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Abstract
We explore the relationships between causal rules and coun-
terfactuals, as well as their relative representation capabili-
ties, in the logical framework of the causal calculus. It will
be shown that, though counterfactuals are readily definable on
the basis of causal rules, the reverse reduction is achievable
only up to a certain logical threshold (basic equivalence). As
a result, we will argue that counterfactuals cannot distinguish
causal theories that justify different claims of actual causa-
tion, which could be seen as the main source of the prob-
lem of ‘structural equivalents’ in counterfactual approaches
to causation. This will lead us to a general conclusion about
the primary role of causal rules in representing causation.

Introduction
Causation plays a crucial role in our view of the world, from
commonsense reasoning to natural and social sciences, and
up to jurisprudence, linguistic semantics and AI formalisms.
Accordingly, it should occupy an appropriate place in gen-
eral Knowledge Representation. One of the essential pre-
requisites of such a representation, however, is the choice of
basic informational units and adequate formalisms for en-
coding causal knowledge. These choices have turned out to
be both non-trivial and controversial.

Traditionally, the triple of notions causation, counterfac-
tuals and laws has been at the heart of the philosophy of
science, and the relations between them have been the fo-
cus of much discussions and controversy. An undeniable
basis of these discussions, however, has always been the
fact that these three notions are tightly correlated, or, us-
ing David Lewis phrase, they are “rigidly fastened to one
another, swaying together rather than separately”. Such a
correlation obviously required explanation, and many ap-
proaches have been suggested that tried to define each of
these concepts in terms of the rest. Hume’s informal analysis
of causation in terms of regularities (laws) and/or counter-
factuals, and David Lewis’ counterfactual analysis of causa-
tion (Lewis 1973) have been the most prominent approaches
of this reductive kind. More recently, the framework of
structural equation models (Pearl 2000; Spirtes, Glymour,
and Scheines 2000) has provided a rigorous basis for reason-
ing with these concepts, but it has not ended the controversy.
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According to (Pearl 2000), the basic building blocks
of the structural account of causation are structural equa-
tions, which are functions that represent lawlike mecha-
nisms. These equations can be naturally viewed as formal
counterparts of (causal) laws, since they describe generic
(type-level) relations among variables that are applicable to
every hypothetical scenario. That is why they are capable
of determining corresponding counterfactuals (via the no-
tions of intervention and sub-model). Speaking more gener-
ally, structural equations provide information necessary for
supporting all kinds of causal claims and, in particular, the
claims of actual causation1.

Though in Pearl’s approach structural equations were
taken as primitive, an influential camp of philosophers and
researchers has continued David Lewis’ legacy in arguing
that counterfactuals, in one way or other, should still enjoy
a principal status in causal reasoning. In its simplest form,
the argument has been that the structural equations them-
selves just represent certain privileged counterfactuals2. In
a more elaborate approach of (Woodward 2003), the main
objective was to provide a manipulative (counterfactual) ac-
count of the causal notions that Pearl has taken as primitive.
According to Woodward, facts about patterns of counterfac-
tual dependence are more basic than facts about what causes
what, and the essence of the manipulability account can be
put in a slogan “No causal difference without a difference in
manipulability relations, and no difference in manipulability
relations without a causal difference”.

It seems that this line of thought has also influenced the
bulk of recent counterfactual approaches to actual causation
in the framework of structural equations, including the HP
definitions of Halpern and Pearl (Halpern and Pearl 2001;
2005; Halpern 2016a).

(Bochman and Lifschitz 2015) has suggested a logical
representation of Pearl’s causal models in the causal calculus
(McCain and Turner 1997; Lifschitz 1997). In this represen-
tation, structural equations were ‘translated’ to causal rules,

1The initial definition of actual causation in (Pearl 2000, Chap-
ter 10) used the notions of sustenance and causal beam that were
directly defined in terms of structural equations.

2(Hitchcock 2007): “counterfactuals are represented using
equations among the variables, where each equation asserts several
counterfactuals: one for each assignment of values to the variables
that makes the equations true.”
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and it has been shown, in particular, how interventions and
submodels can be described in this framework. In addition,
it has been shown in (Bochman 2018) that actual causation
can be directly defined in the causal calculus, without inter-
mediate help from counterfactuals.

In this study we are going to recast the philosophical
‘trilemma’ of laws, counterfactuals and causation in the log-
ical framework of the causal calculus, which will allow us to
derive some precise conclusions about their relationships.

As a first step, we will formally define counterfactuals
in the causal calculus. It will be shown, in particular, that
checking the validity of counterfactuals on this definition
amounts to verifying classical entailment in certain comple-
tions of the source causal theory.

The suggested definition of counterfactuals will allow us
to pose a precise question to what extent counterfactuals
can capture the ‘causal content’ of the source causal theory.
In this respect, it will be shown that there exists a logical
threshold for such a reduction, namely logical equivalence
with respect to the basic causal inference (see below). In
other words, basically equivalent causal theories are indis-
tinguishable by counterfactual tools, since they support the
same counterfactuals.

As a next step, we will connect the above results with
the observations made in (Bochman 2018), according to
which basically equivalent causal theories can support dif-
ferent claims of actual causation. This fact could even be
seen as the source of the well-known problem of ‘structural
equivalents’ in counterfactual theories of causation.

Finally, we will connect the lessons that could be learned
from the above results with a general approach to the
trilemma of causation, counterfactuals and laws suggested
in (Maudlin 2004).

General Causation in the Causal Calculus
Originally, the causal calculus has been introduced in (Mc-
Cain and Turner 1997) as a nonmonotonic formalism for rea-
soning about action and change in AI (see (Giunchiglia et al.
2004)). A logical basis of the causal calculus was described
in (Bochman 2003), while (Bochman 2004) studied its pos-
sible uses as a general-purpose nonmonotonic formalism.

In this study, we will use the causal calculus as a general
logical formalism of causal reasoning. As such, it shares a
common starting point with Pearl’s approach to causality in
that our knowledge can be stored in terms of cause-effect re-
lationships. In the causal calculus, the latter are represented
directly by causal rules of the form A⇒B (“A causes B”),
where A and B are classical propositions. Structural equa-
tion models are representable using such rules, so the ap-
proach can be viewed as a logical generalization of the latter.

Causal rules represent general (type-level) causal claims,
so they correspond to such notions as nomic or causal suffi-
ciency, causal laws and lawlike regularities. Just as the latter,
causal rules are inherently modal notions.

As in Pearl’s approach, causal rules will be viewed as rep-
resenting causal mechanisms, though our representation will
be based on a more fine-grained understanding of mecha-
nisms than what is usually assumed in structural equation
models.

Our basic language will be an ordinary propositional
language with the classical connectives and constants
{∧,∨,¬,→, t, f}. � will stand for the classical entailment,
while Th will denote the classical provability operator. We
will often identify a propositional interpretation (‘world’)
with the set of propositional formulas that hold in it.

In what follows, by a causal theory we will mean a set of
causal rules. A causal theory will be called determinate if
it contains only rules of the form A⇒ l, where l is a literal.
Throughout this study, we will restrict our attention to fi-
nite determinate causal theories, and some of the key results
below will depend on this restriction.

Nonmonotonic Semantics
A distinctive feature of causal reasoning is that situations
described by a causal theory are determined not only by the
rules that belong to the theory, but also by what does not be-
long to it. Accordingly, this principal semantic function is
realized in the causal calculus by assigning a causal theory
a particular nonmonotonic semantics: the relevant situations
should not only be closed with respect to the causal rules
of the theory, they should also satisfy Leibnitz’s Principle
of Sufficient Reason: nothing happens without a sufficient
reason, why it should be so. Formally, a nonmonotonic se-
mantics of a causal theory can be defined as follows.

For a causal theory ∆ and a set u of propositions, let ∆(u)
denote the set of propositions that are caused by u in ∆:

∆(u) = {B | A⇒B ∈ ∆, for some A ∈ u}
Definition 1. • A set u of propositions is an exact model of

a causal theory ∆ if it is consistent, and u = Th(∆(u)).
• A general nonmonotonic semantics of a causal theory is

the set of all its exact models.
• A causal nonmonotonic semantics of a causal theory is

the set of its exact models that are worlds (complete de-
ductively closed sets).
An exact model describes an information state that is

closed with respect to the causal rules, but in which also
every proposition is caused, or explained, by other proposi-
tions that hold in this state.

The causal nonmonotonic semantics of causal theories is
equivalent to the semantics described in (McCain and Turner
1997) and used in (Giunchiglia et al. 2004).

Regular, Basic and Causal Inference
The causal calculus can be viewed as a two-layered con-
struction. The nonmonotonic semantics defined above form
its top level. Its bottom level are a number of logics for
causal rules introduced in (Bochman 2003; 2004); they func-
tion as causal logics of the causal calculus.

The following general notion of production inference is
actually a slight modification of the input-output logic from
(Makinson and van der Torre 2000).
Definition 2. A production inference relation is a binary re-
lation ⇒ on the set of classical propositions satisfying the
following conditions:
(Strengthening) If A � B and B⇒C, then A⇒C;
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(Weakening) If A⇒B and B � C, then A⇒C;
(And) If A⇒B and A⇒C, then A⇒B ∧ C;
(Truth) t⇒ t;
(Falsity) f⇒ f .

A characteristic property of production inference is that
the reflexivity postulate A⇒A does not hold for it.

We extend causal rules to rules having arbitrary sets of
propositions as premises by employing compactness: for
any set u of propositions, we define

u⇒A ≡
∧
a⇒A, for some finite a ⊆ u

C(u) denotes the set of propositions caused by u, that is

C(u) = {A | u⇒A}

As could be expected, the causal operator C plays much
the same role as the usual derivability operator for conse-
quence relations. Note that C(u) is always a deductively
closed set. In addition, it is a monotonic, and even continu-
ous, operator. Still, it is not inclusive, that is, u ⊆ C(u) does
not always hold. Also, it is not idempotent, that is, C(C(u))
can be distinct from C(u).

A production inference relation is regular if it satisfies the
following well-known rule:

(Cut) If A⇒B and A ∧B⇒C, then A⇒C.

Cut is one of the basic rules for ordinary consequence re-
lations. In the context of production inference it plays the
same role, namely, allows for a reuse of produced propo-
sitions as premises in further derivations. It is important
to note, in particular, that regular inference relations are al-
ready transitive.

Regular inference relations have played an important role
in describing actual causation in (Bochman 2018).

Following (Makinson and van der Torre 2000), a produc-
tion inference relation is called basic if it satisfies

(Or) If A⇒C and B⇒C, then A ∨B⇒C.

For basic production inference, the set of propositions
caused by a propositional theory coincides with the set of
propositions that are caused by every world containing it:

C(u) =
⋂
{C(α) | u ⊆ α & α is a world}

Another important fact about basic production inference
is that any causal rule is reducible to a set of clausal rules of
the form

∧
li⇒

∨
lj , where li, lj are classical literals.

The following characterization of basic equivalence for
determinate causal theories is used in proofs of the results
below.

A world α will be called causally consistent with respect
to a causal theory ∆ if ∆(α) is a classically consistent set.

Lemma 1. Determinate causal theories ∆ and Γ are ba-
sically equivalent iff they have the same causally consis-
tent worlds, and ∆(α) = Γ(α), for any causally consistent
world α.

Finally, a production inference relation will be called
causal if it is both basic and regular. Causal inference re-
lations satisfy almost all the usual postulates of classical in-
ference (except Reflexivity and Contraposition).

In what follows, ⇒∆ will denote by the ‘causal closure’
of a causal theory ∆, namely the least causal inference re-
lation that includes ∆, whereas ⇒r

∆ and ⇒b
∆ will denote,

respectively, the least regular and the least basic production
relations that include ∆. Each of these inference relations
will play an important role in this study.

Completion
The causal nonmonotonic semantics of a determinate causal
theory ∆ coincides with the classical semantics of the propo-
sitional theory obtained from ∆ by a syntactic transforma-
tion similar to program completion.

The completion of a (finite) determinate causal theory ∆
is the set comp(∆) of all classical formulas of the forms

p↔
∨
{A | A⇒ p ∈ ∆}

¬p↔
∨
{A | A⇒¬p ∈ ∆},

for any atom p, plus the set {¬A | A⇒ f ∈ ∆}.
As proved in (McCain and Turner 1997), the completion

of a determinate causal theory provides a classical logical
description of its nonmonotonic semantics:

Proposition 2. The causal nonmonotonic semantics of a de-
terminate causal theory coincides with the classical seman-
tics of its completion.

It should be kept in mind, however, that this completion
transformation is not modular with respect to the causal rules
of the source theory and, moreover, it changes nonmono-
tonically with the changes of the latter. Speaking generally,
the completion (as well as the nonmonotonic semantics it-
self) does not fully represent the logical content of a causal
theory. This distinction between logical and nonmonotonic
aspects of a causal theory bears immediate relevance to the
distinction between causal and purely mathematical under-
standing of structural equations in Pearl’s theory of causality
that we will briefly describe in the next section.

Representing Structural Equations
According to (Pearl 2000, Chapter 7), a causal model is a
triple M = 〈U, V, F 〉 where U is a set of exogenous vari-
ables, V is a finite set of endogenous variables, and F is a
set of functions such that each fi ∈ F is a mapping from
U ∪ (V \Vi) to Vi.

Symbolically, F is represented as a set of equations

vi = fi(pai, ui) i = 1, . . . , n

where pai is any realization of the unique minimal set of
variables PAi in V \{Vi} (parents) sufficient for represent-
ing fi, and similarly for Ui ⊆ U .

Every instantiation U = u of the exogenous variables de-
termines a “causal world” of the causal model. Such worlds
stand in one-to-one correspondence with the solutions to the
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above equations in the ordinary mathematical sense. How-
ever, structural equations also encode causal information in
their very syntax by treating the variable on the left of =
as the effect and treating those on the right as causes. This
causal reading plays a crucial role in determining the effect
of external interventions and evaluation of counterfactuals.
Each structural equation is intended to represent a stable
and autonomous physical mechanism, which means that it is
conceivable to modify (or cancel) one such equation without
changing the others. In particular, in order to answer coun-
terfactual queries, we have to consider submodels of a given
causal model. Given a particular instantiation x of a set of
variables X from V , a submodel Mx of M is obtained from
M by replacing all functions fi corresponding to members
of set X with the set of constant functions X = x.

For binary variables, Pearl’s notion of a model can be for-
mulated as follows (cf. (Bochman and Lifschitz 2015)):

Definition 3. Assume that the set of propositional atoms is
partitioned into a set of exogenous atoms and a finite set of
endogenous atoms.

• A Boolean structural equation is an expression of the
form A = F , where A is an endogenous atom and F
is a propositional formula in which A does not appear.
• A Boolean causal model is a set of Boolean structural

equations A = F , one for each endogenous atom A.

Definition 4. A solution (or a causal world) of a Boolean
causal model M is any propositional interpretation satisfy-
ing the equivalences A↔ F for all equations A = F in M .

(Bochman and Lifschitz 2015) suggested the following
translation of causal models into the causal calculus.

Definition 5. For any Boolean causal model M , ∆M is the
causal theory consisting of the rules

F ⇒A and ¬F ⇒¬A

for all equations A = F in M and the rules

A⇒A and ¬A⇒¬A

for all exogenous atoms A of M .

The above representation faithfully reflects the source de-
scription in structural models by which both truth and falsity
assignments to an endogenous atom should be determined
by the corresponding function.

Proposition 3 ((Bochman and Lifschitz 2015)). The causal
worlds of a Boolean causal model M are identical to the
exact worlds of ∆M .

Example 1. In the ‘firing squad’ example from (Pearl 2000,
Chapter 7), let U,C,A,B,D stand, respectively, for the fol-
lowing propositions: “Court orders the execution”, “Captain
gives a signal”, “Rifleman A shoots”, “Rifleman B shoots”,
and “Prisoner dies.” The story is formalized using the fol-
lowing causal model M , in which U is the only exogenous
atom:

{C = U, A = C, B = C, D = A ∨B}.

It has two solutions: in one of them all atoms are true, in the
other all atoms are false. This causal model allows us to an-
swer ‘static’ queries concerning the domain. It corresponds
to the following causal theory ∆M :

U⇒C, ¬U⇒¬C, C⇒A, ¬C⇒¬A,
C⇒B, ¬C⇒¬B, A ∨B⇒D, ¬(A ∨B)⇒¬D,

U⇒U, ¬U⇒¬U.

This causal theory has two exact models, identical to the
solutions (causal worlds) of M .

As has been noted in (Bochman and Lifschitz 2015), the
representation of causal models in the causal calculus pro-
duces a particular class of causal theories that is subsumed
by the following definition:

Definition 6. A causal theory will be called a causal Pearl
theory if it is determinate and satisfies the following condi-
tions:

• no atom can appear both in the head and the body of a
causal rule;

• two rules A⇒ p and B⇒¬p belong to a causal theory
only if A ∧B is classically inconsistent.

This particular class of causal theories will play an impor-
tant role in our subsequent results.

Counterfactuals in the Causal Calculus
As a starting point of this study, we will provide a formal
definition of counterfactuals in the causal calculus.

In the framework of Pearl’s causal models, counterfactu-
als are defined using the notions of intervention and sub-
model. In the translation of (Bochman and Lifschitz 2015),
the latter correspond to sub-theories of a causal theory. We
will provide below a somewhat different definition of these
notions that will exploit a striking similarity between in-
terventions and belief revision operations. However, due
to some well-known difficulties in defining interventions
with respect to arbitrary logical formulas, these ‘causal revi-
sions’, as well as the corresponding counterfactuals, will be
restricted to literals in this study.

For a set L of literals, we will denote by ¬L the set of
classical literals corresponding to {¬l | l ∈ L}.
Definition 7. Given a determinate causal theory ∆ and a set
L of literals,

• the contraction ∆−L of ∆ with respect to L is the de-
terminate causal theory obtained from ∆ by removing all
rules A⇒ l for l ∈ L.

• The revision ∆∗L of ∆ is the determinate causal theory
obtained from the contraction ∆−¬L by adding the rule
t⇒ l for each l ∈ L.

It can be immediately verified that revisions of causal the-
ories exactly correspond to submodels of Boolean causal
models (as defined in (Bochman and Lifschitz 2015)).

Example 1, continued. In the firing squad example, let us
consider the following action sentence (in the terminology
of (Pearl 2000)):
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S4. If the captain gave no signal and rifleman A decides
to shoot, the prisoner will die and B will not shoot.
To evaluate it, we have to consider the revision

∆∗{¬C,A} of the original causal theory:
t⇒¬C, t⇒A,

C⇒B, ¬C⇒¬B, A ∨B⇒D, ¬(A ∨B)⇒¬D,
U⇒U, ¬U⇒¬U.

Both D and ¬B hold in all causal worlds of the above
theory, so S4 is justified.

By a counterfactual we will mean an expression of the
form L>A, where L is a finite set of literals, and A a propo-
sition. Traditionally, counterfactuals are defined semanti-
cally with respect to worlds. The interventionist definition
suggests, however, a powerful and useful generalization of
validity for counterfactuals with respect to causal theories.
Definition 8. Counterfactual L > A will be said to hold in
a causal theory ∆ (notation L>∆A), if A holds in all causal
worlds of the revision ∆ ∗ L.

As in the structural account, acyclic causal theories al-
ways determine a unique causal world for any interpreta-
tion of the exogenous variables. Accordingly, given a causal
world α of a causal theory ∆, let ∆α be the causal theory
obtained from ∆ by adding rules t⇒ l for each exogenous
literal l ∈ α.
Definition 9 (World-based counterfactuals). Counterfactual
L > B will be said to hold in a causal world α of a causal
theory ∆ if it holds in ∆α.

It can be easily verified that the above definition coin-
cides, in effect, with the standard definition of counterfac-
tuals in structural equation models.

Example 1, continued. Following (Pearl 2000), given the
actual world α = {U,C,A,B,D} of the firing squad exam-
ple in which the prisoner is dead, let us evaluate the follow-
ing counterfactual ¬A > D:

The prisoner would be dead even if rifleman A had not
shot.
By our definition, this world-based counterfactual should

be evaluated with respect to ∆α, which can be safely re-
duced to the following causal theory:

t⇒U, U⇒C, C⇒A, C⇒B, A ∨B⇒D.

The revision of this causal theory with ¬A, ∆α∗¬A, is
t⇒U, U⇒C, t⇒¬A, C⇒B, A ∨B⇒D.

The latter causal theory has a unique causal world
{U,C,¬A,B,D} where D holds, so ¬A > D holds in α.

As can be seen, the above definitions provide feasible
tools for evaluating counterfactuals both with respect to spe-
cific worlds and causal theories in general. Furthermore,
the completion construction for determinate causal theories,
mentioned earlier, can be adapted to the case of counterfac-
tuals, which will give us the following key result:
Theorem 4. A counterfactualL > B holds in a determinate
causal theory ∆ if and only if

comp(∆−¬L) � ∧L→ B.

The above result reduces, in effect, checking counterfac-
tual assertions in the causal setting to classical entailment.

Causal Diagrams and Parsimony
In the following sections we are going to explore the expres-
sive capabilities of the counterfactual language. As a first
step, we will re-establish an important positive claim of the
structural account that counterfactuals are sufficient for de-
termining direct causes and the causal diagram associated
with a causal theory.

On the structural account, each endogenous variable is de-
termined by a unique structural equation, which is purported
to represent a single underlying causal mechanism. Each
variable appearing on the right side of the equation (‘par-
ent’) is viewed then as a direct cause of this endogenous
variable. This understanding presupposes, however, that the
relevant equation does not contain redundant variables that
do not influence the output. Formally, this restriction can be
articulated using the following test pair condition (see, e.g.,
(Glymour et al. 2010)):

Definition 10. For each parent X of a variable Y , the func-
tion Y = f(Parents(Y )) allows a test pair for X with
respect to Y , if there exist two causal worlds, α and β, such
that (i) for all variables Z in Parents(Y ) \ X , α(Z) =
β(Z); (ii) β(X) 6= α(X); and (iii) f(α(Parents(Y )) 6=
f(β(Parents(Y )).

The above condition requires that a parent variable must
actually matter (i.e., make a difference) for its effect at least
in some circumstances. This is an essentially manipulative
condition that could be immediately reformulated in terms
of counterfactuals (interventions).

Given the above condition, we can safely assume that X
is a direct cause of Y in a causal model M if and only if X
appears on the right hand side of the equation for Y in M
(cf. (Woodward 2003; Weslake 2015)).

The relation of direct causation can be depicted graphi-
cally as a causal diagram of a causal model. As has been
demonstrated, e.g., in (Pearl 2000), such a diagram provides
important information for causal reasoning in the structural
account.

Now we are going to reformulate the above ideas and con-
structs in the logical setting of the causal calculus.

To begin with, we will restrict our attention to clausal
causal theories that include only causal rules of the form
L⇒ l, where l is a literal, and L a set of literals.

We will assume that each causal rule of a causal theory
represents an autonomous causal mechanism. This assump-
tion presupposes, however, that the causal theory does not
contain redundant causal rules that are logically subsumed
by other rules. The following definition makes this require-
ment precise:

Definition 11. A causal theory ∆ will be called parsimo-
nious if no causal rule from ∆ is derivable from the rest of
the rules in ∆ by causal inference.

Among other things, the above notion of parsimony se-
cures that the antecedents of the causal rules for each literal
in a causal theory jointly form a minimal necessary condi-
tion for the latter. This constraint constitutes one of the im-
portant amendments to the traditional regularity approach to
causation (see (Baumgartner 2013)).
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As in the structural approach, given the above restriction,
we will identify direct causes as literals that appear in the
bodies of the causal rules that cause the effect.
Definition 12. A literal l0 will be said to be a direct cause
of a literal l in a clausal causal theory ∆ if ∆ contains a rule
of the form l0, L⇒ l.

The following theorem shows that the above notion of a
direct cause can also be given a counterfactual description.
Theorem 5. l0 is a direct cause of l in a parsimonious Pearl
causal theory ∆ if and only if there exists a set L of literals
built from the rest of the atoms in ∆ such that L, l0 >∆ l
and L,¬l0 >∆ ¬l.

The above condition can be viewed as a logical counter-
part of the test pair condition in the structural account. Just
as the latter condition, it secures that each literal in the body
of a causal rule is a difference-maker for its head (cf. (Baum-
gartner 2015)). At the same time, the above theorem also
shows that counterfactuals are expressive enough to capture
the notion of a direct cause and causal diagram of a causal
theory.

Intervention-Equivalence and Basic Inference
According to (Pearl 2000), every causal model stands not for
just one but for a whole set of its submodels that embody in-
terventional contingencies. These submodels determine the
‘causal content’ of a given causal model. In accordance with
this, the following definition has been introduced (though in
a different terminology) in (Bochman and Lifschitz 2015):
Definition 13. Determinate causal theories Γ and ∆ are
intervention-equivalent (i-equivalent, for short) if, for every
set L of literals, the revision Γ∗L has the same nonmono-
tonic semantics as the revision ∆∗L.

Now, under general finiteness restrictions that have been
adopted in this study, it is easy to show that intervention-
equivalence of two causal theories amounts to coincidence
of their associated counterfactuals:
Theorem 6. Determinate causal theories ∆ and Γ are i-
equivalent iff they determine the same counterfactuals: for
any set L of literals, and any A,

L >∆ A iff L >Γ A.

Thus, i-equivalence provides a useful tool for the study of
causal counterfactuals and their expressive capabilities.
Remark. In (Bochman and Lifschitz 2015), an attempt has
been made to connect intervention equivalence with the
causal equivalence in the causal calculus. The results, how-
ever, were not entirely satisfactory. Thus, though it has
been shown that intervention equivalence implies equiva-
lence with respect to causal inference, the reverse implica-
tion has been shown to hold only for a very narrow class
of modular causal theories. In contrast, in this study we
are going to show that intervention equivalence is intimately
connected with a stronger equivalence with respect to basic
causal inference.

To begin with, our next result will show that interventions
cannot distinguish causal theories that are basically equiva-
lent:

Theorem 7. Basically equivalent determinate causal theo-
ries are intervention equivalent.

Furthermore, being combined with our preceding result,
the above theorem implies, in effect, that the language
of counterfactuals does not allow to distinguish basically
equivalent sets of causal rules.

It has been shown in (Bochman and Lifschitz 2015) (using
a suitable counterexample) that causal equivalence does not
imply intervention-equivalence. In other words, there are
causal theories that are causally equivalent, but their revi-
sions with the same literal determine different causal worlds
(and counterfactuals). Strengthening this result, the follow-
ing example shows that even regular equivalence does not
imply intervention equivalence.
Example 2. The causal theories

∆ = {p⇒ q, p ∧ q⇒ r}

and
Γ = {p⇒ q, p⇒ r}

are regularly equivalent. However, their respective revisions
∆∗¬q = {t⇒¬q, p∧q⇒ r} and Γ∗¬q = {t⇒¬q, p⇒ r}
are already not regularly equivalent. Moreover, if p is ex-
ogenous, they have different causal worlds: {p,¬q, r} is a
causal world of Γ∗¬q, but not of ∆∗¬q.

Theorem 7 above implies that the set of counterfactuals
that hold with respect to a causal theory cannot determine
uniquely the source causal theory, already because it cannot
distinguish basically equivalent theories. Still, the following
theorem will show that, up to the basic equivalence, there
is indeed a one-to-one correspondence between Pearl causal
theories and their associated counterfactuals.

Theorem 8. If ∆ is a Pearl causal theory, then, for any
literal l and any set L of literals such that l /∈ L,

L⇒b
∆ l if and only if L′ >∆ l,

for any set of literals L′ ⊇ L such that ¬l /∈ L′.

The above result implies that the set of counterfactuals
that hold with respect to a causal theory uniquely determines
the ‘basic closure’ (⇒b

∆) of the latter. As an immediate con-
sequence, we obtain

Corollary 9. Pearl causal theories are intervention equiva-
lent iff they are basically equivalent.

It should be noted, however, that the above correspon-
dence cannot be extended to arbitrary causal theories. In
fact, the following counterexample, given in (Bochman and
Lifschitz 2015), can also be used in the present context:
Example 3. Causal theories {p⇒ p} and {t⇒ p} are not
equivalent even for causal inference relations. Still, it is easy
to verify that they are intervention equivalent, since all their
possible revisions have the same causal worlds.

Basic equivalence in the structural account. As we have
mentioned in the Introduction, it has often been argued that
structural equation models and counterfactuals are essen-
tially equivalent formalisms (see, e.g., (Galles and Pearl
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1998), (Hitchcock 2007)). The above results can now be
used to justify this claim.

Our last result above makes basic inference an ‘internal’
causal logic of interventions and counterfactuals in Pearl
causal theories. It should be noted, however, that basic
equivalence (i.e., the validity of the Or rule of inference) is in
some sense ‘built-in’ in Pearl’s structural account of causa-
tion itself due to the underlying assumption that any endoge-
nous variable is determined by a single causal mechanism
(formulated as a structural equation). Indeed, according to
this principle, all the alternative causal factors that determine
a given (Boolean) endogenous variable should be conjoined
by disjunction into a single formula by the very definition of
the structural equation. Consequently, basically equivalent
causal descriptions are indistinguishable in the language of
structural equations. But then the above results will imply,
in effect, that there is indeed a one to one correspondence
between Pearl’s causal models and their associated sets of
counterfactuals.

As we are going to show, however, the assumption of a
single mechanism, and the ensuing ‘collapse’ of basically
equivalent causal descriptions could be viewed as the main
source of the problem of structural equivalents in the struc-
tural accounts of actual causation.

Counterfactuals and Actual Causation
Actual causation (aka ‘singular causation’, or ‘causation in
fact’) deals with causal claims of the form “C was a cause
of E”. In other words, it deals with post factum attribution of
causal responsibility for actual outcome. Following (Lewis
1973), an overwhelming majority of current approaches to
this notion attempt to define it in terms of counterfactuals.

The starting point of all counterfactual accounts is the but-
for test (sine qua non) commonly used in both tort law and
criminal law. The test asks, “but for C, would E have oc-
curred?” If the answer is yes, then C is an actual cause of E.
However, taken as a counterfactual assertion, the but-for test
breaks down in cases of redundant causation (e.g., preemp-
tion or overdetermination), wherefore, using David Lewis’
phrase, we need extra bells and whistles.

A broad scheme of generalizing the but-for test can be
described using the notion of “de facto dependence” from
(Yablo 2004): E de facto depends on C just in case had C
not occurred, and had other suitably chosen factors been
held fixed, then E would not have occurred. The trick
is to say what “suitably chosen” means. The majority
of counterfactual approaches, including the prominent HP
definitions of Halpern and Pearl (Halpern and Pearl 2005;
Halpern 2016a), could be viewed as particular instantiations
of this general scheme. In many accounts, the “suitably
chosen” parameters are determined by a path of counterfac-
tual dependencies that should exist between the cause and
effect (see, e.g., (Woodward 2003; Hitchcock 2007; 2001;
Weslake 2015)), though the HP definitions are more general.

It is extremely difficult to adjudicate the advantages and
shortcomings of the host of counterfactual accounts that
have been suggested in the literature and, even more gen-
erally, the precise role of counterfactuals in assertions of ac-
tual causation (cf. (Menzies 2011)). We will argue, how-

ever, that there are some general, ‘blanket’ problems for the
counterfactual approach to actual causation that transcend
the boundaries of specific definitions.

To begin with, beyond the but-for test, there are no gen-
eral principles, or ‘rationality postulates’, for the choice of
the ‘right’ counterfactual definition of actual causation. This
creates an obvious trust problem for any potential definition
of this kind3. In practice, most of this research is largely
example-driven, but even on this score there are grave doubts
whether the current ‘empirical pool’ of examples is suffi-
ciently representative (see (Glymour et al. 2010)).

In an important, though often overlooked, paper (Maudlin
2004), Tim Maudlin has forcefully argued that there are no
direct analytical connections between (actual) causation and
counterfactuals in either direction. In his first ‘thought ex-
periment’, he suggested to consider a world in which all
forces are extremely short range (within an angstrom), and
there is a particle P that is at rest at t0 and moving at t1, and
that in the period between t0 and t1 only one particle, par-
ticle Q, came within an angstrom of P. Then we know with
complete certainty what caused P to start moving: It was
the collision with Q. As Maudlin has argued, once we know
the laws, we can make this causal claim without being cer-
tain about the validity of any associated counterfactual. And
indeed, as we will see in the next section, the well-known
INUS condition can be used to provide a natural definition
of actual causation that does not use counterfactuals.

Maudlin’s second example was purported to show that fix-
ing truth values for all counterfactuals does not always fix
the truth values of all causal claims. This example will turn
out to be intimately related to our preceding results.
Example 4 (Game of Life). John Conway’s Game of Life
is played on a square grid. At any moment, each square in
the grid is either empty or occupied, which depends on the
how that square and the eight immediately adjacent squares
were occupied at the previous moment. The rules of the
game cover all possibilities, namely they specify for each
of the 512 possible patterns of occupation of a 3-by-3 grid
whether the central square is or is not occupied at the next in-
stant. Consequently, the state of the grid evolves determinis-
tically through time. Moreover, the rules thereby determine
a unique truth value for every counterfactual assertion about
this game.

Let us introduce some logical notation. Assume some
fixed enumeration of the nine squares of a 3-by-3 grid, 0
being the central square, and let pi, i = 0, . . . , 8 denote the
fact that the i-th square is occupied, while li will denote the
corresponding literals. Then any rule of the Game of Life
can be written as a causal rule of the form A⇒ l0, where A
is a propositional formula in this language.

Suppose now that there are two patterns of occupation that
differ only on square 1, but which both yield that the central
square 0 will be occupied. There are, however, two possibil-

3“Consider some other relation, schmausation, which can be
defined in terms of counterfactual dependence, adding drums and
trumpets instead of bells and whistles. From the perspective of the
counterfactual theory, schmausation is no less natural or distinc-
tive.” (Hitchcock 2011)
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ities about how these transitions are generated by the rules.
One possibility is that there is a single mechanism behind
both these transitions which does not involve square 1; this
mechanism can be encoded, for instance, by a causal rule of
the form

l2, . . . , l8⇒ p0

Another possibility, however, is that these two transitions
are governed by two different mechanisms, so they are in-
stantiations of two different laws, for instance

p1, l2, . . . , l8⇒ p0 and ¬p1, l2, . . . , l8⇒ p0.

The above difference does not affect the associated coun-
terfactuals, but it influences our causal judgments. Thus, for
a transition from a pattern where square 1 is occupied, p1

can be naturally viewed as one of the causes of p0 for the
case of alternative mechanisms, though not in the case of a
single mechanism. As has been noted by Maudlin, where
the laws are in dispute, the causes are in dispute, all while
the truth values of the counterfactuals remain unquestioned.

As can be seen, the above two possibilities correspond to
two basically equivalent causal theories, so our previous re-
sults determine that these theories are indistinguishable by
counterfactual means. However, the main lesson from the
above example is that such theories may still support differ-
ent claims about actual causation.

It turns out that the above phenomenon could also be held
responsible for the problem of ‘structural equivalents’ in the
counterfactual approaches to actual causation. It can be il-
lustrated on the following preemption example from (Pearl
2000):
Example 5 (Desert Traveler). Enemy 1 poisons T’s canteen
(p), and enemy 2, unaware of enemy 1’s action, shoots and
empties the canteen (x). A week later, T is found dead (y).

An enriched causal model, appeared in (Pearl 2000), in-
cluded also variables C (for cyanide intake) and D (for de-
hydration) and contained the following equations:

c = p ∧ ¬x d = x y = c ∨ d
If we substitute c and d into the expression for y, we ob-

tain a disjunction

y = x ∨ (p ∧ ¬x)

Pearl has argued, however, that, though x ∨ (¬x ∧ p) is
logically equivalent to x ∨ p, these two expressions are not
‘structurally equivalent’, and it is this asymmetry that makes
us proclaim x and not p to be the cause of death.

There is a clear ‘anti-logical’ overtone in the above Pearl’s
argument that seems to suggest that purely logical descrip-
tions do not always provide an adequate representation of
the relevant ‘structural’ differences. We suggest, however, a
somewhat different diagnosis. As we have mentioned, ba-
sic equivalence is built in Pearl’s structural account due to
the underlying assumption that any endogenous variable is
determined by a single causal mechanism. Recall in this re-
spect that the example of Maudlin was based on a possibility
that a variable (square occupation) is determined by two dif-
ferent, alternative, mechanisms. In the structural account,

however, all such mechanisms are combined by disjunction
into a single equation, so the relevant structural differences
could be preserved only if we either sacrifice logical equiv-
alence, or use auxiliary variables (C and D in the above ex-
ample).4 The regularity approach that we will describe in
the next section, allows for a more succinct description of
the above example without sacrificing classical equivalence.

Actual Causation on the Regularity Approach
The regularity approach originates in the ‘covering law’
analysis of causation by J. S. Mill, and is based on the well-
known INUS condition of (Mackie 1974). A perspicuous
formulation has been given in (Wright 1985):

The NESS5 test: a condition c was a cause of a con-
sequence e if and only if it was necessary for the suf-
ficiency of a set of existing antecedent conditions that
was sufficient for the occurrence of e.
Modern regularity theories (Baumgartner 2008; Grasshoff

and May 2001) have successfully met some of the traditional
challenges to the original theory by adopting more strin-
gent conditions on necessary and sufficient conditions (see
(Baumgartner 2013) for an overview). However, a more rad-
ical amendment has been suggested in (Strevens 2007), ac-
cording to which the very notion of sufficiency (which has
been assumed to be classical in the original regularity the-
ory) should be given a causal interpretation. This view has
been endorsed by the author of the NESS test himself:

The required sense of sufficiency, which I call ‘causal
sufficiency’ to distinguish it from mere lawful strong
sufficiency, is the instantiation of all the conditions in
the antecedent (‘if’ part) of a causal law, the conse-
quent (‘then’ part) of which is instantiated by the con-
sequence at issue. (Wright 2013)

According to Wright, a sequence of such causal laws that
links the condition at issue with the consequence will pro-
vide the required justification for the causal claim.

The definition of actual causation in (Bochman 2018) has
been based on an explication of the relevant notion of causal
sufficiency in terms of causal inference.

An actual causation claim presupposes a given causal the-
ory ∆, and an actual world α that is a causal (exact) world
with respect to ∆. For reasons explained in (Bochman
2018), ∆ is required to be a parsimonious causal theory.
Definition 14. Let ∆ be a clausal causal theory, and α a
causal world of ∆.
• A causal rule l1, . . . , ln⇒ l will be called active in α if
{l1, . . . , ln} ⊆ α.
• The actual sub-theory of ∆ wrt α is the set of all causal

rules from ∆ that are active in α.
4Introduction of auxiliary variables has even been suggested as

a modelling rule in (Halpern and Pearl 2005): “If we want to argue
in a case of preemption that c is a cause of e rather than d, then
there must be a random variable ... that takes on different values
depending on whether c or d is the actual cause.”

5Necessary Element of a Sufficient Set
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Remark. There is a lot of similarity, both in content and pur-
pose, between the actual causal sub-theory and the notion of
a causal beam from Chapter 10 of (Pearl 2000). Moreover,
our parsimony restriction to non-redundant rules naturally
corresponds to Pearl’s minimality requirement on functions
{fi} in a causal model that should not contain redundant
variables. All this makes our definition below much simi-
lar to the original definition of actual causation, described
in (Pearl 2000). It should be noted, however, that our con-
struction is immune to the counterexamples that have led to
abandoning this idea by Pearl.

Let ∆α denote the actual sub-theory of ∆ wrt α, while
⇒α will denote the associated causal inference (i.e.,⇒∆α ).
Definition 15 (actual cause). Let α be a causal world of a
parsimonious causal theory ∆. A literal l0 ∈ α will be said
to be an actual cause of a literal l in α wrt ∆ if and only if
there exists a set of literals L ⊆ α such that

1. l0, L⇒α l;
2. L;α l.

It has been shown in (Bochman 2018) that causal infer-
ence with respect to the actual sub-theory ⇒α can be re-
placed with an unconstrained regular inference⇒r

∆.
Corollary 10. Let α be a causal world of a clausal causal
theory ∆. Then l0 ∈ α is an actual cause of l in α wrt ∆ if
and only if there exists a set of literals L ⊆ α such that

1. l0, L⇒r
∆ l;

2. L;r
∆ l.

The above description makes our definition of actual cau-
sation a straightforward formalization of the NESS test with
regular inference as a logical explication of causal suffi-
ciency. As a consequence, regularly equivalent causal theo-
ries support the same claims of actual causation.
Example 6 (Desert Traveler, revisited). The causal model
for the Desert Traveler story can be translated into the fol-
lowing causal theory:

p ∧ ¬x⇒ c x⇒ d c⇒ y d⇒ y

¬p⇒¬c x⇒¬c ¬x⇒¬d ¬c,¬d⇒¬y
The actual world is {p, x, y,¬c, d}, so the actual sub-

theory is
x⇒ d d⇒ y x⇒¬c

Accordingly, shot (x) and dehydration (d), but not poison
(p), are actual causes of death (y).

In our logical framework, the asymmetry between the
preempting and preempted cause stems from the fact that
basically equivalent sets of causal rules might be regu-
larly non-equivalent, so they could support different asser-
tions of actual causation. In the present case, the causal
theory {x⇒ c,¬x ∧ p⇒ c} is not regularly equivalent to
{x⇒ c, p⇒ c}, though they are equivalent with respect to
basic inference. Furthermore, in contrast to the structural
account, the auxiliary variables c and d are not necessary for
describing this example; the following simple causal theory
provides the same answers about actual causation among the
salient variables {x, p, y}:

p ∧ ¬x⇒ y x⇒ y ¬x,¬p⇒¬y

Conclusions

We have provided a formal definition of counterfactuals in
the causal calculus, which has given us an opportunity to
investigate their expressive capabilities in describing cau-
sation. It has been shown, in particular, that the counter-
factual language has essential logical limitations (compared
with causal rules), namely it obliterates distinctions between
basically equivalent causal theories. However, such theories
can provide different answers about actual causation, which
could be seen as the main source of the problem of structural
equivalents in counterfactual approaches to causation.

The above results have obvious implications for the
trilemma of relations between causation, laws and counter-
factuals. Basically, we believe that these results demonstrate
that, contrary to the currently dominant opinions, counter-
factuals (at least on their standard understanding) cannot
serve as a ground neither for (causal) laws, nor even for ac-
tual causation.

In (Maudlin 2004), Tim Maudlin has argued that (actual)
causation and counterfactuals are analytically independent
notions, whereas the correlations between them are due to
the common “third factor”, namely natural laws and law-
like regularities that provide an ultimate basis for both. This
view is remarkably close to the suggested representation of
causality in the causal calculus, since in the latter causal
rules serve as causal laws that provide an ultimate basis
for causal reasoning, including both counterfactuals and ac-
tual causation. Moreover, in full accordance with Maudlin’s
views, our respective definitions of these notions do not have
direct analytical connections with each other, though both
are formulated in terms of causal rules.

The above general picture has much in common also
with the original structural account of (Pearl 2000) that uses
structural equations as a primary causal formalism. The
structural account assigns, however, a paramount role to
interventions and counterfactuals in causal reasoning, and
the above considerations should not be construed as an
argument against this role. They suggest, however, that
the relations between counterfactuals and causation are less
straightforward than what has been usually thought, espe-
cially for actual causation. We have mentioned also that the
basic equivalence is in a sense built in the structural account
itself due to the assumption that each structural equation de-
scribes a single causal mechanism. This creates situation in
which introduction of auxiliary variables is apparently the
only way to distinguish logically equivalent conditions that
are not ‘structurally’ equivalent, whether we use a counter-
factual approach or not. This produces, in turn, a seem-
ingly problematic dimension of variability, or instability, of
causal claims depending on the auxiliary variables we use
(see (Halpern 2016b)). In contrast, in our logical approach,
each causal rule of a parsimonious causal theory is viewed as
representing an independent causal mechanism, which pro-
duces more adequate descriptions for problematic cases of
actual causation. At least for propositional (Boolean) vari-
ables, causal rules seem to provide clear representational ad-
vantages over both counterfactuals and structural equations.
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