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Abstract

Argumentation is a prominent approach for reasoning with
(inconsistent) propositional information. It is based on the
justification of formulas by arguments, which are minimal
and consistent logical proofs of the formulas.
The aim of this paper is to evaluate to what extent two such
arguments are similar. For that purpose, we introduce a no-
tion of similarity measure and a set of principles that such a
measure should satisfy. We propose some intuitive extensions
of measures from the literature, and show that they fail to sat-
isfy some of the principles. Then, we come up with a more
discriminating measure which satisfies them all.

Introduction
Argumentation is a reasoning process based on the justi-
fication of claims by arguments, i.e., reasons for accept-
ing claims. It has been extensively developed in Artificial
Intelligence. Indeed, it was used for different purposes in-
cluding decision making (eg. (Amgoud and Prade 2009;
Bonet and Geffner 1996)), defeasible reasoning (eg. (Gover-
natori et al. 2004; Garcı́a and Simari 2004)), and negotiation
(Sycara 1990; Hadidi, Dimopoulos, and Moraitis 2010).

Argumentation is also used as an alternative approach for
handling inconsistency in knowledge bases (Besnard and
Hunter 2001; Amgoud and Besnard 2013). Starting from a
knowledge base encoded in propositional logic, arguments
are built using the consequence operator of the logic. An ar-
gument is a pair made of a set of formulas (called support)
and a single formula (called conclusion). The conclusion fol-
lows logically from the support. An example of argument is
〈{p, q}, p ∧ q〉. Its support and conclusion are respectively
{p, q} and p ∧ q. Once arguments are defined, attacks be-
tween them are identified and a semantics is used for eval-
uating the arguments, finally formulas supported by strong
arguments are inferred from the base.

The number of arguments built from a (finite) knowledge
base may be infinite, which impedes the relevance of the ar-
gumentation approach. It was shown in (Amgoud, Besnard,
and Vesic 2014) that infiniteness is partly due to the exis-
tence of equivalent or fully similar arguments like:

〈{p}, p〉 〈{p}, p ∧ p〉 〈{p}, p ∧ p ∧ p〉 . . .
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In the same paper, the authors studied when two arguments
are equivalent. Then, they proposed to keep only one argu-
ment per equivalent class in an argumentation graph. For in-
stance, the argument e below is attacked by four arguments
a, b, c, and d. According to (Amgoud, Besnard, and Vesic
2014), b and c are equivalent while a and b (resp. a and c)
are not. Thus, the argumentation graph will contain a, d, and
either b or c (but not both).

a : 〈{p ∧ r}, p〉 b : 〈{p}, p〉 c : 〈{p}, p ∧ p〉 d : 〈{q}, q〉

e: 〈{¬p,¬q},¬p ∧ ¬q〉

This approach reduces drastically the number of argu-
ments. Furthermore, it avoids considering equivalent attack-
ers in the evaluation of arguments by a semantics. This
is particularly important for semantics, like h-Categorizer
(Besnard and Hunter 2001), where each attacker of an argu-
ment contributes to the decrease of the argument’s strength.
Thus, if an argumentation graph contains the four attackers
of e, both b and c will have negative impact on e. This would
lead to an inaccurate acceptability status of e. The previous
approach solves this problem since it removes either b or c
(but not both) from the graph.

While the previous proposal solves the problem of fully
similar attackers, it leaves the issue with partially similar
ones open. Indeed, pairs of arguments may share parts of
their supports, parts of their conclusions, or even both.
Consider again the attackers of e, namely a, b and d.
According to (Amgoud, Besnard, and Vesic 2014), these
arguments are pairwise non-equivalent. However, while d is
completely different from the two others, a and b are quite
similar since their supports share p and their conclusions are
the same. Thus, for an accurate evaluation of e, one would
expect to consider the full strengths of a and d but only a
slight impact of b (since it is quite redundant with a). This
means that for an accurate evaluation of arguments, it is
important to assess the degree of similarity between pairs of
attackers. In the example, the degree of similarity between
a and b is greater than the one between a and d.

This paper investigates similarity between pairs of
logical arguments. It defines the notion of similarity
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measure as well as a set of principles that a measure
should satisfy. Some principles describe rational behav-
ior of a measure while others are about the origin of
similarity between arguments. As a second contribution,
it extends existing measures from the literature, namely
the well-known Jaccard measure (Jaccard 1901), Dice
measure (Dice 1945), Sorensen one (Sørensen 1948), and
their other refinements proposed in (Anderberg 1973;
Sneath, Sokal, and others 1973; Ochiai 1957;
Kulczynski 1927). It shows that the extended mea-
sures satisfy all the principles, except one of them which
deals with conclusions of arguments. Then, it comes up
with another measure which satisfies all of them.

The paper is organized as follows: It starts by present-
ing some background on propositional logic and arguments.
Then, it introduces the notion of similarity measure and prin-
ciples. In a next section, it discusses properties of measures
satisfying some principles. Then, it presents extended ver-
sions of some existing measures and a novel one.

Background
Throughout the paper, we consider classical propositional
logic (L,`), where L is a propositional language built up
from a finite set P of variables, the two Boolean constants>
(true) and ⊥ (false), and the usual connectives (¬, ∨, ∧,→,
↔), and ` is the consequence relation of the logic.

The function Var(φ) returns all the variables occurring in
the formula φ (e.g., Var(p ∧ ¬q) = {p, q}) and the func-
tion CN(φ) is the set of all logical consequences of φ, i.e.
CN(φ) = {ψ ∈ L | φ ` ψ}. Two formulas φ, ψ ∈ L are log-
ically equivalent, denoted by φ ≡ ψ, iff φ ` ψ and ψ ` φ;
they are isomorphic if and only if there exists a permutation
– a bijective renaming function – π : P → P \ Var(φ) of
the variables of φ such that ψ and π(φ)1 become logically
equivalent. We say that φ and ψ are isomorphic wrt π. For
instance, the formulas p∧¬q and t∧¬v are isomorphic wrt
the renaming function π, where π(t) = p, π(v) = q, hence
π(t ∧ ¬v) = p ∧ ¬q.

A finite subset Φ of L, denoted by Φ ⊆f L, is consistent
iff Φ 0 ⊥, it is inconsistent otherwise.

Let us now define when two finite sets Φ and Ψ of formu-
las are equivalent. A natural definition is when the two sets
have the same logical consequences, i.e., {φ ∈ L |Φ ` φ} =
{ψ ∈ L |Ψ ` ψ}. Thus, the three sets {p, q}, {p ∧ p,¬¬q},
and {p∧ q} are pairwise equivalent. This definition is strong
since it considers any inconsistent sets as equivalent. For in-
stance, {p,¬p} and {q,¬q} are equivalent even if the con-
tents (i.e. meaning of variables and formulas) of the two sets
are unrelated (assume that p and q stand respectively for
“the weather is nice” and “the laptop is heavy”). Further-
more, it considers the two sets {p, p → q} and {q, q → p}
as equivalent while their contents are different as well. In-
deed, “birds generally fly” is different from “Everything
which flies is generally a bird”. Moreover, the two argu-
ments 〈{p, p → q}, q〉 and 〈{q, q → p}, p〉 may have dif-

1π(φ) denotes the formula obtained by replacing in φ each vari-
able v ∈ Var(φ) by π(v).

ferent attackers, especially using the assumption-attack re-
lation (Elvang-Gøransson, Fox, and Krause 1993). Hence,
for identifying similarities between arguments, the content is
crucial. The idea is to spot commonalities between supports
(respectively conclusions) of arguments. This is not much
related to the semantics of propositional logic. Thus, in what
follows we consider the following definition borrowed from
(Amgoud, Besnard, and Vesic 2014). It compares formulas
contained in sets instead of logical consequences of the sets.

Definition 1 (Equivalent Sets of Formulas) Two sets of
formulas Φ,Ψ ⊆f L2 are equivalent, denoted by Φ ∼= Ψ,
iff ∀φ ∈ Φ, ∃ψ ∈ Ψ such that φ ≡ ψ and ∀ψ′ ∈ Ψ, ∃φ′ ∈ Φ
such that φ′ ≡ ψ′. We write Φ 6∼= Ψ otherwise.

Note that {p, p → q} 6∼= {q, q → p}, {p,¬p} 6∼= {q,¬q},
and {p, q} 6∼= {p ∧ q} while {p, q} ∼= {p ∧ p,¬¬q}.

Notation: For Φ,Ψ ⊆f L, Co(Φ,Ψ) = {φ ∈ Φ | ∃ψ ∈
Ψ such that φ ≡ ψ}.
Property 1 For all Φ,Ψ ⊆f L, Φ ∼= Ψ iff Co(Φ,Ψ) = Φ
and Co(Ψ,Φ) = Ψ.

Proof Assume that Co(Φ,Ψ) = Φ and Co(Ψ,Φ) = Ψ. We
can deduce that:

• Co(Φ,Ψ) = Φ implies ∀φ ∈ Φ, ∃ψ ∈ Ψ such that φ ≡ ψ,
• Co(Ψ,Φ) = Ψ implies ∀ψ ∈ Ψ, ∃φ ∈ Φ such that ψ ≡ φ.

Therefore, Φ ∼= Ψ according to the definition 1. The other
way follows also trivially from Definition 1.

Logical Arguments
Let us define the main concept of the paper, that of argu-
ment. We follow the classical definition from the literature,
namely (Besnard and Hunter 2001).

Definition 2 (Argument) An argument built in logic (L,`)
is a pair a = 〈Φ, φ〉 such that:

• Φ ⊆f L, φ ∈ L,
• Φ is consistent,
• Φ ` φ,
• @Φ′ ⊂ Φ such that Φ′ ` φ.

An argument a = 〈Φ, φ〉 is trivial iff Φ = ∅ and φ ≡ >.

Example 1 The following are examples of arguments: 〈{p∧
q}, p〉, 〈{p, q}, p ∧ q〉, 〈{p}, p〉, 〈{p}, p ∨ q〉, 〈∅, p ∨ ¬p〉.
Notations: We denote by Arg(L) the set of all arguments
that can be built in (L,`) in the sense of Definition 2. For
any a = 〈Φ, φ〉 ∈ Arg(L), the functions Supp and Conc
return respectively the support (Supp(a) = Φ) and the
conclusion (Conc(a) = φ) of a.

Let us now introduce the useful notion of sub-argument.

Definition 3 (Sub-argument) Let a = 〈Φ, φ〉, b = 〈Ψ, ψ〉
∈ Arg(L). a is a sub-argument of b, denoted by a @ b, iff
Supp(a) ⊂ Supp(b).

2The notation Ψ ⊆f L means Ψ is a finite subset of L.
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Note that an argument is not a sub-argument of itself ac-
cording to Definition 3.

Example 1 (Cont) The two arguments 〈{p}, p〉 and
〈{p}, p ∨ q〉 are sub-arguments of 〈{p, q}, p ∧ q〉.

We now define the notion of isomorphic arguments.

Definition 4 (Isomorphic Arguments) Two arguments
a, b ∈ Arg(L) are isomorphic with respect to a renaming
function π iff the two following conditions hold:
• there exists a bijective function f : Supp(a) → Supp(b)

such that for any φ ∈ Supp(a), φ and f(φ) are isomor-
phic wrt π,

• Conc(a) and Conc(b) are isomorphic wrt π.

Example 2 Let π be a renaming function such that π(r) =
p, π(v) = q. The arguments 〈{p ∧ q}, p ∧ q〉 and 〈{r ∧
v}, r ∧ v〉 are isomorphic wrt π while 〈{p ∧ q}, p ∧ q〉 and
〈{p→ q}, p→ q〉 are not.

In (Amgoud, Besnard, and Vesic 2014), the authors stud-
ied when two arguments are equivalent. We recall below
their most general definition according to which two argu-
ments are equivalent if their supports (respectively their con-
clusions) are equivalent.

Definition 5 (Equivalent Arguments) Two arguments
a, b ∈ Arg(L) are equivalent, denoted by a ≈ b, iff

(Supp(a) ∼= Supp(b)) and (Conc(a) ≡ Conc(b)).

Isomorphic arguments are not necessarily equivalent. For
instance, 〈{p∧q}, p∧q〉 and 〈{r∧v}, r∧v〉 are isomorphic
but not equivalent. All trivial arguments are equivalent.

Property 2 All trivial arguments are pairwise equivalent.

We next present a useful property of the function Co. It
holds in case of arguments but not in general.

Property 3 For all a, b ∈ Arg(L),

|Co(Supp(a), Supp(b))| = |Co(Supp(b), Supp(a))|.
Proof Let a, b ∈ Arg(L). We distinguish two cases:
i) Supp(a) = ∅ or Supp(b) = ∅. By definition,
Co(Supp(a), Supp(b)) = Co(Supp(b), Supp(a)) =
∅. Hence, |Co(Supp(a), Supp(b))| =
|Co(Supp(b), Supp(a))| = 0. ii) Supp(a) 6= ∅
and Supp(b) 6= ∅. If Co(Supp(a), Supp(b)) = ∅,
then Co(Supp(b), Supp(a)) = ∅. Assume now
that Co(Supp(a), Supp(b)) 6= ∅. Assume that
|Co(Supp(a), Supp(b))| < |Co(Supp(b), Supp(a))|.
Thus, there exists at least two formulas φ, ψ ∈
Co(Supp(b), Supp(a)) such that φ ≡ λ and ψ ≡ λ,
with λ ∈ Supp(a). This means that φ ≡ ψ. This contradicts
the fact that Supp(b) is minimal for set inclusion.

Property 4 For all a, b ∈ Arg(L),

Supp(a) ∼= Supp(b) ⇒ |Supp(a)| = |Supp(b)|.
Proof Let a, b ∈ Arg(L) be such that Supp(a) ∼= Supp(b).
Property 1 implies Co(Supp(a), Supp(b)) = Supp(a) and
Co(Supp(b), Supp(a)) = Supp(b). Property 3 implies that
|Co(Supp(a), Supp(b))| = |Co(Supp(b), Supp(a))|. Hence,
|Supp(a)| = |Supp(b)|.

Similarity Measures
Our aim is to evaluate at what extent pairs of logical ar-
guments are similar. For that purpose, we define similarity
measure, that is a function that assigns a value from the
unit interval [0, 1] to every pair of arguments. The greater
the value, the more similar the arguments.

Definition 6 (Similarity Measure) A similarity measure is
a function S : Arg(L)× Arg(L)→ [0, 1].

This definition is very general in that it accepts any func-
tion. In what follows, we restrict the possible candidate func-
tions by proposing a set of principles that any reasonable
similarity measure should satisfy. Principles are basic and
desirable properties of a measure S. The first property states
that similarity between arguments should be independent
from the syntax (i.e., names of variables).

Principle 1 (Syntax Independence) A similarity measure
S satisfies Syntax Independence iff for any renaming func-
tion π, for all a, b, a′, b′ ∈ Arg(L) such that:

• a and a′ are isomorphic wrt π,
• b and b′ are isomorphic wrt π,

it holds that S(a, b) = S(a′, b′).

The second principle, called Maximality, is about the case
of full similarity. It states that each argument is fully similar
to itself. It is worth mentioning that despite the wide range of
similarity measures in the literature (see (Lesot, Rifqi, and
Benhadda 2009; Choi, Cha, and Tappert 2010) for surveys
of existing measures), there are only two formal properties
that have been identified in the literature: maximality and
symmetry which is presented next.

Principle 2 (Maximality) A similarity measure S satisfies
Maximality iff for any a ∈ Arg(L), S(a, a) = 1.

Symmetry states that similarity is a symmetric notion.

Principle 3 (Symmetry) A similarity measure S satisfies
Symmetry iff for all a, b ∈ Arg(L), S(a, b) = S(b, a).

The next principle states that two fully similar arguments
are equally similar to any third argument.

Principle 4 (Substitution) A similarity measure S satisfies
Substitution iff for all a, b, c ∈ Arg(L), if S(a, b) = 1 then
S(a, c) = S(b, c).

The next principle states that similarity between two argu-
ments is all the greater when the supports of the arguments
share more formulas. That is, similarity increases with addi-
tion of common logically equivalent formulas in supports or
deletion of distinctive formulas.

Principle 5 (Monotony – Strict Monotony) A similarity
measure S satisfies Monotony iff for all a, b, c ∈ Arg(L), if

1. Conc(a) ≡ Conc(b) or
Var(Conc(a)) ∩ Var(Conc(c)) = ∅,

2. Co(Supp(a), Supp(c)) ⊆ Co(Supp(a), Supp(b)),
3. Supp(b) \ Co(Supp(b), Supp(a)) ⊆ Supp(c) \

Co(Supp(c), Supp(a)),

then the following hold:
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• S(a, b) ≥ S(a, c) (Monotony)
• If the inclusion in condition 2 is strict, then S(a, b) >
S(a, c). (Strict Monotony)

The first condition ensures that the conclusions of a and b
are not different and those of a and c are not similar. Strict
Monotony compares the common elements in the supports
of arguments. It cannot be defined with distinct formulas
(strict version of condition 3) since that would allow unde-
sirable cases as shown in the example below.

Example 3 Consider the arguments below.

• a = 〈{p, p→ q}, q〉,
• b = 〈{p}, p〉,
• c = 〈{t}, t〉,
• d = 〈∅, t ∨ ¬t〉.
Monotony ensures that S(a, b) ≥ S(a, c) and S(d, b) ≥
S(d, a) while Strict Monotony states that S(a, b) > S(a, c).
Note that if we extend the definition of Strict Monotony by al-
lowing strict inclusion in condition 3, then we get S(d, b) >
S(d, a) ≥ 0. Hence, S(d, b) > 0 which is counter-intuitive.

The last principle, called Dominance, ensures that simi-
larity between two logical arguments depends also on the
conclusions of the arguments. The more consequences the
conclusions have in common, the greater the similarity.

Principle 6 (Dominance – Strict Dominance) A similar-
ity measure S satisfies Dominance iff for all a, b, c ∈
Arg(L), if

1. Supp(b) ∼= Supp(c),
2. CN({Conc(a)}) ∩ CN({Conc(c)}) ⊆ CN({Conc(a)}) ∩

CN({Conc(b)}),
3. CN({Conc(b)}) \ CN({Conc(a)}) ⊆ CN({Conc(c)}) \

CN({Conc(a)})
then the following hold:

• S(a, b) ≥ S(a, c). (Dominance)
• If the inclusion in condition 2 is strict and
Co(Supp(a), Supp(b)) 6= ∅, then S(a, b) > S(a, c).
(Strict Dominance)

Note that the definition of Monotony uses Co for supports
while Dominance uses CN for conclusions. We have seen in
the background section that CN is not suitable for comparing
sets of formulas, thus supports, especially for the purpose of
assessing similarity between arguments. However, the con-
clusion of an argument is a single formula, and Co would
only check whether the conclusions of two arguments are
equivalent or not. This is not sufficient for capturing the fact
that some conclusions are logical consequences of others.

Example 4 Consider the three arguments below.

• a = 〈{p ∧ q ∧ t}, p〉,
• b = 〈{p ∧ q ∧ t}, p ∧ q〉,
• c = 〈{p ∧ q ∧ t}, p ∧ q ∧ t〉,
Dominance ensures that S(a, b) ≥ S(a, c) and S(c, b) ≥
S(c, a). Strict Dominance ensures S(c, b) > S(c, a).

The principles are independent, i.e., none of them follows
from the others. A notable exception is Substitution, which
follows from a subset of principles.

Proposition 1 If a similarity measure S satisfies Symmetry,
Maximality, Strict Monotony, Dominance, and Strict Domi-
nance, then S satisfies Substitution.

Proof Let S be a similarity measure which satisfies Maxi-
mality, Symmetry, Strict Monotony, Dominance, and Strict
Dominance. Let a, b, c ∈ Arg(L) such that S(a, b) = 1.
From Theorem 2, it holds that Supp(a) ∼= Supp(b) and
Conc(a) ≡ Conc(b). By applying Dominance twice, we get
S(c, a) ≥ S(c, b) and S(c, b) ≥ S(c, a). Hence, S(c, a) =
S(c, b). Symmetry implies S(c, a) = S(a, c) = S(c, b) =
S(b, c).

The principles are compatible, in that they can be satisfied
all together by a similarity measure.

Proposition 2 All the principles are compatible.

Proof The measures Sσm satisfy all the principles.

Properties
Let us investigate some consequences of satisfying the pro-
posed principles. We provide a characterization of all cases
where similarity between two arguments is maximal (equal
to 1). Let us present the result progressively. We first show
that any measure satisfying Maximality and Monotony de-
clares equivalent arguments as fully similar.

Theorem 1 Let S be a similarity measure that satisfies
Maximality and Monotony. For all a, b ∈ Arg(L),

if a ≈ b, then S(a, b) = 1.

Proof Let S be a similarity measure which satisfies Maxi-
mality and Monotony. Let a, b ∈ Arg(L) be such that a ≈ b.
Let us show that S(a, b) = 1. From Definition 5, Supp(a) ∼=
Supp(b) and Conc(a) ≡ Conc(b). From Monotony, it fol-
lows that S(a, a) ≥ S(a, b) and S(a, b) ≥ S(a, a). There-
fore, S(a, a) = S(a, b). From Maximality, S(a, a) = 1, so
S(a, b) = 1.

We show next that if, in addition to Maximality, a similar-
ity measure satisfies Strict Monotony and Strict Dominance,
then two fully similar arguments are necessarily equivalent.

Theorem 2 Let S be a similarity measure that satisfies
Maximality, Strict Monotony, and Strict Dominance. For all
a, b ∈ Arg(L) the following holds:

if S(a, b) = 1 then a ≈ b.

Proof Let S be a similarity measure which satisfies Max-
imality, Strict Monotony and Strict Dominance. Let a, b ∈
Arg(L) be such that S(a, b) = 1. Let us show that a ≈ b.
There are two cases:

i) a and b are trivial: From Property 2, it holds that a ≈ b.
ii) a is non-trivial: Assume that a 6≈ b. By definition,
Supp(a) 6∼= Supp(b) or Conc(a) 6≡ Conc(b).
Consider the case where Supp(a) 6∼= Supp(b). Clearly,
i) Conc(a) ≡ Conc(a), ii) Co(Supp(a), Supp(b)) ⊂
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Co(Supp(a), Supp(a)) = Supp(a) (this inclusion is
strict since Supp(a) 6= ∅ and Supp(a) 6∼= Supp(b)),
iii) Supp(a) \ Co(Supp(a), Supp(a)) ⊂ Supp(b) \
Co(Supp(a), Supp(b)). By applying Strict Monotony, we
get S(a, a) > S(a, b). From Maximality S(a, a) = 1, so
S(a, b) < 1. This shows that Supp(a) ∼= Supp(b).
Consider now the case where Supp(a) ∼= Supp(b) and
Conc(a) 6≡ Conc(b). The conditions of Strict Dominance
are verified, indeed:
• Supp(a) ∼= Supp(b),
• CN(Conc(a)) ∩ CN(Conc(b)) ⊂ CN(Conc(a)) ∩
CN(Conc(a)) = CN(Conc(a)). The implication is strict
since Conc(a) 6≡ Conc(b).
• CN(Conc(a)) \ CN(Conc(a)) ⊂ CN(Conc(b)) \
CN(Conc(a)).
• Co(Supp(a), Supp(a)) = Supp(a). Since a is non triv-

ial, then Supp(a) 6= ∅.
Strict Dominance ensures S(a, a) > S(a, b) while Maxi-
mality ensures S(a, a) = 1, so S(a, b) < 1.

Note that the case where b is non-trivial is similar to the
previous case.

From the two previous results, it follows that any sim-
ilarity measure that satisfies Maximality, Monotony, Strict
Monotony, Strict Dominance assigns the maximal value 1 to
equivalent pairs of arguments and only to equivalent ones.

Corollary 1 Let S be a similarity measure that satisfies
Maximality, Monotony, Strict Monotony, and Strict Domi-
nance. For all a, b ∈ Arg(L) the following holds:

S(a, b) = 1 iff a ≈ b.

The next result shows that an argument is neither fully
similar nor completely different from its sub-arguments.
This is the case when the similarity measure satisfies Max-
imality, Strict Monotony, and Strict Dominance. Recall that
an argument is not a sub-argument of itself.

Proposition 3 Let S be a similarity measure which satisfies
Maximality, Strict Monotony, and Strict Dominance. For all
a, b ∈ Arg(L),

if b @ a, then 0 < S(a, b) < 1.

Proof Let S be a similarity measure which satisfies Max-
imality, Strict Monotony, and Strict Dominance. Let a, b ∈
Arg(L) be such that b @ a. From the definitions of argument
and sub-argument, Supp(b) ⊂ Supp(a) and Conc(b) 6≡
Conc(a). Thus, a 6≈ b. From Theorem 2, it holds that
S(a, b) < 1.

Let us now show that S(a, b) > 0. Consider an arbi-
trary non-trivial argument c ∈ Arg(L) such that Vars(a) ∩
Vars(c) = ∅. The conditions of Strict Monotony are satis-
fied, and thus the principle leads to S(a, b) > S(a, c). Fur-
thermore, by definition of a similarity measure S(a, c) ≥ 0.
Hence, S(a, b) > 0.

Similarity measures satisfying Strict Monotony satisfy
some monotony property regarding the sub-argument rela-
tionship between arguments.

Proposition 4 Let S be a similarity measure that satisfies
Strict Monotony. For all a, b, c ∈ Arg(L), if

• Var(Conc(a)) ∩ Var(Conc(c)) = ∅, and
• c @ b @ a,

then S(a, b) > S(a, c).

Proof Let S be a similarity measure which satisfies Strict
Monotony. Let a, b, c ∈ Arg(L) be such that:

• Var(Conc(a)) ∩ Var(Conc(c)) = ∅, and
• c @ b @ a.

It can be checked below that the conditions of Strict
Monotony are guaranteed. Indeed,

• Var(Conc(a)) ∩ Var(Conc(c)) = ∅,
• Co(Supp(a), Supp(c)) = Supp(c) ⊂
Co(Supp(a), Supp(b)) = Supp(b), (note that in-
clusion is strict since c @ b and thus by definition
Supp(c) ⊂ Supp(b)),

• Supp(b) \ Co(Supp(a), Supp(b)) = Supp(c) \
Co(Supp(a), Supp(c)) = ∅.

Strict Monotony ensures S(a, b) > S(a, c).

Strict Dominance ensures that the more consequences are
shared by the conclusions of two arguments, the more simi-
lar the arguments.

Proposition 5 Let S be a similarity measure which satisfies
Strict Dominance. For all a, b, c ∈ Arg(L), if

• a, b, c are non trivial,
• Supp(a) ∼= Supp(b) ∼= Supp(c),
• Conc(a) ` Conc(b) ` Conc(c),
• Conc(c) 6` Conc(b), Conc(b) 6` Conc(a),

then S(a, b) > S(a, c).

Proof Let S be a similarity measure which satisfies Strict
Dominance. Let a, b, c ∈ Arg(L) be such that:

1. a, b, c are non trivial,
2. Supp(a) ∼= Supp(b) ∼= Supp(c),
3. Conc(a) ` Conc(b) ` Conc(c),
4. Conc(c) 6` Conc(b), Conc(b) 6` Conc(a),

The conditions of Strict Dominance are guaranteed, in-
deed:

• Co(Supp(a), Supp(b)) 6= ∅ (from condition 1),
• Supp(b) ∼= Supp(c) (from condition 2),
• CN(Conc(a)) ∩ CN(Conc(c)) ⊂ CN(Conc(a)) ∩
CN(Conc(b)) (from conditions 3, 4),

• CN(Conc(b)) \ CN(Conc(a)) = CN(Conc(c)) \
CN(Conc(a)) = ∅ (from condition 3).

Hence, Strict Dominance leads to S(a, b) > S(a, c).

The last result states that the union of supports of two
fully similar arguments is consistent. This is particularly the
case for similarity measures that satisfy Maximality, Strict
Monotony, and Strict Dominance.
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Proposition 6 Let S be a similarity measure which satisfies
Maximality, Strict Monotony, and Strict Dominance. For all
a, b ∈ Arg(L), if S(a, b) = 1, then Supp(a) ∪ Supp(b) is
consistent.

Proof Let S be a similarity measure which satisfies Maxi-
mality, Strict Monotony, and Strict Dominance. From Theo-
rem 2, it follows that Supp(a) ∼= Supp(b). Hence, Supp(a)∪
Supp(b) ∼= Supp(a). Furthermore, by definition of an argu-
ment, Supp(a) is consistent. So is for Supp(a) ∪ Supp(b).

Syntactic Similarity Measures
There are several similarity measures in the literature (see
(Lesot, Rifqi, and Benhadda 2009; Choi, Cha, and Tappert
2010) for some surveys). They were mainly defined for clas-
sification, clustering, or recognition problems. Most of them
compare pairs of objects, which have the same size. Oth-
ers, like the well-known Jaccard measure (Jaccard 1901),
Dice measure (Dice 1945), Sorensen one (Sørensen 1948),
and those proposed in (Anderberg 1973; Sneath, Sokal, and
others 1973; Ochiai 1957; Kulczynski 1927) compare ar-
bitrary pairs of non-empty sets (X and Y ) of objects. Let
a = |X ∩ Y |, b = |X − Y |, c = |Y −X|, where |.| denotes
the cardinality of a set. Table 1 recalls the formal definition
of each of the seven measures.

These measures are suitable in the argumentation context
since an argument may be seen as a pair of two sets: one set
containing the formulas of the support and another one con-
taining the conclusion. In what follows, we use these mea-
sures for assessing similarity between supports (respectively
conclusions) of pairs of arguments. However, those mea-
sures cannot be applied directly to supports of arguments
since supports may have different but still equivalent formu-
las. For instance, the two sets {p} and {p∧p} are equivalent
while their intersection is empty. Thus, we extend each mea-
sure of Table 1 using the function Co as shown in Table 2
in case of non-empty sets. Note that the original definitions
compare non-empty sets. In the argumentation context, triv-
ial arguments have an empty support. Thus, the definition of
each measure follows the following schema that we illustrate
with the Jaccard-based measure. For all Φ,Ψ ⊆ L,

sj(Φ,Ψ) =


|Co(Φ,Ψ)|

|Φ|+|Ψ|−|Co(Φ,Ψ)| if Φ 6= ∅,Ψ 6= ∅
1 if Φ = Ψ = ∅
0 otherwise.

Let us illustrate the definition of extended Jaccard mea-
sure by the following example.

Example 5 Consider the following sets of formulas:

• Φ0 = {p, q},
• Φ1 = {r, s, r ∧ s→ t},
• Φ2 = {r, s, z, r ∧ s ∧ z → u},
• Φ3 = {¬¬r, s}, and
• Φ4 = {r,¬¬s}.
It can be checked that sj(Φ0,Φ1) = 0, sj(Φ1,Φ2) = 0.4,
sj(Φ1,Φ3) = 0.66, sj(Φ2,Φ3) = 0.5, and sj(Φ3,Φ4) = 1.

The measures of Table 2 evaluate in the same way pairs
of sets containing each one formula. They assign value 1 if
the two formulas of the sets are equivalent and 0 otherwise.
Proposition 7 For any x ∈ {j, d, s, a, ss, o, ku}, for all
φ, ψ ∈ L, the following holds:

sx({φ}, {ψ}) =

{
1 if φ ≡ ψ
0 otherwise.

Proof Follows from the definition of the measures. The size
of each of the compared sets is 1.

We are now ready to introduce our similarity measures
between pairs of logical arguments. They are syntactic in
nature, and are based on a parameter σ ∈ ]0, 1[ which al-
lows a user to give different importance degrees to supports
and conclusions. Indeed, one may declare two arguments as
similar as soon as they have quite equivalent supports, or my
be more requiring by ensuring that the conclusions also are
equivalent. Due to the previous result, the same measure is
used for assessing similarity between supports an similarity
between conclusions of pairs of logical arguments.
Definition 7 (Extended Measures) Let 0 < σ < 1. We de-
fine Sσx , with x ∈ {j, d, s, a, ss, o, ku}, as a function as-
signing to any pair (a, b) ∈ Arg(L)× Arg(L) a value

Sσx (a, b) = σ.sx(Supp(a), Supp(b)) +

(1− σ)sx({Conc(a)}, {Conc(b)}).
Note that σ cannot take the value 0 since the correspond-

ing similarity measure would ignore the supports of argu-
ments, and cannot get value 1 since the measure would ig-
nore the conclusions. Both cases are undesirable since an
argument is a pair (support, conclusion).
Example 3 (Cont) It can be checked that for σ = 0.5,
Sσj (a, b) = 0.25, Sσj (a, c) = 0, Sσj (a, d) = 0.
Example 4 (Cont) It can be checked that for σ = 0.5,
Sσj (a, b) = Sσj (a, c) = 0.5.
Example 5 (Cont) Let σ = 0.5 and x = sj. Consider the
following arguments:
• a0 = 〈Φ0, p ∧ q〉,
• a1 = 〈Φ1, t〉,
• a2 = 〈Φ2, u〉,
• a3 = 〈Φ3, r ∧ s〉, and
• a4 = 〈Φ4, r ∧ ¬¬s〉.
It can be checked that we get the following values:
S0.5
j (a0, a1) = 0, S0.5

j (a1, a2) = 0.5×0.4 + 0.5×0 = 0.2,
S0.5
j (a1, a3) = 0.5× 0.66 + 0.5× 0 = 0.33, S0.5

j (a2, a3) =

0.5× 0.5 + 0.5× 0 = 0.25, and S0.5
j (a3, a4) = 1.

Due to Proposition 7, the definition of the extended mea-
sures can be simplified as follows:
Proposition 8 For any 0 < σ < 1, for any x ∈
{j, d, s, a, ss, o, ku}, for all (a, b) ∈ Arg(L)× Arg(L), the
following property holds:

Sσx (a, b) =

{
σ.sx(Supp(a), Supp(b)) + (1− σ)

if Conc(a) ≡ Conc(b)
σ.sx(Supp(a), Supp(b)) otherwise.
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Jaccard (Jaccard 1901) sjac(X,Y ) = a
a+b+c

Dice (Dice 1945) sdic(X,Y ) = 2a
2a+b+c

Sorensen (Sørensen 1948) ssor(X,Y ) = 4a
4a+b+c

Symmetric Anderberg (Anderberg 1973) sand(X,Y ) = 8a
8a+b+c

Sokal and Sneath 2 (Sneath, Sokal, and others 1973) sss(X,Y ) = a
a+2(b+c)

Ochiai (Ochiai 1957) soch(X,Y ) = a√
a+b
√
a+c

Kulczynski 2 (Kulczynski 1927) sku2(X,Y ) = 1
2

(
a
a+b + a

a+c

)
Table 1: Similarity Measures for Sets of Objects

Extended Jaccard sj(Φ,Ψ) = |Co(Φ,Ψ)|
|Φ|+|Ψ|−|Co(Φ,Ψ)|

Extended Dice sd(Φ,Ψ) = 2|Co(Φ,Ψ)|
|Φ|+|Ψ|

Extended Sorensen ss(Φ,Ψ) = 4|Co(Φ,Ψ)|
|Φ|+|Ψ|+2|Co(Φ,Ψ)|

Extended Symmetric Anderberg sa(Φ,Ψ) = 8|Co(Φ,Ψ)|
|Φ|+|Ψ|+6|Co(Φ,Ψ)|

Extended Sokal and Sneath 2 sss(Φ,Ψ) = |Co(Φ,Ψ)|
2(|Φ|+|Ψ|)−3|Co(Φ,Ψ)|

Extended Ochiai so(Φ,Ψ) = |Co(Φ,Ψ)|√
|Φ|
√
|Ψ|

Extended Kulczynski 2 sku(Φ,Ψ) = 1
2

(
|Co(Φ,Ψ)|
|Φ| + |Co(Φ,Ψ)|

|Ψ|

)
Table 2: Similarity Measures for Sets Φ,Ψ ⊆f L.

Proof Follows from Proposition 7.

We show that any measure Sσx assigns values from the
unit interval [0, 1] to any pair of arguments. Thus, any Sσx is
a similarity measure in the sense of Definition 6.

Proposition 9 For any 0 < σ < 1, for any x ∈
{j, d, s, a, ss, o, ku}, for all a, b ∈ Arg(L), Sσx (a, b) ∈
[0, 1]. Hence, Sσx is a similarity measure.

Proof Let a, b ∈ Arg(L), x ∈ {j, d, s, a, ss, o, ku},
and 0 < σ < 1. sx(Supp(a), Supp(b)) ∈ [0, 1] and
sx(Conc(a), Conc(b)) ∈ [0, 1]. Hence, Sσx (a, b) ∈ [0, 1].

Similarity measures Sσx satisfy all the principles except
Strict Dominance.

Theorem 3 For any 0 < σ < 1, for any x ∈
{j, d, s, a, ss, o, ku}, Sσx violates Strict Dominance and sat-
isfies all the remaining principles.

Proof We prove the result for extended Jaccard measures.
The same reasoning holds for the others. Let σ ∈]0, 1[.

Maximality: Let a ∈ Arg(L). There are two cases: i) a
is trivial, hence Supp(a) = ∅. By definition of extended
Jaccard measure, sj(Supp(a), Supp(a)) = 1. ii) a is non-
trivial. Hence, Co(Supp(a), Supp(a)) = Supp(a). Thus,
sj(Supp(a), Supp(a)) = 1. Furthermore, from Proposition
7, sj(Conc(a), Conc(a)) = 1. Hence, Sσj (a, a) = 1.

Symmetry: Let a, b ∈ Arg(L). We show that
sσj (a, b) = sσj (b, a). There are three cases: i) a and
b are both trivial. Then, Supp(a) = Supp(b) = ∅
and Conc(a) ≡ Conc(b). Hence, by definition of
extended measure, sj(Supp(a), Supp(b)) = 1 and
from Proposition 7, sj(Conc(a), Conc(b)) = 1. Hence,
Sσj (a, b) = Sσj (b, a) = 1. ii) a is trivial and b is non-trivial.

Then, Supp(a) = ∅ and Conc(a) 6≡ Conc(b). By definition,
sj(Supp(a), Supp(b)) = sj(Supp(b), Supp(a)) = 0 and
from Proposition 7, sj({Conc(a)}, {Conc(b)}) = 0. So,
Sσj (a, b) = Sσj (b, a) = 0. iii) both a and b are not trivial,
i.e., Supp(a) 6= ∅ and Supp(b) 6= ∅. From Property
3, |Co(Supp(a), Supp(b))| = |Co(Supp(b), Supp(a))|.
So, sj(Supp(a), Supp(b)) = sj(Supp(b), Supp(a)).
From Proposition 7, sj({Conc(a)}, {Conc(b)}) =
sj({Conc(b)}, {Conc(a)}). Thus, Sσj (a, b) = Sσj (b, a).

Substitution: Let a, b, c ∈ Arg(L) such that Sσj (a, b) = 1.
From Theorem 4, it holds that a ≈ b. Hence, Supp(a) ∼=
Supp(b) and Conc(a) ≡ Conc(b). If Conc(a) ≡ Conc(c),
then Conc(b) ≡ Conc(c). So, sj({Conc(a)}, {Conc(c)}) =
sj({Conc(b)}, {Conc(c)}). It is thus sufficient to check the
equality sj(Supp(a), Supp(c)) = sj(Supp(b), Supp(c)).
From Property 1, Co(Supp(a), Supp(b)) = Supp(a)
and Co(Supp(b), Supp(a)) = Supp(b). From Prop-
erty 3, |Supp(a)| = |Supp(b)|. Furthermore,
Co(Supp(a), Supp(c)) = Co(Supp(b), Supp(c)). Hence,
sj(Supp(a), Supp(c)) = sj(Supp(b), Supp(c)). Conse-
quently, Sσj (a, c) = Sσj (b, c).

Monotony - Strict Monotony: Let σ ∈]0, 1[ and a, b, c ∈
Arg(L) be such that:

1. Conc(a) ≡ Conc(b) or
Var(Conc(a)) ∩ Var(Conc(c)) = ∅,

2. Co(Supp(a), Supp(c)) ⊆ Co(Supp(a), Supp(b)),

3. Supp(b) \ Co(Supp(a), Supp(b)) ⊆ Supp(c) \
Co(Supp(a), Supp(c)).

There are two cases:
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• c is trivial, i.e., Supp(c) = ∅. Condition 3) implies
Supp(b) \ Co(Supp(a), Supp(b)) = ∅, hence Supp(b) =
Co(Supp(a), Supp(b)) and Supp(a) ∼= Supp(b). Conse-
quently, sj(Supp(a), Supp(b)) = 1. Since σ > 0, then
Sσj (a, b) > 0.

– Assume that a is trivial. Since Supp(b) ∼= Supp(a),
then b is also trivial. From Theorem 4, Sσj (a, b) =

Sσj (a, c) = 1.
– Assume that a is not trivial. Then, Conc(a) 6≡ Conc(c)

and sj({Conc(a)}, {Conc(c)}) = 0. Furthermore,
sj(Supp(a), Supp(c)) = 0. Hence, Sσj (a, c) = 0. So,
Sσj (a, b) > Sσj (a, c).

• c is not trivial, i.e., Supp(c) 6= ∅ and Conc(c) 6≡ >.
– Assume that a is trivial. So, sj(Supp(a), Supp(c)) = 0

and sj({Conc(a)}, {Conc(c)}) = 0 lead-
ing to Sσj (a, c) = 0. If b is trivial, then
Sσj (a, b) = 1 (from Theorem 4). If b is not
trivial, then sj(Supp(a), Supp(b)) = 0 and
sj({Conc(a)}, {Conc(b)}) = 0 leading to
Sσj (a, b) = 0.

– Assume that a is not trivial. Assume that b
is trivial, then sj(Supp(a), Supp(b)) = 0 and
sj({Conc(a)}, {Conc(b)}) = 0 leading to Sσj (a, b) =

0. Condition 2) implies that Co(Supp(a), Supp(c) = ∅.
So, sj(Supp(a), Supp(c)) = 0. Note that Conc(a) 6≡
Conc(b) (since a is not trivial), then Var(Conc(a)) ∩
Var(Conc(c)) = ∅. Thus, Conc(a) 6≡ Conc(c) and so
sj({Conc(a)}, {Conc(c)}) = 0 leading to Sσj (a, c) =

0. Thus, Sσj (a, b) = Sσj (a, c).
Assume now that b is not trivial (i.e., the
3 arguments are not trivial). From condition
2) it holds that |Co(Supp(a), Supp(c))| ≤
|Co(Supp(a), Supp(b))| and from condi-
tion 3) |Supp(b) \ Co(Supp(b), Supp(a))| ≤
|Supp(c) \ Co(Supp(c), Supp(a))|. Since

sj(Supp(a), Supp(b)) =

|Co(Supp(a), Supp(b))|
|Supp(a)|+ |Supp(b) \ Co(Supp(a), Supp(b)))|

,

we get sj(Supp(a), Supp(b)) ≥
sj(Supp(a), Supp(c)). Since
sj({Conc(a)}, {Conc(b)}) = 1 or
sj({Conc(a)}, {Conc(c)}) = 0, then sσj (a, b) ≥
sσj (a, c).

If the condition 2 is strict then |Co(Supp(a), Supp(b))| >
|Co(Supp(a), Supp(c))| and thus Sσj (a, b) > Sσj (a, c).

Dominance: Let a, b, c ∈ Arg(L) such that:
1. Supp(b) ∼= Supp(c),
2. CN({Conc(a)}) ∩ CN({Conc(c)}) ⊆ CN({Conc(a)}) ∩

CN({Conc(b)}),
3. CN({Conc(b)}) \ CN({Conc(a)}) ⊆ CN({Conc(c)}) \

CN({Conc(a)}).
Condition 1 implies that Co(Supp(a), Supp(b)) =
Co(Supp(a), Supp(c)). From Property 4, |Supp(b)| =

|Supp(c)|. Hence, sj(Supp(a), Supp(b)) =
sj(Supp(a), Supp(c)). Assume now that Conc(a) ≡
Conc(b). Thus, sj(Conc(a), Conc(b)) = 1. Further-
more, from condition 2), we get CN({Conc(a)}) ∩
CN({Conc(c)}) = CN({Conc(a)}). Thus, CN({Conc(a)}) =
CN({Conc(c)}), and Conc(a) ≡ Conc(c). So,
sj(Conc(a), Conc(c)) = 1 and finally, Sσj (a, b) = Sσj (a, c).
The same holds for the case Conc(a) ≡ Conc(c). Assume
now that Conc(a) 6≡ Conc(b) and Conc(a) 6≡ Conc(c).
From Proposition 7, sj(Conc(a), Conc(b)) =
sj(Conc(a), Conc(c)) = 0. Thus, Sσj (a, b) = Sσj (a, c).

Example 4 shows that Sσj violate Strict Dominance.

Despite the fact of violating Strict Dominance, any mea-
sure Sσx assigns the maximal value 1 only to equivalent ar-
guments, i.e. the result of Corollary 1 still holds. This result
generalizes the binary similarity measure defined in (Am-
goud, Besnard, and Vesic 2014), where arguments are either
equivalent (value 1) or completely different (value 0).

Theorem 4 For any σ ∈ (0, 1), for any x ∈
{j, d, s, a, ss, o, ku}, for all a, b ∈ Arg(L),

Sσx (a, b) = 1 iff a ≈ b.

Proof We show the result for extended Jaccard-based
measures. The same reasoning holds for the other mea-
sures. Let a, b ∈ Arg(L) and σ ∈ ]0, 1[. Assume that
a ≈ b, then i) Supp(a) ∼= Supp(b) and ii) Conc(a) ≡
Conc(b). From i) and Property 1, Co(Supp(a), Supp(b)) =
Supp(a). From Property 4, |Supp(a)| = |Supp(b)|. Thus,
sj(Supp(a), Supp(b)) = 1. From ii) and Proposition 7,
sj(Conc(a), Conc(b)) = 1. So, Sσj (a, b) = 1.

Assume that Sσj (a, b) = 1. Since σ ∈ ]0, 1[, then
sj(Supp(a), Supp(b)) = 1 and sj(Conc(a), Conc(b)) = 1.
From Proposition 7, it holds that Conc(a) ≡
Conc(b). Recall that sj(Supp(a), Supp(b)) =

|Co(Supp(a),Supp(b))|
|Supp(a)|+|Supp(b)|−|Co(Supp(a),Supp(b))| = 1. Furthermore,
|Supp(a)| + |Supp(b)| − |Co(Supp(a), Supp(b))|
= |Supp(a) \ Co(Supp(a), Supp(b))| + |Supp(b) \
Co(Supp(b), Supp(a))| + |Co(Supp(a), Supp(b))|.
Thus, |Supp(a) \ Co(Supp(a), Supp(b))| +
|Supp(b) \ Co(Supp(b), Supp(a))| = 0. So,
|Supp(a) \ Co(Supp(a), Supp(b))| = 0 and
|Supp(b) \ Co(Supp(b), Supp(a))| = 0. Then
Supp(a) = Co(Supp(a), Supp(b)) and Supp(b) =
Co(Supp(b), Supp(a)). Thus, Supp(a) ∼= Supp(b), and so
a ≈ b.

Measures Sσx assign the minimal value 0 to pairs of argu-
ments whose conclusions are not equivalent and their sup-
ports do not share any equivalent formula.

Theorem 5 For any σ ∈ (0, 1), for all x ∈
{j, d, s, a, ss, o, ku}, for all a, b ∈ Arg(L),

Sσx (a, b) = 0 iff
{

Co(Supp(a), Supp(b)) = ∅ and
Conc(a) 6≡ Conc(b).

Proof Let x ∈ {j, d, s, a, ss, o, ku}, σ ∈ (0, 1),
and a, b ∈ Arg(L). Assume that Sσx (a, b) = 0. Since
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σ > 0, then i) sx(Supp(a), Supp(b)) = 0 and ii)
sx({Conc(a)}, {Conc(b)}) = 0. From Proposition 7,
Conc(a) 6≡ Conc(b). This means also that either a
or b is not trivial. There are thus two cases regarding
ii): Case 1. Supp(a) = ∅ or Supp(b) = ∅. Hence,
Co(Supp(a), Supp(b)) = ∅. Case 2. Supp(a) 6= ∅ and
Supp(b) 6= ∅. Thus, Co(Supp(a), Supp(b)) = ∅.

Assume now that i) Co(Supp(a), Supp(b)) = ∅
and ii) Conc(a) 6≡ Conc(b). From Proposition 7,
sx({Conc(a)}, {Conc(b)}) = 0. Regarding i) there are two
cases: Case 1. Supp(a) 6= ∅ and Supp(b) 6= ∅; and Case 2.
Supp(a) = ∅ or Supp(b) 6= ∅ (but not both since Conc(a) 6≡
Conc(b)). In both cases, sx(Supp(a), Supp(b)) = 0. Hence,
Sσx (a, b) = 0.

Theorem 3 shows that all the measures Sσx , with x ∈
{j, d, s, a, ss, o, ku}, satisfy the same set of principles and
violate Strict Dominance. An interesting question is thus:
are there links between these measures? do they return the
same values? For answering these questions, we introduce
the notion of equivalent measures.

Definition 8 (Equivalent Measures) Two similarity mea-
sures S and S ′ are equivalent iff for all a, b, c, d ∈ Arg(L),

S(a, b) < S(c, d)⇐⇒ S ′(a, b) < S ′(c, d).

We show that the measures Sσj , Sσd , Sσs , Sσa , and Sσss are
pairwise equivalent for some arbitrary but fixed σ.

Theorem 6 Let σ ∈ (0, 1). The measures Sσj , Sσd , Sσs , Sσa ,
and Sσss are pairwise equivalent.

The following result compares the values assigned by
each measure for a given pair of arguments. It shows that
for a fixed σ, Sσa provides the greatest degree of similarity
while Sσss provides the lowest one. Similarly, the values as-
signed by the measure Sσo are lower than those of Sσku.

Theorem 7 Let σ ∈ (0, 1). For any a, b ∈ Arg(L),

• Sσss(a, b) ≤ Sσj (a, b) ≤ Sσd (a, b) ≤ Sσa (a, b) ≤ Sσa (a, b).
• Sσo (a, b) ≤ Sσku(a, b).

Model-based Similarity Measure
We have seen in the previous section, that the syntactic mea-
sures Sσx violate Strict Dominance. Thus, they do not dis-
tinguish between arguments like: a = 〈{p ∧ q ∧ t}, p〉,
b = 〈{p ∧ q ∧ t}, p ∧ q〉, and c = 〈{p ∧ q ∧ t}, p ∧ q ∧ t〉.
They all return Sσx (a, b) = Sσx (a, c). They are thus not able
to capture the fact that the conclusion of a is closer to the
conclusion of b than that of c.

In what follows, we propose to use a semantic approach
for comparing conclusions. The idea is to compare their
models. Recall that a model of a formula φ is an interpreta-
tion (a total function from P to {0, 1}) that makes φ true in
the usual truth-functional way. Mod(φ) denotes the set of all
models of the formula φ, i.e. Mod(φ) = {ω ∈ W | ω |= φ},
whereW is the set of all interpretations.

Similarity between conclusions of two arguments will be
assessed by the measure smj below. It applies Jaccard for-
mula on their models as follows:

Definition 9 (Model-based Jaccard Measure) The model-
based Jaccard measure is a function smj assigning for all
φ, ψ ∈ L, the value:

smj(φ, ψ) =
|Mod(φ) ∩ Mod(ψ)|
|Mod(φ) ∪ Mod(ψ)|

We are now ready to introduce the novel similarity mea-
sure for logical arguments. It combines a syntactic measure
for comparing the supports and smj for conclusions. The for-
mer can be any measure of Table 2 since they satisfy all
Monotony and Strict Monotony which deal with supports.
However, for the sake of simplicity and clarity, we only fo-
cus on Jaccard-based one, sj.

Definition 10 (Model-based Measure) Let 0 < σ < 1.
We define Sσm as a function assigning to any pair (a, b) ∈
Arg(L)× Arg(L) a value

Sσm (a, b) = σ.sj(Supp(a), Supp(b)) +

(1− σ)smj(Conc(a), Conc(b)).

It is worth mentioning that the measure smj is not suitable
for supports since it would assign value 1 to supports that
do not express the same information like {p, p → q} and
{q, q → p}.
Example 4 (Cont) Recall again the arguments below.

• a = 〈{p ∧ q ∧ t}, p〉,
• b = 〈{p ∧ q ∧ t}, p ∧ q〉,
• c = 〈{p ∧ q ∧ t}, p ∧ q ∧ t〉.
It can be checked that S0.5

m (a, b) = 0.75, S0.5
m (a, c) =

0.625.

Theorem 8 For any σ ∈ (0, 1), the similarity measure Sσm
satisfies all the principles.

Related Work
Similarity is studied in different domains (information re-
trieval, classification, image processing, etc). There are thus
several measures in the literature. Some of them com-
pare numerical objects while others compare arbitrary sets
(Lesot, Rifqi, and Benhadda 2009; Choi, Cha, and Tappert
2010). The numerical ones are not appropriate in the con-
text of arguments while the others are shown to be efficient,
especially in the comparison of supports of arguments.

In the argumentation literature, similarity has also been
investigated either within an argument (Walton, Reed, and
Macagno 2008; Walton 2010; 2013) or between pairs of
arguments (Misra, Ecker, and Walker 2016; Stein 2016;
Konat, Budzynska, and Saint-Dizier 2016). Indeed, Walton
discussed different argument schemes like analogical argu-
ments or similarity arguments. The supports of such argu-
ments contain premises with compare objects.

Similarity between pairs of arguments was investigated
in the context of argument mining (Misra, Ecker, and
Walker 2016; Stein 2016; Konat, Budzynska, and Saint-
Dizier 2016). The goal is to detect redundant textual argu-
ments. Budan et al. 2015 defined another measure assess-
ing similarity between pairs of analogical arguments. It is
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based on the number of common features between compared
objects. The type of arguments considered is thus different
from the deductive arguments investigated in our paper.

Finally, (Wooldridge, Dunne, and Parsons 2006; Amgoud,
Besnard, and Vesic 2014) investigated equivalence, full sim-
ilarity, between logical arguments. We have seen that our
approach generalizes those proposals. Indeed, it assigns the
maximal value to each pair of equivalent arguments.

Conclusion
The paper investigated the question: to what extent two log-
ical arguments are similar? It defined thus the notion of sim-
ilarity measure, and proposed some intuitive principles that
might be satisfied by a measure. Then, it proposed several
syntactic measures that extend very old ones from the liter-
ature, and investigated their properties.

This work can be extended in several ways. The first one
consists of characterizing the whole family of measures that
satisfy the principles. The second one consists of using the
proposed measures for refining argumentation systems that
deal with inconsistent information.
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