
ExactLearner: A Tool for Exact Learning of EL Ontologies

Ricardo Duarte, Boris Konev, Ana Ozaki
Technische Universität Dresden, Germany
University of Liverpool, United Kingdom

KRDB Research Centre, Free University of Bozen-Bolzano, Italy

Abstract
We present ExactLearner, a tool for exactly learning and
teaching EL terminologies. The learning protocol follows An-
gluin’s exact learning model, where an ontology engineer
tries to identify an ontology by interacting with a domain
expert by asking queries. We implement the learning pro-
cess as a question-answer game between two components
of our system, the learner and the teacher. We evaluate Ex-
actLearner’s performance on EL ontologies from the Oxford
ontology repository and demonstrate that despite the algo-
rithm being exponential, it successfully terminates for small
and medium size ontologies. We investigate the impact of var-
ious learner and teacher features and identify those most use-
ful for learning.

Introduction
Authoring ontologies is a laborious task that requires a com-
bined expertise of domain experts, who know the vocabulary
of terms used in a particular subject area and have an under-
standing of the conceptual relationships between them, and
of knowledge engineers, who can formalise these relations
in an appropriate ontology definition language. In (Konev
et al. 2018) the dialogue between an expert and a knowl-
edge engineer is formalised as an instance of Angluin’s exact
learning framework in which a learner tries to exactly iden-
tify an ontology by asking queries to a teacher, seen as an
oracle. It is assumed that the vocabulary of terms is known
and is communicated directly to the learner; in contrast, the
exact ontology composition has to be found through a ‘trial
and error’ learning process.

The learner poses queries of two kinds: membership
queries, which ask the oracle to determine whether a
given inclusion is entailed by the ontology, and equivalence
queries, whether the ontology constructed is complete. If the
answer to an equivalence query is negative, the oracle re-
turns a statement which follows from the expert’s knowl-
edge but not from the ontology constructed so far, or the
other way around. As the domain expert may not be able to
formulate ontologies in a clear and succinct way, we make
no assumptions about the statements returned by the teacher.

We are interested in algorithms that can identify any target
ontology independently of the behaviour of the teacher. For

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

complexity bounds, we consider the worst possible, adver-
sarial teacher, which chooses to reveal as little information
as possible.

The contributions of this paper are twofold. First, we build
on results of (Konev et al. 2018) and give an algorithm for
learning EL terminologies, which is exponential in the size
of concept expressions and its vocabulary but not in the size
of the whole terminology. This result complements previ-
ous results showing that there is no polynomial time algo-
rithm which can exactly learn (even acyclic) EL terminolo-
gies (Konev et al. 2018). We then introduce ExactLearner,
a tool for exactly learning and teaching EL terminologies,
which contains an implementation of our learning algorithm
as well as a teacher. We evaluate ExactLearner’s perfor-
mance on EL ontologies from the Oxford ontology repos-
itory (Oxford) and demonstrate that despite the algorithm
being exponential, it successfully terminates for small and
medium size ontologies. We investigate the impact of vari-
ous learner and teacher features and identify those most use-
ful for learning. The missing proofs can be found in the full
version of this paper available at https://exactlearner.github.
io.

Related work. Most relevant to our work are: the DL-
Learner (Lehmann 2009), which learns concept expressions
(but not ontologies) in various fragments of description logic
using refinement operators; and systems based on the exact
learning model such as: Logan-H (Arias, Khardon, and Mal-
oberti 2007) for learning function-free first order Horn sen-
tences from interpretations; and EIRENE (Alexe et al. 2011)
for learning schema mappings. For a more detailed discus-
sion of related work, see (Konev et al. 2018).

Preliminaries

Description logic. Let NC and NR be countably infinite sets
of concept and role names. An EL concept expression C is
formed according to the rule:C,D := A | > | CuD | ∃r.C,
where A ranges over NC and r ranges over NR. A (general)
EL concept inclusion has the form C v D, where C and D
are EL concept expressions. An EL ontology is a finite set
of EL concept inclusions (Baader, Brandt, and Lutz 2005).
We call an EL ontology O a terminology if for all C v D ∈

Proceedings of the Sixteenth International Conference on
Principles of Knowledge Representation and Reasoning (KR 2018)

409

O either C or D is a concept name and O has at most one1

inclusion of the form A v C for every A ∈ NC. ELlhs is
the class of EL terminologies consisting only of inclusions
of the form C v A, while ELrhs only of inclusions of the
form A v C.

The size |C| of a concept expression C is the length of the
string that represents it, where concept and role names are
considered to be of length one. The vocabulary ΣO of an
ontology O is the set of concept and role names occurring
in O. The size of a concept inclusion C v D, denoted |C v
D|, is |C| + |D| and the size of an ontology O, denoted
|O|, is

∑
CvD∈O |C v D|. The semantics of EL is defined

as usual (Baader et al. 2003). We write I |= α to say that
a concept inclusion α is true in I. An interpretation I is a
model of an ontology O if I |= α for all α ∈ O. O |= α
means that I |= α for all models I ofO; andO ≡ O′ means
that O |= α if and only if O′ |= α for all concept inclusions
α.

Subsumption learning framework. Given a class of on-
tologies L (for example all ontologies in a particular DL,
EL terminologies etc), we are interested in the exact iden-
tification of a target ontology O ∈ L by posing queries to
an oracle. We assume that the vocabulary of the target termi-
nology ΣO is known to the learner. A membership query is a
call to the oracle to test for an inclusion C v D, where C,D
are ΣO-concept expressions of the DL under consideration,
if O |= C v D. An inclusion C v D is a positive example
w.r.t. a targetO ifO |= C v D and a negative example else.
An equivalence query is a call to the oracle to check if a hy-
pothesis ontologyH is equivalent to the target O. If it is the
case, the oracle responds ‘yes’, otherwise the oracle returns
a positive example C v D with H 6|= C v D or a negative
exampleE v F withH |= E v F . Such a positive example
C v D (negative example E v F) is called a positive coun-
terexample (a negative counterexample, resp.) to H being
equivalent to O. For a formal definition of the subsumption
learning framework and a discussion of how this definition
relates to Angluin’s exact learning model see (Konev et al.
2018).

We say that a class of ontologies L is exactly learnable
if there is an algorithm, which halts for any target O ∈ L
and computes, using membership and equivalence queries,
H ∈ L with H ≡ O. An ontology class is exactly learnable
in polynomial time if it is exactly learnable by an algorithm
A such that at every step2 of computation the time used byA
up to that step is bounded by a polynomial p(|O|, |C v D|),
where O is the target and C v D is the largest counterex-
ample seen so far. ELlhs and ELrhs are known to be exactly
learnable in polynomial time, while the class of all EL on-
tologies is not learnable in polynomial time (Konev et al.
2018).

1In the literature, the term terminology commonly refers to sets
of concept inclusions A v C and concept definitions A ≡ C, with
no concept name occurring more than once on the left. As A ≡ C
can be equivalently rewritten as A v C and C v A, our definition
is a natural extension of this one.

2We count each call to an oracle as one step.

Algorithm 1 The learning algorithm for EL
Require: An EL terminology O given to the oracle; ΣO

given to the learner
Ensure: An EL terminology H computed by the learner

such that O ≡ H
1: SetH = {A v B | O |= A v B, A,B ∈ ΣO}
2: whileH 6≡ O do
3: Let C v D be the returned positive counter-

example for O relative toH
4: Compute C ′ v D′ with C ′ or D′ in ΣO ∩ NC

5: if C ′ ∈ ΣO ∩ NC then
6: Compute a right O-essential α from

C ′ v D′ u
d

C′vF ′∈H
F ′

7: else
8: Compute a left O-essential α from C ′ v D′
9: end if

10: Add α toH
11: end while
12: returnH

Learning EL Ontologies
In this section we present Algorithm 1, which can exactly
learn EL terminologies in time exponential in |CO|, the size
of the largest concept expression in O, and |ΣO|, the size
of the ontology vocabulary, but not in the size of the whole
ontology.

In the main loop of the algorithm the learner poses an
equivalence query to the oracle. If the oracle answers “yes”
then the algorithm returns H equivalent to O. Otherwise, it
receives a counterexample C v D. It is easy to see that at
all times O |= H so the counterexample is always positive.

As O is a terminology, complex C and D in the coun-
terexample can only “connect” via a concept name, which
can be identified by asking membership queries. This is for-
malised by the following lemma proved by the canonical
model construction.

Lemma 1 Given a positive counterexample C v D, one
can construct, by posing membership queries, a positive
counterexample C ′ v D′ such that |C ′ v D′| ≤ |C v D|
and either C ′ or D′ is a concept name in time polynomial in
|H|, |C| and |ΣO|.

Having transformed the counterexample to the case of a
concept name on the left or on the right, the algorithm tries
to minimise the size of the counterexample. If C ′ is a con-
cept name then Algorithm 1 merges D′ with the right-hand
sides of all inclusions in H with C ′ on the left (if they ex-
ist) and computes a so called right O-essential counterex-
ample. Otherwise, D′ is a concept name, and the algorithm
computes a leftO-essential counterexample. It then adds the
resulting O-essential concept inclusion α toH.

To explain the left and rightO-essential counterexamples,
following (Konev et al. 2018), we identify in the obvious
way each EL concept expression C with a finite tree TC
whose nodes are labelled with sets of concept names and
whose edges are labelled with roles.

410

Right O-essential concept inclusion α is computed by ap-
plying exhaustively the following rules to A v C:
Concept saturation for O: If O |= A v C ′ and C ′ results

from C by adding a concept name A′ to the label of some
node, then replace A v C by A v C ′.

Sibling merging forO: IfO |= A v C ′ and C ′ is the result
of identifying in C two r-successors of the same node
then replace A v C by A v C ′.

Decomposition on the right forO: If d′ is an r-successor of
d in C,A′ is in the node label of d, andO |= A′ v ∃r.Cd′

plus A′ 6≡O A if d is the root of C, then replace A v C
by

(a) A′ v ∃r.Cd′ ifH 6|= A′ v ∃r.Cd′ ; or
(b) A v C|−d′↓, otherwise, where

Cd is the concept corresponding to the subtree rooted in
d and C|−d↓ is the concept corresponding to the result of
removing the subtree rooted in d from C.

We illustrate the transformation rules with examples.
1. For H = ∅ and O = {Human v ∃hasParent.Human}

the oracle can return an arbitrary long hasParent chain
starting at Human as a counterexample, for instance,

Human v ∃hasParent.∃hasParent.>
is a chain of length two. With concept saturation, this
counterexample can be strengthened to

Human v ∃hasParent.(Human u ∃hasParent.Human),

which is equivalent to O.
2. For O = {Human v ∃hasParent.(Human uMale)} and
H = {Human v ∃hasParent.Human}, upon receiving a
counterexample

Human v ∃hasParent.Male,

the learner merges its right hand side with the right hand
side of the inclusion inH to form

Human v ∃hasParent.Male u ∃hasParent.Human

and then strengthens it by sibling merging to form the in-
clusion in O.

3. For H = ∅ and O = {Woman v Human,Human v
∃hasParent.Human}, even with concept saturation, there
exist infinitely many chain counterexamples;

Woman v Human u
∃hasParent.(Human u ∃hasParent.Human)

is one of them. This inclusion can be decomposed at
the root into (a) Human v Woman and (b) Human v
∃hasParent.(Human u ∃hasParent.Human). Picking ei-
ther of them allows the learner make progress.

Left O-essential concept inclusion α is computed by ap-
plying exhaustively the following rules to C v A.
Concept saturation for H: If H |= C v C ′ and C ′ results

from C by adding a concept name A′ to the label of some
node, then replace C v A by C ′ v A.

Decomposition on the left for O: If d is a non-root node
such that O |= C|−d↓ v A′ and H 6|= C|−d↓ v A′, for
some A′ ∈ ΣO, then replace C v A by C|−d↓ v A′; if
O |= Cd v A′ and H 6|= Cd v A′, for some A′ ∈ ΣO,
then replace C v A by Cd v A′.

The applicability of a rule may depend on the application
of another rule. For example, for H = {∃hasParent.> v
Human} and O = H ∪ {∃hasChild.Human v Human}
a counterexample could be ∃hasChild.∃hasParent.> v
Human, which can only be decomposed on the left for O
if we apply concept saturation forH first.

Our proof of termination of Algorithm 1 and its complex-
ity bound is based on the following lemma. To simplify the
presentation we use]O to denote |CO| · |ΣO|+ 1.
Lemma 2 Given a positive counterexample C v D for O
relative to H, one can construct a positive counterexample
C ′ v D′ such that |C ′ v D′| ≤]O in polynomial time in
|C v D|, |ΣO| and |H|.

Since there are at most |ΣO|]O many inclusions over ΣO
of size]O, at most |ΣO|]O counterexamples get added to H
over the run of the algorithm. Thus we obtain the following
theorem.
Theorem 1 The class of EL terminologies is exactly learn-
able by Algorithm 1 in O(|ΣO|2|CO|·|ΣO|+2 · (|C v D|)2)
time, where CO is largest concept expression in O and
C v D is the largest counterexample seen so far by the
algorithm.

Concept saturation, sibling merging and decomposition
on the right are all essential—hence the name—steps of the
polynomial learning algorithm for DL-Lite∃R, which extends
ELrhs with inverse roles and role hierarchies (Konev et al.
2018). Indeed, Algorithm 1 polynomially learns ELrhs.
Theorem 2 The class of ELrhs terminologies is exactly
learnable in polynomial time by Algorithm 1.

Evaluation
We have implemented our learning algorithm in the
ExactLearner system, available at https://github.com/
ExactLearner/ExactLearner, in Java using the OWL
API (Horridge and Bechhofer 2011) and the ELK rea-
soner (Kazakov, Krötzsch, and Simancik 2014). Ex-
actLearner has two main components: a learner and a
teacher.

The learner supports (1) “Concept Saturation”, (2) “Sib-
ling Merging”, (3) “Decomposition”, applied on the right
side of inclusions, and (4) “Concept Desaturation”, (5) “Sib-
ling Branching” and (6) “Decomposition”, applied on the
left. Operations (1), (2), (3) and (6) have already been de-
scribed. In addition, we have also implemented (4) and (5),
which act as heuristics to construct smaller, more informa-
tive counterexamples. Concept desaturation tries to remove
concept names from nodes in the left of counterexamples
to make them logically stronger. Sibling branching tries to
strengthen a counterexample by splitting paths on the left.
For example, for

O = {∃hasDegree.BSc u ∃hasDegree.MSc v PG}

411

p # timeouts avg CE avg max C

Test 2: 0.01 3 17.2 27.7
0.5 25 107.8 26.6
1.0 26 190.4 19.5

Test 3: 0.01 2 5.6 31.7
0.5 3 6.1 31.6
1.0 3 6.3 31.9

Table 1: Learner against the adversarial teacher.

andH = ∅, the inclusion

∃hasDegree.(BSc uMSc u PhD) v PG

is a counterexample, from which desaturation removes the
irrelevant PhD and then sibling branching strengthens it to
the one in O.

We have evaluated ExactLearner’s performance on EL
ontologies from the Oxford ontology repository (Oxford).
Out of 797 ontologies in the repository, 174 (when ignoring
object and data properties) are in EL; all but one are EL ter-
minologies. As a first experiment we ran the learner against a
naı̈ve teacher, which presents the target ontology inclusions
one by one without modification. This experiment aims at
estimating the overheads of the learning process under the
best possible conditions. In this first experiment, for 50 out
of 174 EL terminologies computations concluded within 1
hour.

We selected these ontologies for further experiments. The
selected ontologies range in size from 9 to 11 177 inclu-
sions with vocabulary sizes ranging from 23 to 9334 con-
cept names and from 2 to 25 role names. The average size
of counterexamples produced by the teacher was 5.48 while
the average size of the largest concept inO was 2.7. The av-
erage size of the largest concept in H was 31.3, an increase
caused by concept saturation on the right side of inclusions.
The performance bottlenecks in our system are for checking
if the presented inclusion is a counterexample w.r.t. the cur-
rent hypothesis ontology at the teacher side and entailment
checks performed by the learner.

To challenge the learner, we have introduced an adver-
sarial teacher, which forces the learner to apply particular
operations from (1)–(6) above by manipulating the coun-
terexamples. For instance, to force the learner to perform
concept saturation on the right of A v C, the teacher ex-
haustively tries to remove concept names from every node
in the tree representation of C, while ensuring that the mod-
ified inclusion is still a counterexample. All in all, the adver-
sarial teacher can apply: (7) “Concept Desaturation” on the
right, which we have just described; (8) “Sibling Branch-
ing” on the right, which weakens counterexamples of the
form A v ∃r.(C uD) into A v ∃r.C u ∃r.D (provided the
latter is still a counterexample); (9) “Concept Saturation”
on the left; and (10) “Sibling Merging” on the left, which
are the opposite of learner’s concept desaturation and sibling
branching. We also substitute concept definitions into coun-
terexamples, for instance, if A v ∃r.B is a counterexample

Figure 1: Usage of rules (1)–(6) by the learner when the or-
acle applies rules with probability 0.01.

and B v C ∈ T we test A v ∃r.C for being a counterex-
ample as well. We call this operation (11) “Composition on
the right”. (12) “Composition on the left” is its counterpart.
Operations (7)–(12) are applied at random with set probabil-
ities so that the level of difficulty could be controlled.

Table 1 presents statistics of running the learner against
the adversarial teacher. In Test 2 the teacher was applying
transformations (7)–(12) with probability p of 0.01, 0.5 and
1.0. The learner can cope with a small distortion of examples
(p = 0.01) but a significant distortion leads to a big increase
in the number of time-outs. Figure 1 shows the percentage
of the rules applied by the learner in Test 2 for p = 0.01.

As Figure 1 indicates, the most frequently applied rule
(42%) is desaturation on the left. Its frequency grows to 94%
when p = 0.5 and to 96% when p = 1.0. For the oracle,
the most frequent (99%) rule, when p = 0.01, is saturation
on the left. However, the frequency of composition on the
left jumps from less than 1% to 90% when p = 0.5 and to
92% when p = 1.0. This change can be explained by the
growth in the absolute number of applications of saturation
on the left leading to an increase in the number of concept
names available for composition. The discrepancy between
the number of compositions on the left by the oracle and
decompositions on the left by the learner is due to the fact
that the oracle applies the rule repeatedly while the learner
finds a minimal subtree in one rule application.

In Test 3 we have disabled rule (9), which leads to expen-
sive saturation-desaturation, as well as rules (8) and (10) as
the latter two rules almost never applied, yet took up a signif-
icant time in our tests. This has led to a significant drop in the
failure rate even though other adversarial teacher operations
were applied with a high probability. The high amount of
applications of rule (9) performed by the teacher and of rule
(4) performed by the learner suggests that the main cause
of time-outs is the exponential explosion in the size of the
vocabulary rather than the size of concepts in the target on-
tology.

We also measured the increase on the number of queries
in Test 2 when the probability for the oracle to apply a cer-
tain rule increases. In Test 2, 22 ontology computations con-
cluded within 1 hour with the probability of the oracle to ap-
ply a certain rule set to 1.0 (the oracle always apply all rules
exhaustively). Figure 2 shows the increases in the average

412

Figure 2: Membership and equivalence queries.

Figure 3: Learning game after 2 queries.

numbers of queries of both types asked by the learner when
the probabilities for the oracle to apply its rules are set to
0.01, 0.5 and 1.0, compared to the case when no counteerex-
ample transformation rules are applied by the oracle (the
baseline values for the number of membership and equiva-
lence queries when no rules are applied are 6230148.55 and
41.23, respectively). The number of membership queries
visibly increases as probabilities increase, while, in com-
parison, the number of equivalence queries remains nearly
the same. This is expected, since computing O-essential in-
clusions from less informative counterexamples need more
membership queries. Though, since the learner indeed com-
putesO-essential counterexamples, there is only a small im-
pact on the number of equivalence queries.

Playing with the Teacher

Our prototype teacher component can also be accessed via a
graphical interface allowing a user to play the game of learn-
ing an ontology by posing as few membership and equiva-
lence queries as possible.

Figure 3 presents a screenshot of the game after 2 queries.
The bar on top of the ‘Equivalence query’ button allows the
player to adjust the difficulty: a higher difficulty means that
the probability for the oracle to apply its transformation rules
is higher.

Conclusion
We presented ExactLearner, a prototype tool for exactly
learning, and teaching, EL ontologies. We demonstrated its
applicability to small and medium size ontologies. We iden-
tified the size of the ontology vocabulary as the main cause
of the performance bottleneck.

As future work, we plan to extend our algorithm to
an ontology-based data access setting (Konev, Ozaki, and
Wolter 2016) and adopt the Probably Approximately Correct
(PAC) learning model extended with membership queries,
so that our algorithm can also run without the teacher. We
also plan to investigate the complexity of exactly learning of
EL terminologies in the PAC learning setting under different
probability distributions.

Acknowledgements. We would like to thank Frank Wolter
for fruitful discussions and Liyi Zhao for her contribution to
an earlier version of ExactLearner. Konev was supported
by the EPSRC project EP/H043594/1. Ozaki was supported
by the PROVDL project. Duarte was supported by the Cen-
ter for Advancing Electronics Dresden (cfaed).

References
Alexe, B.; ten Cate, B.; Kolaitis, P. G.; and Tan, W. C. 2011.
EIRENE: interactive design and refinement of schema map-
pings via data examples. PVLDB 4(12):1414–1417.
Arias, M.; Khardon, R.; and Maloberti, J. 2007. Learn-
ing horn expressions with LOGAN-H. Journal of Machine
Learning Research 8:549–587.
Baader, F.; Calvanese, D.; McGuiness, D.; Nardi, D.; and
Patel-Schneider, P. 2003. The Description Logic Handbook:
Theory, implementation and applications. Cambridge Uni-
versity Press.
Baader, F.; Brandt, S.; and Lutz, C. 2005. Pushing the EL
envelope. In IJCAI, 364–369. Professional Book Center.
Horridge, M., and Bechhofer, S. 2011. The OWL API: A
java API for OWL ontologies. Semant. web 2(1):11–21.
Kazakov, Y.; Krötzsch, M.; and Simancik, F. 2014. The
incredible ELK - from polynomial procedures to efficient
reasoning with EL ontologies. J. Autom. Reasoning 53(1):1–
61.
Konev, B.; Lutz, C.; Ozaki, A.; and Wolter, F. 2018. Exact
learning of lightweight description logic ontologies. Journal
of Machine Learning Research 18(201):1–63.
Konev, B.; Ozaki, A.; and Wolter, F. 2016. A model for
learning description logic ontologies based on exact learn-
ing. In Proceedings of the Thirtieth AAAI Conference on
Artificial Intelligence, February 12-17, 2016, Phoenix, Ari-
zona, USA., 1008–1015.
Lehmann, J. 2009. DL-Learner: Learning concepts in de-
scription logics. Journal of Machine Learning Research
10:2639–2642.
Oxford. Information systems group ontologies. Retrieved
from https://www.cs.ox.ac.uk/isg/ontologies/. Accessed: 18
May 2018.

413

