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Abstract

Soft goals in planning are optional objectives that should be
achieved in the terminal state. However, failing to achieve
them does not result in the plan becoming invalid. State tra-
jectory constraints are hard requirements towards the state
trajectory of the plan. Soft trajectory constraints are a com-
bination of both: soft preferences on how the hard goals are
reached, i. e., optional requirements towards the state trajec-
tory of the plan. Such a soft trajectory constraint may require
that some fact should be always true, or should be true at some
point during the plan. The quality of a plan is then measured by
a metric which adds the sum of all action costs and a penalty
for each failed soft trajectory constraint. Keyder and Geffner
showed that soft goals can be compiled away. We generalize
this approach and illustrate a method of compiling soft trajec-
tory constraints into conditional effects and state dependent
action costs using LTLf and deterministic finite automata. We
provide two compilation schemes, with and without reward
shaping, by rewarding and penalizing different states in the
plan. With this we are able to handle such soft trajectory con-
straints without the need of altering the search algorithm or
heuristics, using classical planners.

Introduction
Soft goals in planning are additional requirements towards
the resulting plan. Take for instance a robot scenario where
the soft goal could be to have the workbench clean after
execution, whereas the main objective is to build some
product. These requirements differ from classical (hard)
goals in that violating them does not render a plan invalid.
PDDL 3.0 (Gerevini et al. 2009) introduced state trajectory
constraints, which add constraints towards how goals are
achieved. These come in two flavors, as hard constraints and
as soft constraints. For the rest of the paper, we will refer
to optional state trajectory constraints as soft trajectory con-
straints. We use the term soft goals to mean reachability soft
goals and soft trajectory constraints alike. This is justified
since reachability soft goals ϕ can be seen as a special case
of soft trajectory constraints of the form (at end ϕ).

For checking satisfaction of reachability soft goals, it is
sufficient to test if they hold in the final state. However, for
soft trajectory constraints, a more sophisticated method of
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checking their satisfaction is required. For example, if a soft
trajectory constraint requires a fact to be always true, it is not
sufficient to check if the fact is true in the final state, but it
needs to be tracked to check if the fact holds at any given
step of the plan.

The introduction of soft goals changes the overall quality
of a plan such that a cheapest plan achieving the hard goals
is not necessarily an optimal plan, as it does not take into
account the achieving or failing of soft goals. For this, a
metric consisting of plan cost and a penalty for violated soft
goals is introduced. Thus, an optimal plan optimizes the trade-
off between action costs on the one hand and penalties for
violated soft goals on the other hand. This corresponds to a
constraint optimization problem, where the constraints are
the hard goals and the optimization tries to fulfill the soft
goals and keep action costs low.

One issue that arises when dealing with soft goals is
the trade-off between minimizing cumulative action costs
along the way to a state satisfying the hard goals, and maxi-
mizing rewards for achieved soft goals. An additional chal-
lenge is how to inform the search about which paths ap-
pear promising towards optimizing this trade-off. In this pa-
per, we discuss how soft trajectory constraints can be com-
piled away using linear temporal logic on finite traces (LTLf),
deterministic finite automata, conditional effects, and state
dependent action costs, generalizing the soft goal compi-
lation introduced by Keyder and Geffner (2009). We first
introduce a compilation which adds a penalty to the end
of the planning process for each soft trajectory constraint
not fulfilled. This is informative to the heuristic, but keeps
the search uninformed regarding these constraints. There-
fore, we introduce a second compilation, which instantiates
the idea of reward shaping (Ng, Harada, and Russell 1999;
Camacho et al. 2017) for our setting, resulting in a more
informed search. Note that potential-based reward shaping
typically makes rewards “more state-dependent”. We there-
fore see an added value of our implementation in the support
of such state-dependent rewards, also within the heuristic.
Our approach allows us to then use off-the-shelf classical
planning heuristics to provide the required guidance.

Related work
Baier and McIlraith (2008) give an overview over plan-
ning with preferences and introduce different preference
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formalisms based on quantitative and qualitative languages.
Using quantitative languages, the degree of preference for a
given plan can be expressed by a numeric value, such as the
overall reward in Markov Decision Processes (MDP). In these
MDPs, the reward of an action can be used to specify prefer-
ences over actions. Alternatively, the degree of preference for
a plan can be determined over a set of properties, such soft
goals that may be satisfied or violated. Such a system was
implemented in PDDL3 (Gerevini et al. 2009), where prefer-
ences can be specified as temporal, or temporally extended
predicates, using a subset of LTL.

Baier, Bacchus, and McIlraith (2009) describe a method
of compiling problems with temporally extended prefer-
ences into simpler versions where preferences can only be
expressed over the final state, and can be evaluated using
an objective function. The authors achieve this by trans-
lating the preferences expressed in LTL into parametrized
non-deterministic finite state automata (PNFA). Instead of
tracking the state of the automaton by extending the existing
operators, they modify their search algorithm to automat-
ically apply the automata’s state transitions for each state.
The quality of their approach can then be measured using an
updated objective function.

Keyder and Geffner (2009) show that soft goals can be
compiled away by introducing a new hard goal p for each
soft goal, which can be achieved in two ways: by an action
collect(p) which has cost zero but requires the soft goal to
be satisfied, or by an action forgo(p) that has cost equal to
the utility of p, but can be executed even if the soft goal is
violated. These collect and forgo actions are forced to be
executed at the very end of the plan. However, their work
does not take trajectory constraints into account, focusing
on reachability soft goals only. We build upon this work to
generalize their approach towards soft trajectory constraints.

Later work by Torres and Baier (2015) introduced a compi-
lation for hard trajectory constraints, using synchronization
actions between an automaton representation of the LTL con-
straint and the planning state. However, they do not consider
the soft trajectory constraint case, and require additional
actions for the synchronization step.

A similar approach to the one we present in this paper was
presented by Camacho et al. (2017) for MDPs, where they
use LTL to model non-Markovian rewards, and also employ
reward shaping. The main difference between their work and
ours is the overall setting (MDPs vs. classical planning). A
similar approach to that of Camacho et al. (2017) was given
by Brafman, De Giacomo, and Patrizi (2018). However, they
focus on introducing a more expressive language LDLf, again
in the MDP setting.

Preliminaries
Throughout this work, we assume that a finite set of state
variables V = {v1, . . . , vn} is given, each with an associated
finite domain Dv. A fact is a pair (v, d), where v ∈ V and
d ∈ Dv, and a partial variable assignment s over V is a
consistent set of facts such that (v, d), (v, d′) ∈ s implies
d = d′. We identify s with the corresponding conjunction of
facts, viewing facts as atomic formulas. For a set of variables
V ′ ⊆ V , if s assigns a value to each v ∈ V ′, s is called a state

over V ′. By S(V ′) we refer to the set of all states over V ′,
and we write S for S(V).

Linear-time temporal logic on finite traces

Linear-Time Temporal Logic (LTL) is a modal logic capable
of expressing logic formulas referring to discrete linear time,
and can be used to express trajectory constraints. An LTL for-
mula ϕ over a set of variables V is either an atomic fact (v, d)
over V , or of the form ¬ϕ, ϕ ∨ ψ,©ϕ (“next ϕ”), or ϕUψ
(“ϕ until ψ”), where ϕ,ψ are LTL formulas over V . Other
propositional connectives can be defined as abbreviations
in the usual way, such as conjunction (∧), implication (→),
bi-implication (↔), truth (>), and falsity (⊥). Similarly, ♦ϕ
(“finally ϕ”) can be defined as an abbreviation for >Uϕ, and
�ϕ (“globally ϕ”) as an abbreviation for ¬♦¬ϕ. We also
use weak until ϕWψ as an abbreviation for ϕUψ ∨�ϕ. By
V(ϕ) we refer to the set of variables mentioned in ϕ, and
by V(Φ) to those mentioned in any ϕ ∈ Φ, if Φ is a set of
LTL formulas. The semantics of LTLf (LTL on finite traces)
is defined as the interpretation over finite traces denoting a
sequence of instants of time. Let ϕ be an LTLf formula, and
let µ = (µ(0), µ(1), . . . , µ(n)) be such a finite trace with
µ(i) ∈ S(V(ϕ)) for all i = 0, . . . , n. Then the truth of ϕ
along trace µ is defined as follows (De Giacomo and Vardi
2013):

µ, i |= a iff a ∈ µ(i) for atomic facts a
µ, i |= ¬ϕ iff µ, i 6|= ϕ

µ, i |= ϕ1 ∧ ϕ2 iff µ, i |= ϕ1 and µ, i |= ϕ2

µ, i |=©ϕ iff i < n and µ, i+ 1 |= ϕ

µ, i |= ϕ1Uϕ2 iff ∃j, i ≤ j ≤ n : µ, j |= ϕ2 and
∀k, i ≤ k ≤ j : µ, k |= ϕ1

µ |= ϕ iff µ, 0 |= ϕ

Trajectory constraints as LTLf

PDDL 3.0 (Gerevini et al. 2009) introduced state-trajectory
constraints, which are modal logic expressions that ought to
be true for the state trajectory produced during the execution
of the plan. As shown by De Giacomo, Masellis, and Montali
(2014), these can be expressed using LTLf:

(at end ϕ) := ♦(last ∧ ϕ)

(always ϕ) := �ϕ

(sometime ϕ) := ♦ϕ

(within n ϕ) :=
∨

0≤i≤n

© . . .©︸ ︷︷ ︸
i

ϕ

(hold-after n ϕ) :=© . . .©︸ ︷︷ ︸
n

♦ϕ

(hold-during n1 n2 ϕ) :=© . . .©︸ ︷︷ ︸
n1

(
∧

0≤i≤n2

© . . .©︸ ︷︷ ︸
i

ϕ)
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(at-most-once ϕ) := �(ϕ→ ϕW¬ϕ)

(sometime-after ϕ ψ) := �(ϕ→ ♦ψ)

(sometime-before ϕ ψ) := (¬ϕ ∧ ¬ψ)W(¬ϕ ∧ ψ)

(sometime-within n ϕ ψ) := �(ϕ→
∨

0≤i≤n

© . . .©︸ ︷︷ ︸
i

ψ)

Here, ϕ and ψ are propositional formulas, and n, n1, n2

natural numbers. The formula last is a shorthand for ¬©>,
which characterizes the last state of the state trajectory.

Planning tasks
Since we want to compile away soft trajectory constraints
using conditional effects and state-dependent action costs,
we base our exposition on a formalization of planning tasks
that admits those features. This leads us to the following
definition:

A planning task is a tuple Π = 〈V, A, s0, s?,Φ〉 consist-
ing of the following components: V is a finite set of finite-
domain state variables (as above). A is a set of actions, and
each action is a pair a = 〈pre, eff 〉, where pre is a partial
variable assignment (or a consistent conjunction of facts)
called the precondition, and where eff is an effect of the
form eff =

∧
i=1,...,n(prei B eff i) for some number n ∈ N

of conditional effects, each consisting of an effect condi-
tion prei, again a partial variable assignment, and an effect
eff i, also a partial variable assignment. The state s0 ∈ S
is called the initial state, and the partial state s? specifies
the goal condition. Each action a ∈ A has an associated
cost function ca : S → N that assigns the cost of a to
each state where a is applicable. Finally, Φ is a finite set of
LTLf formulas over V , the soft trajectory constraints. Each
soft trajectory constraint ϕ ∈ Φ has an associated weight
wϕ ∈ N specifying the importance we assign to satisfy-
ing ϕ. For states s, we use function notation s(v) = d
and set notation (v, d) ∈ s interchangeably. The change
set [eff ]s of effect eff =

∧
i=1,...,n(prei B eff i) in state s

is the set of facts that eff makes true if applied in s, i. e.,
the set

⋃
i=1,...,n[prei B eff i]s, where [prei B eff i]s is ei-

ther ∅, if s 6|= prei, or eff i, if s |= prei. Then an action
a = 〈pre, eff 〉 is applicable in state s iff s |= pre and the
change set [eff ]s is consistent. Applying action a to s yields
the state s′ with s′(v) = [eff ]s(v) where [eff ]s(v) is defined,
and s′(v) = s(v) otherwise. We write s[a] for s′. A state s
is a goal state iff s |= s?. We denote the set of goal states by
S?.

Following an idea of De Giacomo, Masellis, and Mon-
tali (2014), we assume that Π contains a variable last with
Dlast = {true, false} that is initially false and that ought
to be true iff the last state of the state trajectory has been
reached, i. e., if ¬ © > holds. To ensure that last is true
exactly in the last state, we assume that there are two copies
of each action, a regular one, and one that has last as an
additional effect, marking termination. All actions then have
¬last as an additional precondition. Moreover, for correct
synchronization with the automaton that recognizes the lan-
guage of a state-trajectory constraint ϕ, we require a terminal

action lastop = 〈last ∧ ¬done, done〉 that is only applicable
after termination has been marked and that makes another
fresh auxiliary proposition done true (which is initially false),
with cost clastop = 0. We assume that Π is reformulated such
that done is an additional goal condition.

Let π = (a0, . . . , an−1) be a sequence of actions from
A. We call π applicable in s0 if there exist states s1, . . . , sn
such that ai is applicable in si and si+1 = si[ai] for all
i = 0, . . . , n−1. We call π a plan for Π if it is applicable in s0

and if sn ∈ S?. In that case, we call µπ = (s0, s1, . . . , sn−1)
the state trajectory induced by π in s0.1 The action cost
of plan π is the sum of action costs along the induced
state sequence, i.e., cost(π) =

∑n−1
i=0 cai(si). A plan π

is penalized with penalty wϕ for each soft trajectory con-
straint ϕ ∈ Φ that is violated on its induced trajectory. For-
mally, the value penalty(π, ϕ) for π with respect to ϕ is
0, if µπ |= ϕ, and wϕ, if µπ 6|= ϕ. The overall penalty
for π is penalty(π) =

∑
ϕ∈Φ penalty(π, ϕ). The total cost

of plan π is its action costs plus its overall penalty, i. e.,
totalcost(π) = cost(π) + penalty(π). A plan is optimal for
Π if it minimizes totalcost among all plans for Π.

Automata semantics of planning tasks
A deterministic finite automaton (DFA) is a tuple A =
〈Σ, Q,∆, q0, Qa〉 consisting of an alphabet Σ, a set of states
Q, a transition function ∆ : Q × Σ → Q, an initial state
q0 ∈ Q, and a set of accepting states Qa ⊆ Q. The transition
system of any planning task Π = 〈V, A, s0, s?,Φ〉 can be
understood as a DFA A(Π) as follows: the input alphabet is
Σ = S(V ′), where V ′ = V(Φ) is the set of variables that are
relevant to the soft trajectory constraints.2 The set of states,
the initial state, and the set of accepting/goal states of A(Π)
are those of Π, i. e., Q = S, q0 = s0, and Qa = S?. Fi-
nally, ∆ consists of all transitions of the form 〈s, s|V′ , s′〉,
where s′ = s[a] for some a ∈ A that is applicable in s, and
where s|V′ is s restricted to the relevant variables V ′. What
is lost in the translation from Π to A(Π) are the action costs
and the soft trajectory constraints. Costs are trivial to han-
dle by adding weights to the automaton, and we will come
back to that later. To give an automata-based semantics to
state-trajectory constraints, we need to review the theory of
deterministic finite automata for LTLf.

Deterministic finite automata for LTLf
De Giacomo, Masellis, and Montali (2014) provide an algo-
rithm for creating a non-deterministic finite automaton (NFA)
from a given LTLf formula ϕ, which first requires the LTLf
formula ϕ to be in negation normal form, and which addition-
ally requires the predicate last, which is only true in the last
planning state, to be present. The resulting NFA is worst-case
exponential in the size of the input formula ϕ. Transforming
the NFA to a DFA can then be accomplished by the standard
powerset construction (Rabin and Scott 1959) and results in

1We deliberately leave out the last state sn reached by applying
lastop, since it is only an artifact of our encoding and should not
affect whether a given trajectory constraint is satisfied or not.

2For convenience, we drop action names from the transition
labels. For plan reconstruction, we would have to include them here.
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yet another exponential blow-up in the size of the NFA, yield-
ing a doubly exponential blow-up overall. The input alphabet
Σ of the resulting DFA A(ϕ) is the set of all states S(V ′),
where again V ′ = V(Φ) is the set of all variables relevant to
any of the trajectory constraints (including last). The DFA
A(ϕ) accepts a finite input trace µ over Σ with last being
true exactly in the last state of µ iff µ |= ϕ.

Now, for a planning task Π with a hard state-trajectory
constraint ϕ, the standard automaton construction considers
the product automaton A× of A(Π) and A(ϕ). Then, a state
trajectory µ is the induced trajectory of some plan π of Π
satisfying ϕ iff µ is accepted by A×. For soft state-trajectory
constraints, we can still perform the same product automaton
construction to track which soft constraints are satisfied by
a plan. Unlike with hard constraints, however, the product
automaton still has to accept trajectories that violate soft con-
straints, and the violation has to be reflected in the plan costs,
rather than in the acceptance condition of the product automa-
ton. The next section describes (a) the product construction,
(b) an assignment of action costs that reflects the satisfaction
or violation of soft trajectory constraints, and (c) a compact
encoding of the product automaton as a new planning task
Π′.

Tracking soft trajectory constraints
Let Π = 〈V, A, s0, s?,Φ〉 be the original planning task
with soft trajectory constraints Φ and with objective func-
tion totalcost as defined above. Transition costs aside, the
semantics of Π are captured by the product automaton
A× = A(Π)×

∏
ϕ∈ΦA(ϕ). However, when compiling away

soft trajectory constraints, for the sake of a compact repre-
sentation and subsequent on-the-fly plan generation, we do
not want to generate an automaton, but rather another plan-
ning task Π′ such that A(Π′) is isomorphic to A×. We now
describe this construction. For simplicity of exposition, we
assume that Φ consists of a single constraint ϕ only. General-
ization to more than one soft trajectory constraint is straight-
forward.

The idea behind the construction of Π′ is to add a new
tracking variable τϕ to Π that keeps track of the current state
ofA(ϕ). The actions in Π′ are those from Π, augmented with
conditional effects that take care of the correct evolution of
the value of τϕ, thus encoding the soft trajectory constraints
into the actions.

Formally, let A(ϕ) = 〈Σ, Q,∆, q0, Qa〉 be a DFA for ϕ.
Then we create the planning task Π′ = 〈V ′, A′, s′0, s′?, ∅〉
with V ′ = V ∪ {τϕ}, with domain Q for τϕ. The initial
state s′0 agrees with s0 on all variables in V , and additionally,
s′0(τϕ) = q0. The actions are A′ = {a′ | a ∈ A}, where a′ =
〈pre ′, eff ′〉 is constructed from a = 〈pre, eff 〉 as follows:
pre ′ = pre and

eff ′ = eff ∧
∧

〈q,σ,q′〉∈∆

(((τϕ = q) ∧ σ)B τϕ := q′).

In words, we add conditional effects to track the value of τϕ
for each transition in A(ϕ). Action costs are unaffected, i. e.,
ca′ = ca for all a ∈ A. Also, the goal description remains
unchanged, i. e., s′? = s?.

States of A(Π′) are then (isomorphic to) pairs (s, q) con-
sisting of a state s of A(Π) and a state q of A(ϕ), where q is
the DFA state before reading state s. Since q is always “one
step behind”, we still need the artificial last action lastop
that reads the last state of A(Π) and advances the state of
A(ϕ) accordingly. Additional formal machinery needed for
the evaluation of the penalty term is deferred until after the
following proposition.

Proposition 1. Up to preservation of accepting states,A(Π′)
is isomorphic to A(Π)×A(ϕ).

Proof sketch. We consider two automata A =
〈Σ, Q,∆, q0, Qa〉 and A′ = 〈Σ, Q′,∆′, q′0, Q′a〉 over
the same alphabet Σ to be isomorphic iff there is a structure-
preserving bijection β : Q→ Q′ such that β(q0) = q′0, that
q ∈ Qa iff β(q) ∈ Q′a for all q ∈ Q, and that 〈q, σ, q′〉 ∈ ∆
iff 〈β(q), σ, β(q′)〉 ∈ ∆′ for all q, q′ ∈ Q, σ ∈ Σ.

Now, let A(Π) = 〈Σ, Q,∆, q0, Qa〉, A(ϕ) =
〈Σ, Qϕ,∆ϕ, qϕ0 , Q

ϕ
a 〉, andA(Π′) = 〈Σ, Q′,∆′, q′0, Q′a〉. No-

tice that they all share the same input alphabet Σ = S(V(ϕ)).
Then, A× = A(Π) × A(ϕ) = 〈Σ, Q×,∆×, q×0 , Q×a 〉 with
Q× = Q × Qϕ, q×0 = (q0, q

ϕ
0 ), Q×a = Qa × Qϕa , and a

transition ((q, qϕ), σ, (q′, qϕ′)) ∈ ∆× iff (q, σ, q′) ∈ ∆ and
(qϕ, σ, qϕ′) ∈ ∆ϕ.

The claimed bijection β : Q× → Q′ is given by
β((s, q)) = s ∪ {τϕ 7→ q}. Then β obviously preserves
the initial state. Goal/accepting states are deliberately not
preserved in Π′, since we want to encode satisfaction or vio-
lation of ϕ in the plan costs for Π′, not in its goal condition.
Therefore, for goals, we only have that q× = (q, qϕ) ∈ Q×a
iff q ∈ Qa.

Finally, there is a transition ((q, qϕ), σ, (q′, qϕ′)) ∈ ∆× iff
(q, σ, q′) ∈ ∆ and (qϕ, σ, qϕ′) ∈ ∆ϕ. Now, since (q, σ, q′) ∈
∆, there must be some action a that is applicable in q and
leads to q′. With the construction of Π′ from Π, and the
definition of change sets, this implies that the modified action
a′ is applicable in β(q, qϕ) and, because (qϕ, σ, qϕ′) ∈ ∆ϕ,
leads to β(q′, qϕ′), i. e., (β(q, qϕ), σ, β(q′, qϕ′)) ∈ ∆′. The
opposite direction can be proven similarly.

Goal action penalty compilation
Now that we can track the state of each soft trajectory con-
straint within the planning task Π′, we need to add penalties
for all constraints not achieved in the reached terminal state.
For this, we add another propositional variable penalized to
Π′ that is initially false, and add penalized to the goal s?. This
means that every plan for Π′ has to include an occurrence of
the new action penalize = 〈done ∧ ¬penalized, penalized〉
as its last step. The cost function of the action penalize now
simply determines the penalty value penalty(π) based on
which soft trajectory constraints ϕ ∈ Φ are violated by test-
ing whether the corresponding tracking variables τϕ encode
accepting or non-accepting DFA states in the current plan-
ning state. More formally, cpenalize =

∑
ϕ∈Φ[τϕ /∈ Qϕa ]wϕ

where [τϕ /∈ Qϕa ] = 1 if τϕ = q and q 6∈ Qϕa for some
q ∈ Qϕ, and 0 otherwise.

Notice that the action penalize has state-dependent costs
that are not universally supported by planning systems. How-
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0 1 2

dirty >

¬dirty>

Figure 1: DFA for (hold-after 1 ¬dirty).

ever, those can be compiled away to state-independent costs,
if this is desired (Geißer, Keller, and Mattmüller 2015).
Notice further that determining the value [τϕ /∈ Qϕa ] is
also simple. It can either be rewritten as

∑
q∈Qϕ\Qϕ

a
[τϕ =

q], where [τϕ = q] is 1 if s(τϕ) = q, and 0 oth-
erwise; alternatively, another new propositional variable
is violatedϕ can be added to the planning task that is true
iff the value of τϕ represents a non-accepting state. Then
cpenalize =

∑
ϕ∈Φ[is violatedϕ]wϕ. A natural modeling will

treat is violatedϕ as a derived variable, and will have axioms
that express is violatedϕ in terms of τϕ. We mention this
latter possibility since it makes the relation between our pro-
posed compilation and that of Keyder and Geffner (2009)
obvious (cf. Proposition 3 below).

In any case, it is clear that adding this action preserves the
original objective function.

Proposition 2. Let Π′ be the compiled task from Π (includ-
ing the action penalize). Then an optimal plan for Π′ is also
an optimal plan for Π (without the action penalize).

Proof sketch. From Proposition 1, we get that the compila-
tion is sound and complete. The objective function of the
original task is penalty(π) + cost(π). Up until the penalize
action, the objective function sums up all action costs, as the
cost functions for each action are not altered by the compi-
lation. The penalize action then adds a penalty for each soft
trajectory constraint that is not satisfied, resulting in an objec-
tive function identical to the original objective function.

Example 1. Let a be an action and ϕ the preference
(hold-after 1 ¬dirty), stating that the fact dirty should
be false sometime after one step. We can then track the state
in the automaton in Figure 1 by adding the following condi-
tional effects to a:

(τϕ = 0) B (τϕ := 1) ∧
(τϕ = 1) ∧ dirty B (τϕ := 1) ∧

(τϕ = 1) ∧ ¬dirty B (τϕ := 2) ∧
(τϕ = 2) B (τϕ := 2)

Clearly, the two conditional effects that do not change the
value of τϕ can be dropped. Also, generally, conditions under
which τϕ obtains the same new value can be combined into a
single disjunction (not shown here). The partial cost function
c for this preference is c = [τϕ ∈ {0, 1}]wϕ, and it is added
to the cost of the penalize action. This adds wϕ to the total
plan cost if A(ϕ) is in one of the non-accepting states 0 or 1.

Geißer, Keller, and Mattmüller (2015) show how state-
dependent action costs can be compiled away using edge-

is violatedϕ1

. . .

is violatedϕn

0

0

0

wϕ1

1

0

0

wϕn−1

1

0

0

wϕn

1

end

collect ϕ1 forgo ϕ1

collect ϕn−1 forgo ϕn−1

collect ϕn forgo ϕn

Figure 2: EVMDD compilation of the penalize action with
derived variables is violatedϕi

, which are true if τϕi
is in a

non-accepting state. Numbers on edges are partial costs (=
costs of compiled actions).

valued multi-valued decision diagrams (EVMDD) by rep-
resenting the cost function as an EVMDD and introducing
an auxiliary operator for each edge in the diagram. Later,
Mattmüller et al. (2018) also showed how to combine this
with conditional effects for a heuristic-friendly compilation.
An analysis of the EVMDD compilation of our penalize
action shows that the auxiliary operators correspond to the
collect , forgo, and end from the compilation by Keyder and
Geffner (2009). This immediately implies that our approach
generalizes the soft trajectory constraint compilation by Key-
der and Geffner (2009) to support trajectory constraints.

Proposition 3. The EVMDD-based action compilation of
Geißer, Keller, and Mattmüller (2015), applied to the action
penalize, is essentially the soft goal compilation by Keyder
and Geffner (2009).

Proof sketch. For each soft trajectory constraint ϕi, we in-
troduce an auxiliary variable is violatedϕi

which is true iff
the corresponding DFA is in a non-accepting state. We can
then express the cost of the penalize action as cpenalize =∑
ϕ∈Φ[is violatedϕ]wϕ. Expressed as an edge-valued multi-

valued decision diagram (EVMDD) (Geißer, Keller, and
Mattmüller 2015), cpenalize looks as depicted in Figure 2
(without the red annotations). The EVMDD-based action
compilation of Geißer, Keller, and Mattmüller (2015) now
turns each edge of the EVMDD into a new auxiliary action,
and adds some bookkeeping machinery to ensure that the
EVMDD is traversed exactly once from top to bottom. These
new auxiliary actions are exactly the end , collect , and forgo
actions from Keyder and Geffner (2009) (indicated as the red
annotations).

One limitation of this approach is that, up until the
penalize action, the achievement of any soft trajectory con-
straint is only represented by the h-value (the heuristic es-
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timate of the remaining cost to reach a goal state). A more
desirable compilation would provide the search with a more
accurate g-value (the cost of reaching the current node from
the initial state), thus informing the search when a soft trajec-
tory constraint is achieved. In the following section we will
demonstrate a possible solution to this problem.

General action penalty compilation
In this section we will show how the above approach can be
extended to provide the search with more accurate g-values
that reflect the current acceptance status of ϕ. The main
reason for the uninformedness in relation to the g-value is the
fact that any penalty is only applied in the very last step of the
search in the penalize action. However, while tracking the
soft trajectory constraint’s automaton A(ϕ), we already have
information about the current acceptance status of each soft
trajectory constraint. We will now show how this information
can be used to add penalties and rewards to the individual
actions changing the state of A(ϕ).

Whenever an action a changes the value of τϕ, thus tran-
sitioning from one state q to another state q′ in A(ϕ), we
add a penalty or a reward depending on the type of transition.
When q is an accepting state and q′ a non-accepting state in
A(ϕ), we add a penalty to the action cost. If, on the other
hand, q′ is an accepting state and q is a non-accepting state,
we add a reward. The partial cost of a transition from s to s′
associated with trajectory constraint ϕ ∈ Φ is then ωϕ(q, q′),
where q and q′ are the values of τϕ in s and s′, respectively,
and where ωϕ(q, q′) is a pre-specified penalty or reward term.
For transitions from accepting to non-accepting states, we
set ωϕ(q, q′) to a positive penalty term and for transitions
from non-accepting to accepting states, we set ωϕ(q, q′) to
a reward in the form of a negative value. Transitions that
preserve the acceptance status should neither be penalized
nor rewarded. For the concrete value of ωϕ(q, q′), we use the
value from the original soft trajectory constraint’s weight wϕ.
The total cost function of each action is then the sum of the
partial cost functions plus the original action cost.

This way, we penalize actions resulting in a transition from
accepting to non-accepting states by giving them higher costs,
and reward actions that result in an accepting state of A(ϕ)
by applying negative costs. Note, that ωϕ(q, q′) only accounts
once in the total cost, as we can never add ωϕ(q, q′) twice in
a row without subtracting it in between first.

By construction, minimizing totalcost in the compiled
task Π′ amounts to the same as minimizing totalcost in the
original task Π. One minor detail to take in to account is if
the initial state of A(ϕ) is in a non-accepting state, we need
to add a penalty to account for this. We do this by adding an
additional penalty to the penalize action.

The approach sketched above can also be seen as a form
of potential-based reward shaping (Ng, Harada, and Rus-
sell 1999) from Markov Decision Processes (MDPs), where
R(s, a, s′) is the reward gathered by traversing from state
s to s′ with action a. In our case, we have negative costs
for rewards, and positive costs for penalties. The shaped re-
ward function then is R′(s, a, s′) = R(s, a, s′) +F (s, a, s′),
where F is the shaping function defined over the current
and next state: F (s, a, s′) = γ · θ(s′) − θ(s), where θ is

the potential function defined over states. For us, θ(s) =∑
ϕ∈Φ[is violatedϕ]wϕ. We use a discount factor γ = 1.
The problem now is that we have introduced negative ac-

tion costs. As we can ensure that we do not have any negative
cycles in our search, resulting in a total plan cost ≥ 0, we
can use planners that support negative action costs. Note that
having such negative-cost cycles would result in arbitrarily
low totalcost , and the non-termination of the search, as each
node in the cycle can be reached by a yet cheaper path. Cur-
rently, Fast Downward (Helmert 2006) with blind heuristic
supports negative action costs. However, for more sophisti-
cated heuristics, or planners not supporting negative action
costs, negative action costs need to be removed.

To remove negative action costs, we introduce a state tran-
sition cost (Table 1), where we specify the penalty/reward for
each possible transition type. By setting the penalty/reward
ωϕ(q, q′) of a transition from an accepting state to another
(or the same) accepting state to ωϕ(q, q′) = 0 and all other
transitions to ωϕ(q, q′) > 0, we can model the preference
of staying in an accepting state over all other possibilities.
Additionally, we can set the cost for leaving an accepting
and entering a non-accepting state higher as to penalize these
actions.

The transition cost table (Table 1a) corresponds to the cost
function described above. Table 1b shows the cost function
where the costs have been shifted by wϕ to remove nega-
tive costs. This has the negative effect of penalizing state
transitions from accepting to accepting states. Therefore, we
introduce transition Table 1c, where transitions from accept-
ing to accepting sates are also not penalized. Transitions
leaving an accepting state, however, are highly penalized,
whereas remaining in a non-accepting state is only penalized
by a lower cost.

This cost function is informative regarding h and g values,
regardless of the actually used cost table, however the total
cost of the compiled task is greater than the original plans
total cost totalcost(π′) ≥ totalcost(π), where π, π′ are plans
from Π and Π′ respectively. This is due to the fact that penal-
ties from staying in a non-accepting state are added multiple
times.

Proposition 4. Let Π′ be the compiled task from Π with
metric preserving costs (Table 1a). Then an optimal plan
for Π′ is also an optimal plan for Π (without the penalize
action).

Proof sketch. From Proposition 1 we get that the compilation
is sound and complete. The objective function of the original
task is penalty(π) + cost(π), where cost(π) is the sum of
all action costs and penalty(π) is the sum of all penalties
for not achieved soft trajectory constraints. Using metric
preserving costs, we get that at each step of the plan, the
current total cost is equal to the sum of all applied action costs
plus the sum of all penalties for entering a non-accepting soft
trajectory state minus all rewards for entering an accepting
state of the soft trajectory constraints. Thus at each step the
total cost is equal to the applied action costs plus penalties
for currently not achieved soft trajectory constraints. In the
goal state this is equal to penalty(π) + cost(π) the original
objective function.
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From
To Accepting ¬ Accepting

Accepting 0 wϕ
¬ Accepting −wϕ 0

(a) Metric Preserving Costs

From
To Accepting ¬ Accepting

Accepting wϕ 2wϕ
¬ Accepting 0 wϕ

(b) Positively Shifted Costs

From
To Accepting ¬ Accepting

Accepting 0 2wϕ
¬ Accepting 0 wϕ

(c) Adapted Positively Shifted Costs

Table 1: State Transition Costs

Following from Proposition 4 we can show that using pos-
itively shifted or adapted positively shifted costs does not
preserve optimality. This is due to the fact that for each step
in the plan for which a soft trajectory constraint is in a non-
accepting state, we add the penalty to the total cost. For tasks
without hard goals it is easy to see that the empty plan exe-
cuting only the penalize action gathering all penalties only
once is preferred over plans that require more than one action
to fulfill the soft trajectory constraints, which accumulate
penalties for each state where soft trajectory constraints are
not fulfilled.

Experiments
We implemented our compilation into a recent version of the
Fast Downward planning system supporting state dependent
action costs. The evaluation was executed on a subset of the
benchmark problems from the fifth International Planning
Competition (IPC-5) plus the Rovers domain from the IPC-3.
The overall results of the experiments show that our approach
is not only sound in theory, but also provides sufficient re-
sults in practice. We first discuss the detailed results for the
goal action penalty compilation, followed by the general ac-
tion penalty compilation, finalizing with a discussion and
comparison of the two approaches. In the domain names, SP
and QP stand for Simple Preferences and Qualitative Prefer-
ences, respectively. The difference in these being that simple
preferences use goal state preferences of the form (at end
ϕ) only, and qualitative preferences use more complex state
trajectory constraints. As the competition was for satisficing
planning only, and many instances were too hard for optimal
planning, which we are interested in, we generated additional
simpler instances by randomly sampling subsets of the soft
trajectory constraints. From each instance, we generated six
new instances with 1%, 5%, 10%, 20%, 30%, 50%, and 100%
of the soft trajectory constraints. We did not alter the hard
goals of the original instances, which led to the exclusion of
the openstacks domain, as finding optimal solutions for more

than the very simple instances proved to be too hard.

Goal action penalty compilation results
For the goal action penalty compilation, we used the blind
heuristic hblind that assigns estimate 1 to all states except
for goal states, to which it assigns estimate 0, the maximum
heuristic hmax (Bonet and Geffner 2001), and the canonical
pattern database heuristic hcpdb (Haslum et al. 2007) for the
optimal track. For the satisficing benchmarks, we used the
additive heuristic hadd (Bonet and Geffner 2001) and the FF
heuristic hFF (Hoffmann and Nebel 2001) with iterative eager
greedy search with three iterations. No significant differences
where found between the two heuristics in the satisficing
benchmark, with a slightly better performance by hFF. In the
remaining evaluation, we therefore only consider hFF.

As can be seen in Table 2, the performances varied over
the domains. This is a consequence of finding an optimal
solution to the hard goals even without considering the soft
trajectory constraints. The trucks domain did not execute
on the pattern database heuristic, as this heuristic does not
support axioms, which are introduced by the translate step in
the Fast Downward planner.

As can be seen in Figure 3, the satisficing benchmark
performed rather well on the Rovers, Storage, and Trucks
SP domain, as their penalty is always close to zero. The
quality of the Trucks QP domain is slightly worse as fulfilling
all soft trajectory constraints becomes more difficult, the
more complex the instance is. For the pathways domain,
we increased the penalty for not achieving soft goals by
a factor of 10, as otherwise the optimal plan would be to
ignore the soft trajectory constraints. As this domain has
no hard goals, this would have resulted in an empty plan.
As can be seen in some cases this was not sufficient and
the resulting penalty is equal to the total cost, indicating
that no soft trajectory constraints where satisfied. The storage
domain also has no hard goals, but the penalties where already
high in comparison to the action costs, requiring no alteration
of the penalties.

Domain hblind hmax hcpdb

pathways SP 8.10% 10.00% 8.10%
rovers QP 17.14% 21.43% 15.17%
storage SP 34.81% 39.26% 24.44%
storage QP 24.78% 29.20% 23.01%
trucks SP 23.71% 27.84% n/a
trucks QP 18.84% 23.19% n/a

Table 2: Coverage of goal action penalty compilation of the
IPC-5 benchmark set with additional instances with randomly
sampled soft trajectory constraints, A* search for optimal
solution.

General action penalty compilation results
Here we compare the results using the different configura-
tions from Table 1. The experimental setup is identical to the
above with the slight exception to configuration from Table 1a
where only hblind, and hcpdb was used, as it requires negative
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Figure 3: Plan quality of the satisficing benchmarks, ordered
by total cost using goal action penalty compilation and hFF

heuristic.

action costs. As can be seen in Table 3a, the increased in-
formedness of the general action compilation together with
the metric preserving cost function did not significantly in-
crease the amount of optimally solved instances. This is a
result of the relative uninformedness of the blind heuristic,
and the fact that the cost function needs to be evaluated for
each action. As we currently use a relative unoptimized in-
ternal representation of the cost function, this significantly
increases the search time, leading to timeouts before a solu-
tion could be found.

As can be seen in Tables 3b and 3c, the coverage did not
change significantly on these two compilations. However,
one needs to keep in mind, that the optimal plan for these
compilations is not the same as for the metric preserving cost
compilation. The accumulative penalty of staying in non ac-
cepting states, leads to the shortest plan being favoured over
plans fullfilling soft trajectory constraints. Thus, the empty
plan becomes the optimal plan where no hard goals are spec-
ified, and the shortest plan becomes the optimal plan where
hard goals are specified. This could be improved by a scaling
function, which increases the penalty for not achieving the
soft trajectory constraints and/or decreases the action costs.

Domain hblind hmax hcpdb

pathways SP 39.05% n/a 38.57%
rovers QP 16.43% n/a 15.00%
storage SP 21.37% n/a 20.51%
storage QP 23.40% n/a 23.40%
trucks SP 20.62% n/a n/a
trucks QP 19.23% n/a n/a

(a) Metric Preserving Costs

Domain hblind hmax hcpdb

pathways SP 40.48% 39.05% 39.05%
rovers QP 16.55% 17.99% 15.11%
storage SP 29.46% 28.68% 24.81%
storage QP 26.42% 23.58% 24.47%
trucks SP 18.39% 19.54% n/a
trucks QP 21.82% 21.82% n/a

(b) Positively Shifted Costs

Domain hblind hmax hcpdb

pathways SP 40.48% 39.05% 39.05%
rovers QP 16.43% 17.86% 15.00%
storage SP 29.46% 28.68% 27.81%
storage QP 25.47% 22.64% 24.53%
trucks SP 18.39% 19.54% n/a
trucks QP 18.90% 19.69% n/a

(c) Adapted Positively Shifted Costs

Table 3: Coverage of general action penalty compilation with
the configurations from Table 1.

Comparison to zero penalty compilation
Finally, we executed the same test set without a penalty action
cost on goal action penalty compilation with blind heuristics
for optimal solutions, and compared it to the above results
regarding the average satisfied soft trajectory constraints, as
shown in Table 4. Here, no penalty corresponds to the ac-
cidental fulfillment of the soft trajectory constraint, as the
search is not guided towards them. As can be seen, the per-
centage of satisfied soft trajectory constraints is significantly
higher with cost guidance. The trucks domain does not show
significant difference. This is a result of the overall hardness
of finding an optimal solution as can be seen in Figure 2, as
instances for which a solution was found were also easy to

Domain penalty no penalty
pathways SP 97.19% 46.10%
rovers QP 47.05% 20.20%
storage SP 99.50% 54.20%
storage QP 99.90% 48.40%
trucks SP 98.10% 75.20%
trucks QP 100.00% 100.00%

Table 4: Comparison of average fulfilled soft trajectory con-
straints with and without penalty cost, only regarding in-
stances for which a solution was found.
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optimize towards their soft goals, whereas harder instances
where not solved at all.

Conclusion
In this paper, we introduced a method of compiling soft
trajectory constraints into actions with conditional effects and
state dependent action costs. For this, we created finite state
automata for each grounded soft trajectory constraint and
modified the original planning task to track the state of each
automaton during the state trajectory of the current partial
plan. We then used state-dependent action costs to inform
the heuristic guiding the search towards an optimal solution
considering the soft trajectory constraints. We then conducted
experiments using the IPC-5 benchmark set with additional
generated instances. We showed that this approach enables
classical planners to search for optimal solutions, taking soft
trajectory constraints into account, without altering the search
algorithm or implementing special heuristics.

Future work
One issue we found was that some soft trajectory constraints
are simply not reachable or contradict hard goals. There-
fore, these soft trajectory constraints can be removed, and the
penalty can be added directly in the penalize action. Addi-
tionally, optimizations to the cost functions can be made. We
expect these measures to improve the overall performance of
our approach In our compilation, we introduced negative ac-
tion costs, using the Fast Downward planner (Helmert 2006),
we were only able to use the blind heuristic, as it does not fail
on negative action costs. An analysis of alternative heuristics
concerning negative action costs could significantly improve
the performance of our approach.
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