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Abstract

Temporal logics, as formalisms capable of expressing prop-
erties evolving over time, have been successfully employed
to represent and verify processes in many different settings.
A common staple in most of these logics is the eventuality
(or diamond) constructor, which expresses that some property
will hold at some point in the future. While useful in prac-
tice, the specification of the diamond operator is too rough;
indeed, one often has an idea—albeit uncertain—about when
the property may hold. We introduce TLD, an extension of
linear temporal logic (LTL) that refines the diamond opera-
tor with a new constructor expressing a probability distribu-
tion for the time until the property is observed. We study the
main properties of this logic and describe methods for decid-
ing satisfiability, and performing probabilistic inferences in a
restricted version of the logic. These methods rely on known
properties of LTL.

Introduction
Temporal logics have been widely studied as formalisms for
expressing and dealing with properties that evolve over time.
Over the years, variants of these formalisms have been suc-
cessfully employed to represent and verify processes from a
large variety of domains. Perhaps one of the main success
stories from the field comes from the area of model check-
ing, where the goal is to verify that a system specification
satisfies a given temporal property (Clarke, Emerson, and
Sistla 1986).

In the literature, it is possible to find many different def-
initions of temporal logics (Pnueli 1986), depending on
the view one has on time—discrete or continuous (Koy-
mans 1990; Maler, Nickovic, and Pnueli 2005), linear or
branching (Emerson and Srinivasan 1989), with or with-
out past (Markey 2003; 2004), etc.,—the expressivity (or
constructors) allowed—eventually, always, next, etc.,—and
even the kind of underlying logical formalism that is be-
ing extended with time—e.g., propositional logic, descrip-
tion logics (Lutz, Wolter, and Zakharyaschev 2008), or even
databases (Chomicki 1994). Among all these logics, lin-
ear temporal logic (LTL) (Pnueli 1977) remains a popular
choice for dealing with discrete linear time properties and
specifications.
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An important staple in LTL, which is also commonly ob-
served in many other related logics, is the eventuality con-
structor (also known as diamond). In a nutshell, the diamond
expresses that a given property will be eventually observed.
This simple constructor is very useful in the specification of
desirable properties, but is often too rough in relation to our
knowledge of the world: it does not allow for a finer descrip-
tion of the potential waiting time until the eventuality is ful-
filled, unless one can provide some certainty guarantees for
this time. For example, when stopping at a red traffic light,
we know that it will eventually turn green; but we are also
almost certain that this event will happen within the next five
minutes; still, under some circumstances, we might have to
wait six, or more minutes. Similarly, when we buy a new
washing machine, we know that it will eventually break, but
we do not expect that to happen either in the very near (e.g.,
tomorrow), nor in the very far future (in 500 years). Indeed,
in this case we would expect the (perhaps subjective) prob-
ability of the machine breaking to increase with time until it
reaches a maximum point from which it starts to decrease.
To handle this information, it is necessary to allow the ex-
pressivity of probability distributions over the time that one
must wait for the property to hold.

In this paper we introduce TLD,1 a new probabilistic ex-
tension of LTL that refines the diamond constructor with the
new, freshly cut, operator ⬖. This new operator is parameter-
ized with a discrete probability distribution that can be used
to specify the likelihood of observing the property of inter-
est, for the first time, at each possible point in time. Hence,
for the traffic light example, one can specify a distribution
that gives a very high probability only to the time covering
the first five minutes, with this probability decreasing very
fast as time distances from the five-minute mark in the fu-
ture. In the case of the washing machine, one can specify an
almost bell-shaped infinite distribution such as the Poisson,
which assigns a positive—albeit, rapidly decreasing after its
mean or expected value—probability of occurrence to every
point in time.

We provide a formal definition of our new logic TLD and
its semantics which is based on the idea of subjective prob-
abilities; that is, uncertainty refers to a view in which many
different scenarios (or worlds) are possible, and the proba-

1TLD stands for temporal logic with probabilistic distributions.
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bilities reflect the likelihood of each of these worlds of being
observed. In our case, a world would be a possible evolution
of a system; that is, an LTL interpretation. We show that
the ⬖ constructor is very expressive in the sense that it can
describe properties that can only be satisfied on uncount-
able interpretations. Hence, we introduce a restricted ver-
sion, called TLD−, that has the countable-model property;
i.e., every satisfiable TLD− formula has a countable model.
Within this sub-logic, we present effective methods for de-
ciding satisfiability, and computing probabilities of different
events. Moreover, we show how to compute the expected
(essentially, the average) time required until a desired prop-
erty is observed.

Preliminaries
We briefly introduce the basics of probability theory and lin-
ear temporal logic (LTL).

Probability Theory
We start by providing the basic notions of probability needed
for this paper. For a deeper study on probabilities, we refer
the interested reader to (Billingsley 1995).

Let Ω be a set called the sample space. A σ-algebra over
Ω is a classF of subsets of Ω that contains the empty set, and
is closed under complements and under countable unions.
A probability measure is a function µ : F → [0, 1] such
that µ(Ω) = 1, and for any countable collection of pairwise
disjoint sets Ei ∈ F , i ≥ 1, it holds that

µ(
∞⋃
i=1

Ei) =
∞∑
i=1

µ(Ei).

The probability of a set E ∈ F is
∫
ω∈E µdω, where the

integration is made w.r.t. the measure µ. For special cases
where this integration is easily defined, see below.

A usual case is when Ω is the set R or all real numbers,
and F is the standard Borel σ-algebra over R; that is, the
smallest σ-algebra containing all open intervals in R. In this
case, µ is called a continuous probability measure, and the
integration defining the probability of a setE corresponds to
the standard Riemann integration.

If Ω is a countable (or finite) set, the standard σ-algebra is
formed by the power set of Ω, and for any probability mea-
sure µ over Ω and set E ⊆ Ω, P (E) =

∑
ω∈E µ(ω); that is,

the probability of a set is the sum of the probabilities of the
elements it contains. In this case, µ is called a discrete prob-
ability measure. If, in addition, µ(ω) > 0 for all ω ∈ Ω, then
µ is complete. When Ω is the set of all natural numbers N,
we specify the distribution µ as a function µ : N→ [0, 1]. In
this case, the expectation of µ isE[µ] :=

∑
n∈N n ·µ(n). In-

tuitively, the expectation estimates the value that one should
predict to see under µ.

Two simple examples of complete discrete distributions
are the geometric and the negative binomial (also known as
Pascal) distributions. The geometric distribution, defined by
a parameter (the probability of success) p ∈ (0, 1), is de-
fined, for every i ∈ N, by µ(i) = (1− p)i−1p. This distribu-
tion describes the probability of observing the first success
in a repeated trial of an experiment at time i. The negative

binomial generalizes the geometric by counting the time un-
til a pre-specified number n of successes has been observed.

LTL
LTL is a temporal logic that extends propositional logic with
the discrete temporal operators© (next) and U (until). More
precisely, given a set V of propositional variables, LTL for-
mulas are defined by the following grammar, where x ∈ V:

ϕ ::= x | ¬ϕ | ϕ ∧ ϕ | ©ϕ | ϕUϕ.

An LTL interpretation is a function I : N → 2V that maps
every n ∈ N to a set I(n) ⊆ V . Given an interpretation I ,
a formula ϕ, and n ∈ N, the satisfaction relation I, n |= ϕ
is defined inductively as follows: I, n |= x iff x ∈ I(n);
I, n |= ¬ϕ iff I, n 6|= ϕ; I, n |= ϕ1 ∧ ϕ2 iff I, n |= ϕ1 and
I, n |= ϕ2; I, n |=©ϕ iff I, n+1 |= ϕ; and I, n |= ϕ1Uϕ2

iff ∃m ≥ n.I,m |= ϕ2 and for all i, n ≤ i < m I, i |= ϕ1.
The interpretation I is a model of ϕ (I |= ϕ) iff I, 0 |= ϕ.

We denote as > any propositional tautology, and use the
common abbreviations ϕ∨ψ := ¬(¬ϕ∧¬ψ), ♦ϕ := >Uϕ,
and �ϕ := ¬♦¬ϕ. Of particular interest for this work is the
operator ♦, commonly read as eventually. In a nutshell, the
formula ♦ϕ is true at some point in time if there is some
future time where ϕ is satisfied. However, there is no notion
of how soon or how late that time will take place; that is, the
satisfaction of the ♦ may be delayed indefinitely.

It is well known that satisfiability of an LTL formula ϕ
can be decided by checking the emptiness of a (general-
ized) Büchi automaton (GBA) that accepts all models of ϕ.
Briefly, given such a formula ϕ, let sub(ϕ) be the set of all
subformulas of ϕ, and cl(ϕ) be the closure under negation of
the set sub(ϕ) ∪ {©(ψ1Uψ2) | ψ1Uψ2 ∈ sub(ϕ)}. If At is
the set of all the maximally consistent subsets of cl(ϕ), then
the GBA Aϕ = (Q,Σ,∆, Ini,F), where Q = At, Σ = 2V ,
Ini = {s ∈ At | ϕ ∈ s}, and

∆ = {(s, V, s′) | s ∩ V = V, ©ψ ∈ s→ ψ ∈ s′}
F = {{s | ψ′ ∈ s ∨ ψUψ′ /∈ s} | ψUψ′ ∈ sub(ϕ)}

accepts all models of ϕ (Vardi and Wolper 1994). Intuitively,
the states in a successful run ofAϕ correspond to the subfor-
mulas of ϕ that are satisfied by the accepted model in every
point in time.

Distributions over Time
When dealing with temporal information, and in particu-
lar with eventualities, one may be interested in understand-
ing when will such an eventuality be resolved. Usually, one
would have some knowledge about the likelihood of observ-
ing the event at different points in time, which may be ex-
pressed in the form of a discrete probability distribution δ.
For example, if a quality control process is triggered when a
pre-specified number (say, 5) of defective items have been
produced, and each item may be independently defective
with some probability (e.g., 0.5), the waiting time until the
quality control process is triggered can be modelled through
a negative binomial distribution with parameters 5 and 0.5.
In that case, it is more likely that the statement “eventually
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the quality control process is triggered” is satisfied by a wit-
ness at time 5 than, say, at time 10. Thus, we want to extend
the notion of ♦ to handle this and potentially other kinds of
probabilistic information derived from the distribution.

The temporal logic with probabilistic distributions (TLD)
extends LTL with a new constructor ⬖δϕ, called the distribu-
tion eventuality, that expresses that the time until the formula
ϕ is first observed has distribution δ. Formally, TLD formu-
las are built from LTL formulas ϕ by the grammar rule

Φ ::= ϕ | ⬖δϕ | Φ ∧ Φ | Φ ∨ Φ | ©Φ | ϕUΦ | �Φ,

where δ is a probability distribution over N. When the spe-
cific distribution δ is not relevant, we will often disregard the
subindex and write e.g., ⬖ψ. Notice that we disallow ⬖ to ap-
pear in the scope of any explicit or implicit negation, since
¬⬖ϕ simply expresses that the time until ϕ is observed has
a distribution different from δ, which is an uninformative
statement. However, we explicitly include the abbreviations
(∨, �) that are lost by the lack of negation. The semantics of
this logic is based on the multiple-world approach.

Definition 1. A TLD interpretation is a pair P = (I, µ),
where I is a set of LTL interpretations and µ is a probability
distribution over I. Given a set of LTL interpretations I, an
LTL formula ϕ, and n ∈ N, let Iϕn := {I ∈ I | I, n |= ϕ}.
The satisfaction relation P, n |= Φ is defined by induction
as follows. For every I ∈ I,

• I, n |= ⬖δϕ iff for all i≥0, µ(Iϕn+i \
⋃i−1
j=0 I

ϕ
n+j) = δ(i),

• P, n |= Ψ iff for every I ∈ I it holds that I, n |= Ψ,

where the satisfaction relation on the LTL constructors
(∧,©,U ,�) is defined in the usual manner as for LTL. If
P, 0 |= Φ, we call P a model of Φ. Φ is satisfiable if it has a
model. The interpretation P = (I, µ) is countable if the set
I contains countably many LTL interpretations.

The following simple example showcases the semantics
of the probabilistic constructor ⬖.
Example 2. Let δ be the geometric distribution with param-
eter 1

2 ; that is, δ(i) = 1/2i+1 for all i ∈ N, and a a proposi-
tional variable. For every n ∈ N, let µ(In) = δ(n), and In
be the LTL interpretation such that

In(k) =

{
∅ k < n

{a} k ≥ n;

that is, In makes the proposition a false in the first n − 1
points in time, and true afterwards. Then the TLD interpre-
tation ({In | n ∈ N}, µ) is a model for ⬖δa.

In general, we cannot make any assumptions about the
class I of LTL interpretations that will be used when build-
ing a model for a TLD formula Φ. In fact, there are simple
formulas that only have uncountable models.
Example 3. Consider the TLD formula Φ0 := �⬖δa, where
δ is the geometric distribution with parameter 1

2 . Since Φ0

contains only one propositional variable a, every real num-
ber x ∈ [0, 1] can be seen as an LTL interpretation Ix where
Ix(n) = {a} if the n + 1-st digit of the (standard) binary
representation of x is 1, and Ix(n) = ∅ otherwise.

Figure 1: Embedding of the full binary tree (in gray) into
the tree T (in black). Filled nodes are labelled with 0 and
unfilled nodes with a 1.

Consider now P = ({Ix | x ∈ [0, 1]}, µ), where µ is the
standard Borel measure that maps every interval in [0, 1] to
its length. Then P |= Φ0. To see this, it suffices to notice
that for every n, i, Ian+i \

⋃i−1
j=0 Ian+j is isomorphic to the

set of all numbers whose binary representation starts with a
chain of i zeroes, followed by a one, which is the interval
[ 1
2i+1 ,

1
2i ) of length 1

2i+1 = δ(i).
Notice that the model P provided in this example is not

unique; in fact, Φ0 has infinitely many models which can be
obtained with the help of mixed measures giving a positive
probability to interpretations Ix for some rational numbers
x. However, all these models are uncountable.

Theorem 4. Let P = (I, µ) be a TLD interpretation, and
δ(i) = 1/2i+1 for all i ∈ N. If P |= �⬖δa, then I is un-
countable.

Proof (Sketch). Since the only propositional variable in the
formula is a, every interpretation I ∈ I is isomorphic to an
infinite word over {0, 1} (that is, the binary representation
of a real number in the unit interval). We can then represent
I as a binary tree T , where every node is labeled with a 0
or a 1 according to the binary encoding described before. By
construction, every node labeled with a 0 must have two suc-
cessors, labeled with each of the two values. Remove from
T every node that cannot reach a node labeled with a 0. Then
every node in T has a branching successor. This means that
the full binary tree can be embedded in T (see Figure 1).
Thus, T has at least as many paths as the full binary tree,
which are uncountable. Since every path in T corresponds
to an interpretation in I, the result follows.

Uncountable models are problematic from a computa-
tional point of view because they are harder to represent and
handle finitely. Indeed, notice that the characterization of the
models from Theorem 4 is far from trivial. Moreover, proba-
bility distributions over uncountable universes require more
advanced mathematical tools. To avoid this issue for the mo-
ment, we consider a syntactic restriction of TLD that allows
formulas of the form ⬖δϕ to be satisfied in at most one point
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in time. Formally, TLD− formulas are constructed through
the grammar

Φ ::= ϕ | ⬖δϕ | Φ ∧ ϕ | Φ ∨ ϕ | ©Φ | ϕUΦ.

TLD− formulas contain at most one occurrence of the con-
structor ⬖, and this occurrence is always within the scope of
only Boolean or temporal operators that need only one time
point to be satisfied. This allows us to show that TLD− has
the countable-model property.
Theorem 5. The TLD− formula Φ is satisfiable iff it has a
countable model.

Proof. Let P = (I, µ) be a model of Φ, and ⬖δϕ be the
(only) ⬖-formula appearing in Φ (if there is none, the result
follows trivially). If there is no n ∈ N such thatP, n |= ⬖δϕ,
then for every I ∈ I, the interpretation PI = ({I}, µI),
where µI({I}) = 1 is a model of Φ.

Otherwise, if there is an n ∈ N with P, n |= ⬖δϕ, then
by the semantics of ⬖, for every i ∈ N such that δ(i) > 0
there exists an interpretation Ii ∈ I with Ii, n + i |= ϕ and
Ii, n + j 6|= ϕ for all 0 ≤ j < i. If there is more than one,
just choose one as a representative. Then, the TLD interpre-
tation P ′ = ({Ii | i ∈ N}, µ′), where µ′({Ii}) = δ(i) is a
countable model of Φ.

Deciding Satisfiability
For this section, we focus on the problem of deciding
whether a given TLD− formula Φ is satisfiable. Recall that
the constructor ⬖δ can appear at most once in a TLD− for-
mula. Hence, it suffices to focus on one discrete probability
distribution δ. For the rest of this section, we consider δ to
be an arbitrary but fixed complete distribution. To improve
readability we will omit the subscript δ from these formulas.

To start our analysis of satisfiability of TLD− formulas,
consider the simple case where Φ = ⬖ϕ for some LTL for-
mula ϕ. Already this case requires machinery beyond stan-
dard LTL. For example, the formula Ψ = ⬖(♦a) is unsat-
isfiable. To see this recall that any TLD model of Ψ must
contain an LTL interpretation I such that I, 0 |= ¬(♦a) and
I, 1 |= ♦a. The former means that I, n |= ¬a for all n ≥ 0,
but the latter says that there must exist some m ≥ 1 such
that I,m |= a, which is a contradiction.

In fact, for any model P = (I, µ) of the formula ⬖ϕ and
any n ∈ N, there must exist an In ∈ I such that In, n |= ϕ
and In, k 6|= ϕ for all k < n. Another way to visualize
this is to think that we allow points of time in the past, and
for every n we should be able to find an interpretation I
over the integers such that I, 0 |= ϕ and I, k 6|= ϕ for all
−n < k < 0. This motivates the following theorem.2

Theorem 6. The TLD formula ⬖ϕ is satisfiable iff the LTLp
formula ϕ ∧�p¬ϕ is satisfiable.

Proof. If I is a model of ϕ ∧ �p¬ϕ, then I, 0 |= ϕ and for
all k < 0, I, k 6|= ϕ. For each n ∈ N we construct the LTL

2LTL interpretations are extended to integers in the obvious
way: I maps every integer to a set of propositional variables. Such
an interpretation I satisfies the formula �pϕ if for every k < 0,
I, k |= ϕ. LTLp is the extension of LTL with this past operator.

interpretation In : N → 2V defined by In(k) := I(k − n)
for all k ∈ N. The TLD interpretation ({In | n ∈ N}, µ)
where µ({In}) = δ(n) for all n ∈ N is a model of ⬖ϕ.

Conversely, it is known that every LTLp formula ψ has a
model iff it has an ultimately periodic model to the past; i.e.,
a model I such that, for some constants −2|ψ| ≤ n, k < 0 it
holds that for allm < n, I(m) = I(m+k). If (I, µ) |= ⬖ϕ,
then for m > 4|ϕ| there exists an interpretation Im ∈ I
such that Im,m |= ϕ and Im, k 6|= ϕ for all 0 ≤ k < m.
This interpretation can be extended to all negative numbers
to satisfy ϕ ∧�p¬ϕ.

Since deciding satisfiability of LTL formulas with past op-
erators is the same as for standard LTL formulas (Kesten et
al. 1993; Markey 2004), we obtain a tight complexity bound.

Corollary 7. If ϕ is an LTL formula, deciding satisfiability
of ⬖ϕ is PSpace-complete.

We turn now our attention to the general case, where Φ
is an arbitrary TLD− formula. Without loss of generality,
assume that the only appearance of the constructor ⬖ is of
the form ⬖a, where a is a propositional variable. For exam-
ple, the formula ⬖ϕ can be transformed into the equivalent
⬖a ∧�((a ∧ ϕ) ∨ (¬a ∧ ¬ϕ)). Given such a formula Φ, let
Φ↓ be the LTL formula obtained by substituting the (unique)
occurrence of ⬖awith the tautology a∨¬a, and Φ− the LTL
formula obtained by substituting ⬖a with the contradiction
a ∧ ¬a.

Suppose first that Φ− is satisfiable; that is, it has an LTL
model I |= Φ−. Then, clearly, the original formula Φ is also
satisfiable. Indeed, the TLD interpretation P = ({I}, µ)
where µ({I}) = 1 is a model of this formula, where ⬖a is
never satisfied. As a simple example, any model of the LTL
formula ϕ is also a model of ⬖a ∨ ϕ. Since this case can be
verified easily, we assume for the rest of this section that Φ−

is not satisfiable. This means that every model must satisfy
⬖a at some point in time. The following lemma formalizes
this.

Lemma 8. Let Φ be a TLD− formula. Then, (i) if Φ− is sat-
isfiable, then Φ is satisfiable; and (ii) if Φ− is not satisfiable,
then for every model P of Φ there exists an n ∈ N such that
P, n |= ⬖a.

To study satisfiability of TLD− formulas, we first con-
sider the special case where the probabilistic formula ⬖a is
satisfied at the first point in time. We will extend the results
to the general case later in this section.

Definition 9. A TLD− formula Φ is originally satisfiable if
there is a model P of Φ such that P, 0 |= ⬖a.

Obviously, if Φ is originally satisfiable, then it is also sat-
isfiable, but the converse does not hold in general. For in-
stance, the formula ©⬖a is satisfiable, but not originally
satisfiable. In general, the following equivalence holds.

Theorem 10. Φ is originally satisfiable iff for every n ∈ N
there exists an LTL interpretation In such that (i) In |= Φ↓,
(ii) In, n |= a, and (iii) for all k, 0 ≤ k < n, In, k 6|= a.

Proof (Sketch). The result follows from the observation that
if P = (I, µ) is a TLD model of Φ, then every I ∈ I is an
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LTL model of Φ↓, which can be easily shown by structural
induction on the shape of Φ. The conditions (ii) and (iii)
follow then from the semantics of the ⬖ operator.

The formulation of this theorem shows a similarity to the
case studied at the beginning of this section. However, con-
trary to the case of Theorem 6, we cannot simply use a past
temporal operator to ensure original satisfiability. The rea-
son for this is that the interpretations In may need to differ
from each other.
Example 11. Consider the formula Φ1 = ⬖a∧b∧©(¬bUa),
which is originally satisfiable. In this case, the models of
Φ↓1 = b ∧ ©(¬bUa) must satisfy b at the first point in
time, but then must satisfy ¬b (that is, violate b) until an
a is observed. In other words, for every model P = (I, µ)
of Φ1 and every n > 0 there must exist an interpretation
In ∈ I such that In, 0 |= ¬a ∧ b, In, n |= a, and for all
j, 0 < j < n, In, j |= ¬a ∧ ¬b. This cannot be verified
through a single satisfiability test on an LTL formula with
past operator, since the chain of ¬b grows arbitrarily.

Recall that given an LTL formula ϕ, we can construct a
GBA Aϕ that accepts all the LTL models of ϕ. Moreover,
the states of this automaton represent the set of subformulas
of ϕ that are satisfied at each point in time by this model.
For a TLD− formula Φ, let AΦ = (Q,Σ,∆, Ini,F) be the
generalized Büchi automaton that accepts all models of Φ↓.
Assume w.l.o.g. that AΦ is reduced in the sense that all the
states inQ appear in at least one successful run ofAΦ; more
precisely, that every state inQ is reachable from I , and from
it one can reach a cycle that contains at least one state from
each of the sets inF . Any state that does not satisfy these re-
quirements can be removed without modifying the language
accepted by the automaton.

Definition 12. Given the TLD− formula Φ, and the reduced
GBA AΦ = (Q,Σ,∆, Ini,F) that accepts all models of Φ↓,
the origin automaton of Φ is the non-deterministic finite au-
tomaton (NFA) BΦ = (Q, {1},∆′, Ini, F ), where

F = {s ∈ Q | a ∈ s},
∆′ = {(s, 1, s′) | (s, V, s′) ∈ ∆, s /∈ F}.

Notice that AΦ and BΦ differ on the set of accepting
states, but also on the class of languages they accept. AΦ

accepts infinite words, and its acceptance condition requires
some types of states to be visited infinitely often. On the
other hand BΦ accepts only finite words over a unary al-
phabet, and the acceptance condition requires that the state
reached after reading this word is in F , which is defined as
the set of states containing a. Specifically, successful runs
over BΦ represent partial LTL models ending in a type con-
taining the propositional variable a. In addition, types con-
taining a do not have any outgoing transition in BΦ. This
means that any successful run ρ of the origin automaton of
length n represents a prefix of an LTL model In of Φ↓ such
that In, n |= a and In, k 6|= a for all 0 ≤ k < n. Thus, we
get the following result.

Theorem 13. The TLD− formula Φ is originally satisfiable
iff the automaton BΦ accepts the language 1∗.

Proof. If Φ is originally satisfiable, then there is a model
P = (I, µ) of Φ such that P, 0 |= ⬖a. Since δ is complete,
for every n ∈ N there must exist some In ∈ I such that
In, n |= a and In, j 6|= a for all 0 ≤ j < n. Then, the first n
transitions in the run accepting In form a successful run for
1n in BΦ. Hence the automaton accepts 1∗.

Conversely, every successful run of BΦ of length n, de-
fines a sequence of transitions inAΦ that uses the same state.
Since AΦ is reduced, from the final state reached by BΦ, it
is possible to construct a successful run in AΦ. Hence Φ is
originally satisfiable.

Notice that the size of the automaton BΦ is exponential
in the length of Φ, as it has potentially as many states as
there are types for cl(Φ↓). Since checking universality of an
NFA over a unary alphabet is coNP-complete (Stockmeyer
and Meyer 1973), we obtain a coNExpTime upper bound for
original satisfiability.
Corollary 14. Original satisfiability of TLD− formulas is in
coNExpTime.

As a last step in the study of satisfiability, we now con-
sider the general case of a TLD− formula such that the only
occurrence of the formula ⬖amay be satisfied at a later point
in time. As mentioned already, if the formula is originally
satisfiable then it is also satisfiable but the converse may not
hold. Importantly, if P |= Φ then there exists a point in time
n ∈ N such that P, n |= ⬖a (see Lemma 8). This leads to
the following characterisation of satisfiability.
Theorem 15. Φ is satisfiable iff there exists an n ∈ N such
that for every m ∈ N there is an LTL interpretation Im such
that (i) Im |= Φ↓, (ii) Im, n + m |= a, and (iii) for all
k, 0 ≤ k < m, Im, n+ k 6|= a.

Recall also that the GBA AΦ accepts all the LTL models
of Φ↓. Following the ideas developed for original satisfiabil-
ity, we can see that Φ is satisfiable iff there is an n such that
for every m there is a successful run ρm in AΦ where ρm
visits a state containing a after n + m transitions, and none
of the states in the transitions between n and n + m − 1
contain a. This motivates the following definition.
Definition 16. Let AΦ = (Q,Σ,∆, Ini,F) be the reduced
GBA for the TLD− formula Φ. We define the sets Inii for
i ∈ N inductively as follows: Ini0 := Ini; and

Inii+1 = {s ∈ Q | (s′, V, s) ∈ ∆, s′ ∈ Inii}.

For each i ∈ N, define the NBA BiΦ := (Q, {1},∆′, Inii, F ),
where ∆′ and F are as in Definition 12.

Intuitively, each of the automata BiΦ corresponds to the
origin automaton that checks that the conditions for satisfy-
ing ⬖a can be satisfied, but rather than considering the ini-
tial states fromAΦ, it is initialized with those states reached
after i transitions. Since AΦ is reduced, from every state
reached after i transitions it is still possible to complete a
successful run, and hence a model of Φ↓. Hence, we get the
following.
Theorem 17. The TLD− formula Φ is satisfiable iff there
exists an n ∈ N such that the NFA BnΦ accepts the language
1∗.
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There are two important things to consider. First, the size
of each of the automata BiΦ is exponential in the size of the
formula Φ. Second, since Inii ⊆ Q for all i ∈ N, then in
order to verify satisfiability, it suffices to consider n ≤ 2|Q|.
We thus obtain the following result.

Theorem 18. Satisfiability of TLD− formulas is in
NExpTimeNP.

Proof. We can guess in non-deterministic exponential time
(in |Φ|) a number n smaller or equal to 2|Q|, using a loga-
rithmic encoding. Through a multiplication of the reachabil-
ity matrix, Inin (and hence BnΦ) is computed in exponential
time. We can then call an NP oracle to check universality of
this automaton.

Interestingly, the algorithm described in this proof calls
the NP oracle exactly once. Using the results from
Hemachandra (1989), it follows that TLD− satisfiability is
in the strong exponential hierarchy, which collapses (i.e., is
equivalent) to PNE.

Corollary 19. Satisfiability of TLD− formulas is in PNE.

Including Probabilities
In the previous section we focused on the problem of satisfi-
ability of a TLD− formula, for which the only feature of the
probabilistic constructor ⬖ needed is that the distribution δ
is complete. That property was used to justify the need for
having an infinite class of LTL interpretations in every TLD
model of a formula. However, our main interest is in fact to
understand the uncertainty described through this construc-
tor, and to deduce some consequences out of it.

Notice first that a TLD interpretation P = (I, µ) defines,
in fact, probability distributions for different LTL formulas
to hold at each point in time.

Definition 20. Let P = (I, µ) be a TLD interpretation, ϕ
an LTL formula, and n ∈ N. The probability of satisfying ϕ
at time n w.r.t. P is PP(ϕ, n) := µ({I ∈ I | I, n |= ϕ}).

In general, we are interested in deducing properties of
these probability distributions, when the class of TLD in-
terpretations is restricted to the models of a given formula
Φ. The most basic such kinds of properties are the lower and
upper probability bounds.

Definition 21. Let Φ be a TLD formula, ϕ an LTL formula,
and n ∈ N. We define PΦ

inf(ϕ, n) := infP|=Φ PP(ϕ, n) and
PΦ

sup(ϕ, n) := supP|=Φ PP(ϕ, n).

These probabilistic bounds allow us to understand the
likelihood that a given situation, defined by the LTL formula
ϕ holds at time n. In the worst case, we would have that
these probabilities are between 0 and 1, which is not infor-
mative, while in the best case, Pinf and Psup coincide, which
yields perfect information about the uncertainty of the for-
mula of interest.

Notice that the problem of deciding whether Pinf (Psup)
is smaller or equal (greater or equal, respectively) to a given
constant α ∈ [0, 1] is at least as hard as deciding satisfiability

Algorithm 1 Computation of P̂Φ
inf and P̂Φ

sup

Pinf ← 0
Psup ← 1
for n ∈ N do

if 1n /∈ L(B+
Φ ) then Psup ← Psup − δ(n)

if 1n /∈ L(B−Φ ) then Pinf ← Pinf + δ(n)
return Pinf , Psup

of TLD formulas. Indeed, the formula Φ is unsatisfiable iff
PΦ

inf(¬>, 0) = 1 iff PΦ
sup(>, 0) = 0.3

As we did in the previous section, we will study the prob-
lem of computing these infima and suprema in parts. First,
let us assume w.l.o.g. that we are interested in finding the
probability of observing a propositional variable b that ap-
pears in the TLD formula Φ; if we are interested in a more
complex formula ψ, we can simply conjoin Φ with the for-
mula �((b∧ψ)∨ (¬b∧¬ψ)), where b is a fresh variable not
appearing in Φ. Moreover, we consider only the initial point
in time n = 0. That is, we focus on computing PΦ

inf(b, 0) and
PΦ

sup(b, 0). Finally, we assume for simplicity that Φ is satisfi-
able; otherwise, the bounds are already known, as described
before.

For now, we look only at models where P, 0 |= ⬖a; that
is, we restrict our attention to models that witness origi-
nal satisfiability. In other words, we are at the moment in-
terested in computing P̂Φ

inf := infP,0|=Φ∧⬖a PP(b, 0) and
P̂Φ

sup := supP,0|=Φ∧⬖a PP(b, 0). We will see how to deal
with the general case later. As seen in the previous section,
it suffices to consider such models containing LTL interpre-
tations In |= Φ↓ for each n ∈ N such that In, n |= a and
In, k 6|= a for all 0 ≤ k < n. We are now interested in
finding out which of these models also satisfy b at time 0.

Recall from the previous section that the automaton BΦ is
such that, for every n ∈ N, BΦ accepts the word 1n iff there
is a model of Φ↓ such that a is true at the n-th point in time,
and nowhere before. We now refine this idea by considering,
in addition, whether those models satisfy b or not.

Definition 22. Let BΦ = (Q, {1},∆, Ini, F ) be the origin
automaton for the TLD− formula Φ. We define the two NFA
B+

Φ = (Q, {1},∆, Ini+, F ) and B−Φ = (Q, {1},∆, Ini−, F ),
with Ini+ = {s ∈ Ini | b ∈ s}, and Ini− = {s ∈ Ini | b /∈ s}.

Intuitively, B+
Φ detects the values n ∈ N such that it is

possible to construct a model In |= b∧Φ↓ where In, n |= a,
and In, k 6|= a for all 0 ≤ k < n. Similarly, for B−Φ but with
In |= ¬b ∧ Φ↓. This is the idea behind Algorithm 1.

Strictly speaking, the procedure from Algorithm 1 does
not describe an algorithm as the for loop cycles over all nat-
ural numbers. Notice, however, that each iteration can be
computed in linear time in the size of the automaton BΦ:
to check whether the automata accepts 10 = ε, one sim-
ply needs to see whether the initial and final states are not
disjoint. One can then compute all the states that are reach-

3We use the convention that an infimum over an empty set is
the maximum possible value, and dually for suprema.
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able in one transition, which allows the next iteration to be
treated similarly. Thus, this describes an any-time algorithm
that provides better and better approximations to Pinf and
Psup as time progresses.

Notice, moreover, that since δ is a probability distribution,∑
n∈N δ(n) = 1, and hence for any given ε > 0 there is an

nε ∈ N such that
∑
n≥nε δ(n) < ε. In other words, given

a desired level of approximation ε, it is possible to halt the
execution of the process after nε steps with the guarantee
that the computed Pinf and Psup differ from the real P̂Φ

inf

and P̂Φ
sup by at most ε.

Throughout the for loop, the procedure keeps the follow-
ing invariant: for every model P of Φ ∧ ⬖a, it holds that
Pinf ≤ PP(b, 0) ≤ Psup. Furthermore, if Φ is satisfiable, the
procedure suggests the construction of two models P1 and
P2 such that Pinf = PP1

(b, 0) and Psup = PP2
(b, 0). This

means that the infima and suprema in this case are both wit-
nessed as minima and maxima. In addition, the differences
between these two bounds are observed when it is possible
to find LTL models In, I ′n both satisfying a first at point n,
such that In |= b and I ′n 6|= b. Hence we have the following
result.
Theorem 23. For every value x, P̂Φ

inf ≤ x ≤ P̂Φ
sup, there

exists a model P of Φ such that PP(b, 0) = x.

Proof. If P̂Φ
inf ≤ x ≤ P̂Φ

sup, then x can be rewritten as

x = αP̂Φ
inf + (1− α)P̂Φ

sup

for some constant α ∈ [0, 1]. We build a model P of Φ as
follows. For every n ∈ N, if 1n /∈ L(B+

Φ ), then take a model
In such that In, 0 |= ¬b and In satisfies a first at time n,
and define µ(In) := δ(n). Similarly, if 1n /∈ L(B−Φ ) take
In, 0 |= b, with µ(In) := δ(n). Otherwise, there are models
In, I

′
n s.t. In |= b and I ′n |= ¬b; define µ(In) := αδ(n) and

µ(I ′n) := (1 − α)δ(n). This defines a model P of Φ and
PP(b, 0) = x.

Notice that the important feature of Algorithm 1 is to find
out the class of words that are accepted by B+

Φ and B−Φ . In
fact, from the arguments presented in this section, we can
conclude the following.
Corollary 24. Let N+ := {n ∈ N | 1n ∈ L(B+

Φ )} and
N− := {n ∈ N | 1n ∈ L(B−Φ )}. Then,

P̂Φ
sup =

∑
n∈N+

δ(n), and

P̂Φ
inf = 1−

∑
n∈N−

δ(n).

This result shows that, in order to find the lower and
upper bounds for the probability of observing the vari-
able b at time 0, it suffices to understand the languages
accepted by the two automata B+

Φ and B−Φ , provided that
we know the behaviour of the distribution δ. Notice that
these two automata are unary; that is, they read only one
alphabet symbol. Thus, they can be transformed to equiv-
alent automata in Chrobak normal form (Chrobak 1986;

To 2008), from which the language accepted by them can
be easily read in terms of linear binomials.

More precisely, the results by Chrobak, which were later
improved and corrected in (Martinez 2002; To 2008) show
that, given a unary non-deterministic finite automaton A
having n states, it is possible to effectively construct a
polynomial number of arithmetic progressions of the form
αi + βiN, 1 ≤ i ≤ k, with k ∈ O(n2), such that

L(A) = {1αi+βi` | 1 ≤ i ≤ k, ` ∈ N}.

Moreover, each of the constants ai, bi, 1 ≤ i ≤ k is bounded
quadratically by n, too. Applying this idea to the automata
B+

Φ and B−Φ , it is possible to effectively compute the setsN+

andN− and, by extension, also the probabilistic bounds P̂Φ
inf

and P̂Φ
sup; for instance, by following the methods devised by

Matos (1994) for computing over periodic sets of integers.

We have limited so far our analysis to the values P̂Φ
inf and

P̂Φ
sup, where the ⬖ constructor is satisfied at the first point

in time. In general, however, there might be additional mod-
els that do not satisfy this constraint. That is, we know that
PΦ

inf(b, 0) ≤ P̂Φ
inf and PΦ

sup(b, 0) ≥ P̂Φ
sup, but these inequali-

ties may be strict.
Example 25. Consider the formula Φ2 := ♦⬖a∧ (¬a∨¬b),
where δ is the geometric distribution with parameter 0.5. It is
easy to see that any modelP = (I, µ) of Φ2 withP, 0 |= ⬖a
is such that for every I ∈ I, if I, 0 |= a, then I, 0 6|= b. Thus,
P̂Φ2

sup = 0.5. However, simply by delaying the satisfaction of
⬖a to the successive point in time, it is possible to satisfy b
at the initial point in time. Hence PΦ

sup(b, 0) = 1. A simi-
lar example can be built to show that it is possible to have
formulas where PΦ

inf(b, 0) < P̂Φ
inf .

To find the precise values of PΦ
inf(b, 0) and PΦ

sup(b, 0), we
combine Algorithm 1—or, more precisely, the finite process
obtained through the Chrobak normal form of the automata
B+

Φ and B−Φ —with the ideas behind Theorems 17 and 18.
Formally, let AΦ = (Q,Σ,∆, Ini,F) be the reduced GBA
for Φ. We inductively define Ini+0 := {s ∈ Ini | b ∈ s},
Ini−0 := {s ∈ Ini | b /∈ s}, and for every n ∈ N

Ini+i+1 := {s ∈ Q | (s′, V, s) ∈ ∆, s′ ∈ Ini+i }
Ini−i+1 := {s ∈ Q | (s′, V, s) ∈ ∆, s′ ∈ Ini−i }.

These define the NBAs Bi+Φ = (Q, {1},∆′, Ini+i , F ) and
Bi−Φ = (Q, {1},∆′, Ini−i , F ), where ∆′ and F are as in Def-
inition 12 of the origin automaton.

Let M be the set of all n ∈ N such that BnΦ is universal;
that is, all points in time where it is possible to satisfy ⬖a.
For each n ∈ M , let P̂ninf , P̂

n
sup be the result of executing

Algorithm 1 but replacing B+
Φ and B−Φ with Bn+

Φ and Bn−Φ ,
respectively. Then, it follows that PΦ

inf(b, 0) = infn∈M P̂ninf

and PΦ
sup(b, 0) = supn∈M P̂nsup.

As argued already, each of the local bounds P̂ninf and P̂nsup
can be effectively computed by means of the Chrobak nor-
mal form of the underlying automata. Moreover, since BΦ
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has finitely many states, it suffices to look into a finite num-
ber of automata Bn±Φ (bounded exponentially by the number
of states of BΦ) before these automata are equivalent to pre-
viously observed cases. As a consequence, the infima and
suprema of the probabilities of observing b at the first point
in time in a model of Φ can be effectively computed; more-
over, these bounds are reachable.
Theorem 26. There exists models P,P ′ of Φ such that
PP(b, 0) = PΦ

inf(b, 0) and PP′(b, 0) = PΦ
sup(b, 0).

We have already solved the problem of computing the
probability of observing b at the first point in time, but
in general, we would like to compute PΦ

inf(ϕ, n) and
PΦ

sup(ϕ, n) for an LTL formula ϕ and n ∈ N. Let b a propo-
sitional variable not appearing in Φ. Then, we can define the
new TLD− formula Ψ := Φ∧((b∧©nϕ)∨(¬b∧¬©nϕ)).
It is easy to see that for every model P = (I, µ) of Φ there
is a model P ′ of Ψ such that PP(ϕ, n) = PP′(b, 0): sim-
ply extend every interpretation I ∈ I such that I, n |= ϕ to
satisfy also the fresh variable b at time 0. Conversely, every
model P of Ψ is such that PP(ϕ, n) = PP(b, 0). Hence, we
obtain the following result.
Theorem 27. Given the TLD− formula Φ, the LTL formula
ϕ, and n ∈ N, let Ψ := Φ ∧ ((b ∧©nϕ) ∨ (¬b ∧ ¬©nϕ)),
where b is a fresh propositional variable not appearing in Φ.
Then PΨ

inf(b, 0) = PΦ
inf(ϕ, n) and PΨ

sup(b, 0) = PΦ
sup(ϕ, n).

Expectations
Throughout the previous section, we focused on the problem
of approximating the probability of observing a given event
ϕ at specific points in time, under the uncertainty provided
by the ⬖ constructor. Recall that the motivation for introduc-
ing this new constructor was to provide more fine-grained
information about when might an eventuality be resolved. In
the same spirit, we may want to find the expected time until
an additional event ϕ is observed.
Definition 28. Let P = (I, µ) be a TLD interpretation, and
ϕ an LTL formula. The expected time to observe ϕ w.r.t. P
is EP(ϕ) :=

∑∞
n=0 n · µ(Iϕn \

⋃n−1
j=0 I

ϕ
j ).4

Given a TLD− formula Φ, the expected time to observe ϕ
w.r.t. Φ is EΦ(ϕ) := infP|=ΦEP(ϕ).

In essence, every model P of Φ describes a probabilis-
tic setting, in which the expected number of steps until the
formula ϕ is observed is well-defined. The value of EΦ(ϕ)
is then an optimistic view on this expectation, as it refers to
the earliest possible observation of ϕ within models of Φ.
Notice that we could have also defined a pessimistic vari-
ant substituting the infimum by a supremum; however, that
expectation will often diverge, providing no relevant infor-
mation about the formula of interest.

As mentioned, EΦ(ϕ) intuitively refers to the model of
Φ where ϕ is observed as early as possible. Indeed, if
PΦ

sup(ϕ, 0) = 1, then EΦ(ϕ) = 0; that is, there is an
optimistic assessment that ϕ will be observed at time 0.
One could try to generalize this idea to find the expecta-
tion through the values of PΦ

sup([ϕ]n, 0), where for every

4Recall that Iϕn was introduced in Definition 1.

n ∈ N [ϕ]n :=
∧n−1
i=0 ©

i¬ϕ ∧ ©nϕ. However, this idea
does not work. Consider the formula Φ3 := ⬖a∧�(¬a∨¬b).
Then for every n ∈ N, PΦ3

sup([b]n, 0) = 1 − 1/2n+1, but
EΦ3

(b) = 1
2 . The reason for this mismatch is that the

suprema found for each n are reached by different models,
while the expectation looks at one model only. Still, it is pos-
sible to adapt the automata-based techniques to handle this
case as well.

For simplicity, we focus only on finding the expectation
for TLD models P such that P, 0 |= ⬖a. The results can be
extended to the general case as we have done in the previous
sections. Let AΦ = (Q,Σ,∆, Ini,F) be the reduced GBA
for Φ. For every propositional variable x appearing in Φ↓,
let Qx := {s ∈ Q | x ∈ s} be the set of all states ofAΦ that
contain x. For each n ∈ N, we define

Ini′n := {s0 ∈ Ini | ∃s1, . . . , sn ∈ Q such that sn ∈ Qb and
∀i < n.(si, V, si+1) ∈ ∆, si /∈ Qb}.

That is, Ini′n contains all the initial states fromAΦ that allow
for runs where the first n − 1 states do not contain b, but
the n-th state contains b. In other words, these are the initial
states for accepting interpretations where b is satisfied for
the first time at time n.

For each i ∈ N, we define now the automaton

CiΦ := (Q, {1},∆′, Ini′i, F ),

where ∆′ and F are as in Definition 12. Notice that C0
Φ and

B+
Φ are equivalent, and hence C0

Φ detects all LTL models of
Φ↓ where b can be satisfied at the initial time. Likewise, CiΦ
detects the models where b is observed first at time i; how-
ever, due to non-determinism, it may also accept other mod-
els. Moreover, it may also include interpretations where it
is also possible to satisfy b earlier than time i, as observed
by some CjΦ, j < i. To handle the former issue, we define
NFA AiΦ that accepts all the prefixes of L(AΦ) observing
the variable b at time i exactly. The latter issue is handled
through the new NFA

DiΦ := CiΦ ∩ AiΦ ∩
i−1⋂
j=0

CjΦ ∩ AiΦ,

where the intersection and complementation refer to the
standard operations over NFA, which can be effectively
computed (Rich 2007).

It then follows that the automata DiΦ accept the unary
words that describe models of Φ↓ where the earliest pos-
sible that b is satisfied is at time i. Since the lengths of these
words refer to the point in time when a will be observed
for the first time—as all the automata are based on the con-
struction of the origin automaton—they collectively express
the probability of observing b for the first time at point i, in a
model of Φ↓. Hence, we can use them to compute the expec-
tation. For every n ∈ N, letNn := {m ∈ N | 1m ∈ L(DnΦ)}
and P (n) =

∑
i∈Nn δ(i), then we have the following result.

Theorem 29. EΦ(b) =
∑
n∈N n · P (n).

Notice that each of the summands P (n) can be effec-
tively computed, as it requires only the construction of a
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non-deterministic finite automaton, and the computation of
its Chrobak normal form. However, the computation of the
expectation itself, as described by Theorem 29 is not effec-
tive. In fact, it requires the construction of infinitely many
automata AiΦ which are all different. Still, the theorem al-
lows us to conclude that the expectation is always witnessed
by a model.

Corollary 30. There exists a model P of Φ such that
EΦ(ϕ) = EP(ϕ).

In addition, similarly to Algorithm 1, the process sug-
gested by Theorem 29 can be transformed into an any-time
algorithm that computes increasingly better approximations
of the expectation, and can be halted when the differences
between results are below an accepted margin of error.

Related Work
Before concluding this paper, it is worth noting that many
probabilistic extensions of temporal logics have been pro-
posed over the years. For a relevant, although slightly out-
dated overview of these logics, we refer the interested reader
to (Konur 2010). Here we briefly discuss some of the more
relevant or newer approaches.

The most basic probabilistic extension of LTL is perhaps
pLTL (Morão 2011). This logic extends basic probabilistic
propositional logic (Nilsson 1986) with the temporal opera-
tors of LTL. Thus, every point in time represents an uncer-
tain scenario, which is represented by a set of (propositional)
interpretations. This differs greatly from the semantics of
TLD, where a world corresponds to a potential full evolu-
tion of the system (i.e., an LTL interpretation). The biggest
difference between pLTL and TLD is that the former can
characterise only distributions that have finite memory. A
simple example that cannot be captured by pLTL is the for-
mula ⬖δφ, where δ is the Pascal distribution. Since this dis-
tribution depends on the time that one has waited already,
the only way to model it in pLTL is to explicitly provide the
probability for each of the (infinitely many) timepoints.

Another extension of LTL that has been studied in more
detail is PLTL (Ognjanovic 2006), which provides a rich
syntax for expressing evolving probabilities. The semantics
proposed in (Ognjanovic 2006) are closer to ours in that
they correspond to measurable spaces of LTL interpreta-
tions. However, this logic does not provide any way to rep-
resent and handle complex distributions over time, as we do
for TLD.

There exist, as well, other alternatives for representing
complex evolution of uncertainty over time. For instance,
Ognjanovic et al. (2012) propose a method for handling
the evidence provided by observations made during time,
in such a way that the beliefs over uncertain statements are
updated to agree with the evidence. In a different direction,
Doder and Ognjanovic (2015) provide comparison construc-
tors that can be used to express, e.g., that the probability of
a washing machine breaking now is smaller than that of it
breaking next year, without having to express these proba-
bilities explicitly.

One important application that combines probabilities and
temporal formulas is probabilistic model checking (PMC)

(Forejt et al. 2011; Ding et al. 2011). In PMC, one tries
to verify that the probability of observing a property over
a probabilistic transition system (often a Markov chain)
is greater or equal to some pre-specified bound. Among
many advances in this area, techniques for studying limit be-
haviours and formula quantiles have been developed (Klein
et al. 2018). For some types of probability distributions, such
as the geometric, it is easy to describe a Markov chain that
will generate them. However, verifying a property over such
a Markov chain (or making probabilistic entailments over
this environment) is not the same as dealing with our ⬖ for-
mulas, which may also refer to very complex distributions.

Finally, without describing them in detail, we acknowl-
edge the existence of probabilistic temporal logics for con-
tinuous (Tiger and Heintz 2016) and branching (Hart and
Sharir 1984; Forejt et al. 2011) time, for counting the fre-
quency of occurrences of a property (Bollig, Decker, and
Leucker 2012), and for dealing with complex actions (Paleo
2016), among many others.

Conclusions
We have introduced the new logic TLD, which extends LTL
with the possibility of expressing uncertain knowledge about
the waiting time required until an eventuality is satisfied.
Thus, TLD refines the knowledge that is expressed by the
diamond constructor in LTL.

Since the full TLD is capable of expressing properties that
can only be satisfied in uncountable models, we focused our
attention to the sublogic TLD−, where the probabilistic con-
structor ⬖ needs to be satisfied at most once. Moreover, we
considered the distribution δ to be complete; i.e., that it as-
signs a positive probability of observing the target formula to
every point in time. Under these conditions, we have stud-
ied the complexity of deciding satisfiability of TLD− for-
mulas, and described methods for computing probabilistic
entailments as well as expectation statements. To obtain our
results, we leveraged known results from the area of LTL,
and in particular, the existence of automata that accept all
models of an LTL formula. The probability computations
were based on the construction of the Chrobak normal form
for unary automata and combinations of regular expressions
and integer polynomials.

As future work, we intend to strengthen our results for
TLD− and to extend them to more expressive variants of
TLD. In the former context, we will improve the complex-
ity bounds for all the problems that we have presented, and
study the potential of using weighted automata for dealing
with the probabilistic values directly. For the latter, we will
weaken the syntactic constraints that define TLD−. It should
be relatively straightforward in theory—although requiring
additional algebraic machinery—to extend our results to ar-
bitrary formulas as long as the ⬖ operator is satisfied in only
finitely many points in time, in contrast to only one as in
TLD−. As a simple example, the disjunction of several ⬖
formulas should cause no additional problems. In addition,
we will consider different properties for the probability dis-
tributions δ under which reasoning can still be effective.

If infinitely many ⬖ properties need to be satisfied, then
in general we cannot avoid considering uncountable models,

569



as shown in Theorem 4. One potential way to describe these
models, which are composed by uncountably many LTL in-
terpretations, is to represent them as infinite trees as depicted
in Figure 1. One could then try to use tree automata to verify
satisfiability and derive probabilistic and expectation entail-
ments, perhaps also with the help of weighted transitions.
We intend to further explore this possibility.
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