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Abstract
Answer-Set Programming (ASP) is an expressive rule-based
knowledge-representation formalism supported by efficient
solver technology. Traditional evaluation of answer-set pro-
grams takes place in two phases: grounding and solving.
Grounding incurs an up-to exponential increase in space,
termed the grounding bottleneck of ASP, which is often en-
countered in practice. Lazy grounding avoids this bottleneck
but is restricted to normal rules, significantly limiting the ex-
pressive power of this approach. We propose a framework to
handle aggregates by normalizing them on demand during the
lazy grounding process; we call this approach lazy normal-
ization. It is feasible for different types of aggregates and can
bring about up-to exponential gains in space and time.

1 Introduction
Answer-Set Programming (ASP) is an expressive rule-based
knowledge-representation formalism whose success is much
due to efficient solver technology (Gebser, Kaufmann, and
Schaub 2012; Alviano et al. 2013; Leone et al. 2002). State-
of-the-art ASP systems adhere to the ground-and-solve ap-
proach, where a first-order input program is turned into a
corresponding ground (variable-free) program for which an-
swer sets are then computed. But, in the worst case, this
ground program may be exponentially larger than the orig-
inal non-ground input program. Even a polynomial-size in-
crease may already be prohibitive in practice. This draw-
back impairs the scalability of ASP for practical appli-
cations (cf. (Falkner et al. 2016)) and is known as the
grounding bottleneck of ASP. To circumvent such blow-ups,
lazy-grounding ASP solvers have been developed; cf. (Palù
et al. 2009; Lefèvre et al. 2017; Dao-Tran et al. 2012;
Weinzierl 2017). The main idea of lazy grounding is to inter-
leave the grounding and solving phases and to generate only
ground rules necessary in each position of the search space.

However, the existing lazy-grounding ASP systems only
accept normal rules as input and they do not support a broad
range of syntactic primitives as defined by, e.g., the ASP
core language (Calimeri et al. 2012). Most notably miss-
ing are aggregates, which occur in many ASP programs,
because they are highly expressive and enable a program-
mer to state complex conditions in a very concise manner.
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The importance of aggregates is witnessed by a rich body
of research, see e.g., (Greco 1999; Simons, Niemelä, and
Soininen 2002; Liu and Truszczynski 2006; Ferraris 2011;
Faber, Pfeifer, and Leone 2011; Gelfond and Zhang 2014;
Alviano, Faber, and Gebser 2015). Realizing aggregates is
feasible as native extensions of solvers or by unfolding
(monotone) ground aggregates as normal rules. The latter
is known as normalization (Janhunen and Niemelä 2011;
Bomanson and Janhunen 2013). Normalization is an appeal-
ing technique since existing solving techniques can be de-
ployed directly, e.g., conflict-driven learning across normal-
ized aggregates is achieved for free. Furthermore, it easily
allows to revise encodings of aggregates in systematic fash-
ion. The integration of aggregates into lazy-grounding ASP
systems, however, has not been attempted so far, although
there is some work on first-order rewriting of aggregates for
ground-and-solve ASP systems (Polleres et al. 2013).

2 Lazy Normalization
To illustrate the idea of lazy normalization, let us consider
the following first-order rule with a counting aggregate:

ok ← 1 ≤ #count{1 : p(X), d(X)}.

Assuming that the only facts present are d(a), d(b), and d(c),
the traditional grounding of this rule yields the ground rule:
ok ← 1 ≤ #count{1 : p(a); 1 : p(b); 1 : p(c)}. If further
normalized, we obtain the normal rules ok ← p(a), ok ←
p(b), and ok ← p(c). In this work, however, normalization
is applied at the first-order level and the result expresses the
aggregated rule with normal first-order rules. Due to the spe-
cial bound 1 of the above aggregate, the original rule can be
normalized as a first-order rule ok ← p(X), d(X). The lazy
grounding of this rule then amounts to the lazy normaliza-
tion of the original rule, because the respective ground nor-
mal rules are produced lazily and only when needed. It is
worth emphasizing that for bounds greater than 1, the nor-
malization of rules involving counting aggregates at the first-
order level becomes far more involved.

Indeed, lazy grounding poses some unexpected chal-
lenges to normalization, because matters like enumerating
all relevant ground instances of a variable, which are trivial
in the ground-and-solve approach, suddenly become chal-
lenging: for every variable X it is unclear what the ground
instances are, how many of them will appear, and in what
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order. On the one hand, counting inherently requires that the
counted ground atoms are totally ordered; on the other hand,
for an aggregate counting the cardinality of p(X) it is not
known whether the ground instances p(a) and p(c) will be
grounded lazily at some point, nor is it then known if p(c) is
the second ground instance since some later grounded p(b)
might come between p(a) and p(c) in a natural order. Thus
it is not obvious how normalization can be efficiently ap-
plied in a lazy-grounding setting. Another challenge is that
the normalization of an aggregate must not require any por-
tion of the program to be fully grounded, since due to pred-
icate dependency this can easily require large portions of
the program to be fully grounded and hence degenerate into
grounding the input program completely.

Our investigation revealed that ground instance enumera-
tion is a key principle in enabling efficient non-ground nor-
malization in a lazy-grounding setting. Based on this we
developed a normalization framework working in the con-
text of lazy grounding, which we coin lazy normalization
since it allows for the result of normalization to be instan-
tiated lazily. Lazy normalization of aggregates with lower
bounds is possible, and an optimized lazy normalization
for certain aggregates, inheriting attractive properties from
ground-and-solve normalizations, was achieved. The nor-
malizations have been implemented within the Alpha ASP
system, which performed well in several benchmarks, allow-
ing significant savings in space and time. Furthermore, this
work enables an unprecedented lazy-grounding ASP evalu-
ation beyond normal rules and a significant step towards the
full expressive power of ASP in lazy-grounding ASP sys-
tems and related hybrid approaches, such as (Eiter, Kamin-
ski, and Weinzierl 2017).
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Simons, P.; Niemelä, I.; and Soininen, T. 2002. Extending
and implementing the stable model semantics. Artif. Intell.
138(1-2):181–234.
Weinzierl, A. 2017. Blending lazy-grounding and CDNL
search for answer-set solving. In Logic Programming and
Nonmonotonic Reasoning, 14th International Conference,
LPNMR 2017. Proceedings, 191–204.

626




