
Variable Elimination for DLP-Functions

Ricardo Gonçalves,1 Tomi Janhunen,2 Matthias Knorr,1 João Leite,1 Stefan Woltran,3
1Universidade Nova de Lisboa

2Aalto University
3Vienna University of Technology

Abstract

Forgetting, or the elimination of middle variables no longer
deemed relevant, has recently gained considerable interest in
the context of Answer Set Programming (ASP), notably due
to the formalization of strong persistence, a property based
on strong equivalence between the program and the result of
forgetting modulo the atoms being eliminated, which seems
to adequately encode the requirements of the forgetting oper-
ation. Whereas it has been shown that in general, in ASP, it is
not always possible to forget and obey strong persistence, the
structure of modules in the form of DLP-functions, namely
their restricted interface, invites the investigation of a weaker
notion of persistence based on uniform equivalence.

Forgetting
The operation of forgetting aims at eliminating a set of vari-
ables from a knowledge base, while preserving all relation-
ships (direct and indirect) between the remaining variables.
Not only has forgetting been shown to be useful, e.g., as a
means to clean up a theory by eliminating all auxiliary vari-
ables that have no relevant declarative meaning, but even
necessary, e.g., as a means to deal with privacy and legal is-
sues such as to eliminate illegally obtained data (Gonçalves,
Knorr, and Leite 2016c), or to comply with the recently en-
acted General Data Protection Regulation, namely its right
to be forgotten.

Forgetting has been extensively studied in the context of
classical logic (Middeldorp, Okui, and Ida 1996; Lang, Lib-
eratore, and Marquis 2003; Moinard 2007), and, more re-
cently, in the context of Answer Set Programming (ASP)
(Zhang and Foo 2006; Eiter and Wang 2008; Wong 2009;
Wang, Wang, and Zhang 2013; Knorr and Alferes 2014;
Wang et al. 2014; Delgrande and Wang 2015; Gonçalves,
Knorr, and Leite 2016a; 2016c; 2017).

Strong Persistence
Most operators and classes of operators of forgetting pre-
sented in the context of ASP so far share one common fea-
ture, namely that they rely, one way or another, on the no-
tion of strong equivalence1 between answer set programs

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Two programs P1 and P2 and strongly equivalent iff P1 ∪ R
and P2 ∪R have the same answer sets, for all context programs R.

to determine whether the semantics of the program w.r.t.
the atoms not forgotten has been preserved. According to
(Goncalves, Knorr, and Leite 2016b), this is best captured by
the so-called strong persistence (Knorr and Alferes 2014), a
property, inspired by strong equivalence, that requires that
there be a correspondence between the answer sets of a pro-
gram before and after forgetting a set of atoms, and that such
correspondence be preserved in the presence of additional
rules not containing the atoms to be forgotten. Formally,
(SP) F satisfies Strong Persistence if, for each f ∈ F, P ∈ C

and V ⊆ A, we have AS(f(P, V)∪R) = AS(P ∪R)‖V ,
for all context programs R ∈ C with A(R) ⊆ A\V .

where F is a class of forgetting operators, C the class of pro-
grams over the signature A of a given operator f ∈ F, V
the set of atoms we want to forget about from program P ,
AS(P) the set of answer sets for P , and S‖V the omission
of any atoms in V from any elements in S.

However, it has been shown that it is not always possible
to forget and satisfy strong persistence (Gonçalves, Knorr,
and Leite 2016c). Given that not forgetting is sometimes
not an option, e.g., for legal reasons, it is mandatory to ad-
dress what to do when we have to forget a set of atoms, but
cannot do it without violating this property. This was first
addressed in (Gonçalves et al. 2017), where three different
alternatives to the relaxation of strong persistence were in-
vestigated, each corresponding to relaxing one of the three
properties that it can be decomposed in.

Yet, strong persistence may sometimes be too strong in
the context of forgetting, just as strong equivalence is some-
times too strong in practical uses of ASP. In fact, in ASP, it
is often the case that one separately develops a program P
that essentially encodes the declarative specification of the
problem it aims to solve, to which one adds a set of facts
R that encodes the specific instance to be solved. This has
been shown to be an adequate programming principle to-
wards a more modular view of ASP, for example to simplify
the composition of program parts into larger programs. In
such cases, the most adequate notion of equivalence is the
so-called uniform equivalence (Eiter and Fink 2003), which
only requires that two programs, to be uniformly equivalent,
have the same answer sets whenever an arbitrary set of facts
is added to both of them. For example, if we wish to find a
simpler encoding of the problem, we would look for some
program P ′ that is uniformly equivalent to P .

Proceedings of the Sixteenth International Conference on
Principles of Knowledge Representation and Reasoning (KR 2018)

643

DLP-Functions

Modularity in ASP has been the focus of a significant
amount of research (Dao-Tran et al. 2009; Harrison and
Lierler 2016; Janhunen et al. 2009; Oikarinen and Janhunen
2008). In one of the most significant general approaches to
modularity – the so-called programming-in-the-large – com-
positional operators are provided for combining separate and
independent modules based on standard semantics. This is
the case of DLP-functions (Janhunen et al. 2009). DLP-
functions (modules) are essentially disjunctive logic pro-
grams extended with well-defined input/output interfaces,
which allow for the composition of complex programs po-
tentially integrating large numbers of these modules. The in-
put of such a module is composed of a set of facts, which is
in perfect harmony with the idea of uniform equivalence.

Definition 1 (DLP-function) A DLP-function, Π, is a
quadruple 〈R, I,O,H〉, where I , O, and H are pairwise
distinct sets of input atoms, output atoms, and hidden atoms,
respectively, and R is a disjunctive logic program such that
for each disjunctive rule A ← B, notC in R,
1. A ∪B ∪ C ⊆ I ∪O ∪H , and
2. if A �= ∅, then A ∩ (O ∪H) �= ∅.

Just as strong equivalence is excessive in modular ASP, if
we wish to forget about some atoms from the program P of
a module, it also seems excessive to require strong persis-
tence, given that we know that the actual inputs of modules
consist of facts only.

Indeed, this suggests that in modular ASP, the operation
of forgetting should be guided by a weaker form of persis-
tence. In this research, we investigate such weaker form of
persistence including classes of forgetting operators that sat-
isfy it and its applicability in the context of forgetting in
DLP-functions. In particular, we are interested in the dif-
ferent roles played by atoms in DLP-functions and how they
may affect the possibilities for elimination.

Acknowledgments R. Gonçalves, M. Knorr, and J.
Leite were partially supported by FCT project FOR-
GET (PTDC/CCI-INF/32219/2017) and by FCT project
NOVA LINCS (UID/CEC/04516/2013). T. Janhunen was
partially supported by the Academy of Finland grant
251170. R. Gonçalves was partially supported by FCT grant
SFRH/BPD/100906/2014. S. Woltran was supported by the
Austrian Science Fund (FWF): Y698, P25521.

References

Dao-Tran, M.; Eiter, T.; Fink, M.; and Krennwallner, T.
2009. Modular nonmonotonic logic programming revisited.
In Hill, P. M., and Warren, D. S., eds., Procs. of ICLP, vol-
ume 5649 of LNCS, 145–159. Springer.
Delgrande, J. P., and Wang, K. 2015. A syntax-independent
approach to forgetting in disjunctive logic programs. In
Bonet, B., and Koenig, S., eds., Procs. of AAAI, 1482–1488.
AAAI Press.
Eiter, T., and Fink, M. 2003. Uniform equivalence of logic
programs under the stable model semantics. In Procs. of
ICLP, 224–238. Springer.

Eiter, T., and Wang, K. 2008. Semantic forgetting in answer
set programming. Artif. Intell. 172(14):1644–1672.
Gonçalves, R.; Knorr, M.; Leite, J.; and Woltran, S. 2017.
When you must forget: Beyond strong persistence when for-
getting in answer set programming. TPLP 17(5-6):837–854.
Gonçalves, R.; Knorr, M.; and Leite, J. 2016a. Forgetting
in ASP: the forgotten properties. In Michael, L., and Kakas,
A. C., eds., Procs. of JELIA, volume 10021 of LNCS, 543–
550. Springer.
Goncalves, R.; Knorr, M.; and Leite, J. 2016b. The ultimate
guide to forgetting in answer set programming. In Baral, C.;
Delgrande, J.; and Wolter, F., eds., Procs. of KR, 135–144.
AAAI Press.
Gonçalves, R.; Knorr, M.; and Leite, J. 2016c. You can’t al-
ways forget what you want: on the limits of forgetting in an-
swer set programming. In Fox, M. S., and Kaminka, G. A.,
eds., Procs. of ECAI. IOS Press.
Gonçalves, R.; Knorr, M.; and Leite, J. 2017. Iterative
variable elimination in ASP. In Oliveira, E. C.; Gama, J.;
Vale, Z. A.; and Cardoso, H. L., eds., Procs. of EPIA, vol-
ume 10423 of LNCS, 643–656. Springer.
Harrison, A., and Lierler, Y. 2016. First-order modular logic
programs and their conservative extensions. TPLP 16(5-
6):755–770.
Janhunen, T.; Oikarinen, E.; Tompits, H.; and Woltran, S.
2009. Modularity aspects of disjunctive stable models. J.
Artif. Intell. Res. (JAIR) 35:813–857.
Knorr, M., and Alferes, J. J. 2014. Preserving strong equiv-
alence while forgetting. In Fermé, E., and Leite, J., eds.,
Procs. of JELIA, volume 8761 of LNCS, 412–425. Springer.
Lang, J.; Liberatore, P.; and Marquis, P. 2003. Propositional
independence: Formula-variable independence and forget-
ting. J. Artif. Intell. Res. (JAIR) 18:391–443.
Middeldorp, A.; Okui, S.; and Ida, T. 1996. Lazy narrowing:
Strong completeness and eager variable elimination. Theor.
Comput. Sci. 167(1&2):95–130.
Moinard, Y. 2007. Forgetting literals with varying proposi-
tional symbols. J. Log. Comput. 17(5):955–982.
Oikarinen, E., and Janhunen, T. 2008. Achieving compo-
sitionality of the stable model semantics for smodels pro-
grams. TPLP 8(5-6):717–761.
Wang, Y.; Zhang, Y.; Zhou, Y.; and Zhang, M. 2014. Knowl-
edge forgetting in answer set programming. J. Artif. Intell.
Res. (JAIR) 50:31–70.
Wang, Y.; Wang, K.; and Zhang, M. 2013. Forgetting for
answer set programs revisited. In Rossi, F., ed., Procs. of
IJCAI. IJCAI/AAAI.
Wong, K.-S. 2009. Forgetting in Logic Programs. Ph.D.
Dissertation, The University of New South Wales.
Zhang, Y., and Foo, N. Y. 2006. Solving logic program
conflict through strong and weak forgettings. Artif. Intell.
170(8-9):739–778.

644

