stable semantics. Since finding a stable ex-
tension is NP-complete it is not hard to see that there is
a coNP lower bound for sceptical reasoning. However, as
the framework in question might collapse, we also need to
verify that there is at least one stable extension of a given
framework. The result is a Dp1 lower bound (see (Rahwan
and Simari 2009)). Interestingly, however, this observation
does not change anything in our case. The coNP lower
bound is already responsible for VER-MIN-REPAIRstb,scep

to have a Πp
2 lower bound. Given H ⊆ K the deci-

sion problem VER-MIN-REPAIRstb,scep involves checking
whether all sets H ′ with H ⊆ H ′ ⊆ K do not pos-
sess any sceptically accepted argument. Since the latter test
has a NP lower bound, we have a Πp

2 lower bound for
VER-MIN-REPAIRstb,scep. More precisely:
Theorem 5.8. VER-MIN-REPAIRstb,scep is Πp

2-complete.
Again let us take a look at symmetric AFs. The obser-

vation that EX-MIN-REPAIRσ,cred is trivial for any σ we
considered in this paper also holds for sceptical reasoning.
For σ ∈ {stb, ss, pr} the problem VER-MIN-REPAIRσ,scep
is equivalent to VER-MIN-REPAIRgr ,scep (see Proposi-
tion 4.15) and can thus be solved in linear time since
this is the case for the latter problem as mentioned above.
If the framework is acyclic, the problem is trivial for
σ ∈ {stb, pr , co, ad} since the AF possesses exactly one
(nonempty) extension, except for σ = ad which is as usual.

This concludes our discussion on the computational com-
plexity of the two decision problems we named above. As a
final remark we want to mention that one can compute all
gr -diagnoses in P. We believe this observation is relevant
since the grounded repairs play an essential role as the re-
sults from Section 4 suggest. Assume we are given the AF
F = (A,R) with gr(F ) = {∅}. Since a grounded diagno-
sis needs to ensure that at least one argument a ∈ A is not
attacked anymore, we can successively look at any a ∈ A
and consider S = {b ∈ A | (b, a) ∈ R}. If S is a minimal
gr -diagnosis (verification is in P due to Proposition 5.3), we
add S to our list, otherwise we delete it. Since there are at
most |A| gr -diagnoses, this procedure is in P. So:
Proposition 5.9. Computing all gr -diagnoses of a given AF
F can be done in P.

Now, even though finding a σ-diagnosis may become
rather hard depending on σ, we can efficiently compute all
gr -diagnoses and then utilize Lemmata 4.8, 4.9 and 4.13 in
order to reduce the search space. This approach explains the
central role of grounded semantics. In a nutshell, the gr -
repairs can be seen as a (polynomial time computable) start-
ing point in order to find minimal repairs for other seman-
tics. A thorough investigation of this approach is part of fu-
ture work. Moreover, the investigation of further subclasses
of AFs seems rather promising considering computational
complexity. For example, the ones we considered trivialize
credulous diagnoses in almost any case. Other restrictions
might ensure tractability of certain problems we considered
here while being less restrictive.

6 How to Repair? — A Short Case Study
As mentioned before, due to Lemmata 4.8, 4.9 and 4.13 we
may reduce the search space for diagnoses as long as we are
equipped with an already computed grounded one. If one
is interested in all diagnoses, the notion of strong inconsis-
tency in order to use the hitting set duality might be useful.
We discuss both credulous and sceptical reasoning.

First let us consider an example with stable semantics. Let
us start with credulous reasoning. It is well-known that in
case of finite AFs the non-existence of acceptable positions
implies the existence of odd-cycles. This means, by contra-
position, one possible strategy for repairing AFs in case of
stable semantics is to break odd-cycles. This approach corre-
sponds to the minimal stb-repairs F{a}, F{b} and F{c} from
our running example F . Since possessing odd-cycles is not
sufficient for the collapse of stable semantics further con-
siderations are required. Indeed, in case of our running ex-
ample, we have seen that eliminating the arguments e and
f results in a minimal stb-repair, namely F{e,f}, too. Re-
garding the principle of minimal change one may argue that
breaking the odd-cycle in F has to be preferred over the lat-
ter strategy since less arguments are involved. The following
slightly modified version of our running example shows that
this observation is not true in general. A further intensive
study of this issue will be part of future work.
Example 6.1. Consider the following AF K . One may eas-
ily confirm that there are 9 minimal cred-stb-diagnoses,
namely {ai, bj , ck} with i, j, k ∈ {1, 2, 3}. They comply
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with the idea to break all odd loops of the given AF. How-
ever, {e} is a minimal cred-stb-diagnosis as well, and ar-
guably the most immediate one.

c1

c2

c3

b1

b2

b3

a2

a1

a3

d

e

K :

The subsequent example considers a semantical defect
w.r.t. preferred semantics which is tackled via grounded re-
pairs.
Example 6.2. The AF L exemplifies a situation where pre-
ferred semantics do not possess any sceptically accepted
argument. More precisely,

⋂
pr(L) = ∅ since pr(L) =

{{a, e}, {b, e}, {c, d, f}}.

L :

a b

c d

e

f L{c,d} :

a b

e

f

Our goal is to find a minimal scep-pr -diagnosis S, i.e.,
a set S such that

⋂
pr
(
LS
)
6= ∅ and pr

(
LS
)
6= ∅.

Lemma 4.9 suggests that looking for gr -repairs is a rea-
sonable starting point. In order to guarantee at least one
unattacked argument one finds {c, d} as minimal gr -
diagnosis. Let L{c,d} denote the associated minimal repair.
We have gr

(
L{c,d}

)
= {{e}}. Hence,

⋂
pr
(
L{c,d}

)
6= ∅

is implied. This means, {c, d} is a scep-pr -diagnosis. More-
over, {c, d} is even minimal proven by the following two
AFs L{c} and L{d}.

L{c} :

a b

d

e

f L{d} :

a b

c

e

f

Indeed, we have
⋂
pr
(
L{c}

)
=
⋂
pr
(
L{d}

)
= ∅ since

{a, e}, {d, f} ∈ pr
(
L{c}

)
and {a, e}, {c, f} ∈ pr

(
L{d}

)
.

7 Related Work and Future Directions
We studied the notion of repairing in the context of abstract
argumentation. This topic as introduced in (Reiter 1987) is
less developed in this area. The closest one to our work is
(Nouioua and Würbel 2014). The authors define an opera-
tor and provide an algorithm, s.t. the resulting framework
does not collapse. The mentioned work considers a seman-
tical defect as the absence of any extension. Consequently,
only stable semantics can be considered in contrast to our
setup which additionally includes a treatment of semantics
which may provide the empty set as unique extension. All
semantics known from the literature do so. Moreover, restor-
ing consistency is achieved via dropping a minimal set of at-
tacks. All arguments survive the revision process. We men-
tion that this approach can be modeled using a slightly dif-
ferent setup as used in this paper. The key idea is to change
the canonical representation as presented in Definition 3.1.
A precise implementation of this idea will be part of future
work.

The very first and basic works which are dealing with dy-
namics in abstract argumentation are (Baumann and Brewka
2010; Baumann 2012; Baumann and Brewka 2013) as well
as (Cayrol, de Saint-Cyr, and Lagasquie-Schiex 2010; Bis-
quert et al. 2011). The first two are tackling the so-called en-
forcing problem w.r.t. possibility as well as minimal change.
More precisely, they are dealing with the question whether it
is possible (and if yes, as little effort as possible) to add new
information in such a way that a desired set of arguments be-
comes an extension or at least a subset of one. In (Kim, Or-
dyniak, and Szeider 2013) the authors studied this problem
under the name σ-repair and provided parametrized com-
plexity results. Although adding information as well as de-
sired sets are not the focus of our study there is at least
one interesting similarity to our work, namely: given an AF
where nothing is credulously accepted, then enforcing a cer-
tain non-empty set can be seen as a special kind of repairing.
The other two works are case studies of what happens with
the set of extensions if one deletes or adds one argument.
The so-called destructive change is somehow the inverse
of our notion of credulous repair since the initial frame-
work possesses at least one credulously accepted argument
whereas the result does not.

Several future directions are already mentioned in the text.
For instance, a further intensive study of subclasses of AFs
seems to be very promising since certain useful semantical
properties are already ensured by syntactic properties. More-
over, it is already known that AFs can be seen as a restricted
class of logic programs (LPs). More precisely, as shown in
(Strass 2013, Theorem 4.13) there is a standard translation
T from AFs to LPs, s.t. for any AF F , σ(F ) coincides with
τ(T (F )) for certain pairs of semantics σ and τ . This means,
one interesting research question is to which extent our re-
sults can be conveyed to repairing in logic programming.
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