
Exploiting Treewidth for Counting Projected Answer Sets∗

Johannes K. Fichte
TU Dresden

International Center for Computational Logic
Fakultät Informatik,

01062 Dresden, Germany

Markus Hecher
TU Wien

Insitute of Logic and Computation
Favoritenstraße 9-11 / E192

1040 Vienna, Austria

Abstract

Answer Set Programming (ASP) is an active research area
of artificial intelligence. We consider the problem projected
answer set counting (#PDA) for disjunctive propositional ASP.
#PDA asks to count the number of answer sets with respect
to a given set of projected atoms, where multiple answer sets
that are identical when restricted to the projected atoms count
as only one projected answer set. Our approach exploits small
treewidth of the primal graph of the input instance. Finally,
we state a hypothesis (3ETH) that one cannot solve 3-QBF in
polynomial time in the instance size while being significantly
better than triple exponential in the treewidth. Taking 3ETH
into account, we show that one can not expect to solve #PDA
significantly better than triple exponential in the treewidth.

Introduction
Answer Set Programming (ASP) (Brewka, Eiter, and
Truszczyński 2011) is an active research area of artificial
intelligence. In ASP, questions are encoded into rules and
constraints that form a program over atoms. A disjunctive
propositional ASP program is of the form a1 ∨ · · · ∨ a` ←
a`+1, . . . , am,¬am+1, . . . ,¬an where a1, . . ., an are dis-
tinct propositional atoms for non-negative integers `, m, n
such that ` ≤ m ≤ n. Solutions to the program are so-
called answer sets (Brewka, Eiter, and Truszczyński 2011).
Recently, the problem projected answer set counting (#PDA)
has received renewed attention (Aziz 2015). #PDA asks to
count the number of answer sets with respect to a given set
of projected atoms. Particularly, we consider multiple answer
sets that are identical when reduced to the projected atoms
as only one projected answer set. If we take all atoms as pro-
jected, then #PDA is #·coNP-complete (Fichte et al. 2017)
and if there are no projected atoms then it is Σp

2-complete.
However, in general we have the following complexity.

Proposition 1 (?1). The problem #PDA is #·Σ2P -complete.

∗The work has been supported by the Austrian Science Fund
(FWF) Grant Y698 and the German Science Fund (DFG) Grant
HO 1294/11-1. The authors are also affiliated with the University of
Potsdam, Germany.
Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Due to space limitations, proofs of statements marked with “?”
have been omitted.

A way to solve computationally hard problems is to em-
ploy parameterized algorithmics (Cygan et al. 2015), which
exploits certain structural restrictions (parameter) in a given
input instance and aims to solve in runtime polynomial in
the input size and exponential in the parameter. Here, we
consider the treewidth of a graph representation of the given
input program as structural restriction, namely the treewidth
of the primal graph (Jakl, Pichler, and Woltran 2009). The
primal graph GΠ of a program Π has the atoms of Π as
vertices and an edge {a, b} if there exists a rule r ∈ Π
and a, b ∈ at(r). Generally speaking, treewidth measures
the closeness of a graph to a tree, based on the observa-
tion that problems on trees are often easier to solve than
on arbitrary graphs. Formally, a tree decomposition (TD) of
graph G = (V,E) is a pair T = (T, χ), where T is a rooted
tree, and χ a mapping that assigns to each node t in T a set
χ(t) ⊆ V , called a bag, such that the following conditions
hold: (i) E ⊆

⋃
t in T {{u, v} | u, v ∈ χ(t)}; and (ii) for

each r, s, t, such that s lies on the path from r to t, we have
χ(r)∩χ(t) ⊆ χ(s). Then, width(T) := maxt in T |χ(t)|−1.
The treewidth of G is the minimum width over all TDs of G.

Dynamic Programming on TDs. Algorithms exploiting
tree decompositions typically proceed along a TD T where
at each node of T information is stored in a table by lo-
cal algorithm A. In particular, the dynamic programming
approach for ASP performs the following steps for a given
program Π (Fichte et al. 2017):

1. Compute a TD T = ((N,ET , r), χ) of primal graph GΠ.
2. DPA: Run dynamic programming with algorithm A and tra-

verse T in post-order. At each node t ∈ N compute a new
table by executing algorithm A, which transforms tables
computed for children of t, and enforces that only rows in
the table are stored that satisfy the input program restricted
to atoms that occur in the bag t and can be extended to an
answer set of the program restricted to atoms that occur
in bags below t. Then, in particular, at root r a row can be
extended to an answer set of program Π.

3. Print the result by interpreting the table for the root r of T .

Dynamic Programming for #PDA
In this paragraph, we lift a very recent approach to count
projected models for propositional satisfiability (Fichte et al.

Proceedings of the Sixteenth International Conference on
Principles of Knowledge Representation and Reasoning (KR 2018)

639

2018) to answer set programming and the problem #PDA.
Assume that we have given program Π and set P of pro-
jection atoms. First, we construct the primal graph GΠ

and a TD T of GΠ. Then, a central idea is to traverse
a given TD multiple times. We traverse T for the first
time and run algorithm DPA with the local algorithm A =
PRIM, which solves counting for ASP (Fichte et al. 2017;
Jakl, Pichler, and Woltran 2009). After this step, the resulting
tables may contain also rows, which cannot be extended to
answer sets. We purge these rows in a second tree traversal,
since they can also not be extended to a projected answer set.
Actually, having only rows that can be extended to answer
sets is a necessary assumption for the final traversal. In the fi-
nal traversal, we produce the projected counts for the rows. In
particular, to bound the number of these stored counts by the
corresponding bag sizes, we exploit the combinatorial princi-
ple of inclusion and exclusion (PIE) (Graham, Grötschel, and
Lovász 1995) twice and interleaved. To this end, we construct
for each node t of the TD T equivalence classes of rows of
tables at t of the previous traversal. The equivalence classes
are built with respect to the set P of projection atoms re-
stricted to the bag of the node t. Intuitively, when computing
these counts for a node t, applying the PIE first transforms
counts from tables of child nodes of t. Then, applying PIE
for the second time adapts them by once again taking into
account the equivalence classes of rows of tables at t. The
actual algorithm is more evolved than in the propositional
setting, however, due to space restrictions we omit details.

Theorem 1 (?). Let Π be a disjunctive program and P be a
set of projection atoms where the treewidth of GΠ is bounded
by some integer k. Then, there is an algorithm that solves the

problem #PDA in time O(222k+3

· ‖Π‖ · γ(‖Π‖))2.

Idea. An algorithm that implements the first traversal above
requires to store at most double exponentially many rows in
the treewidth for each bag (Fichte et al. 2017). The second
step vacuously runs in time double exponential. Finally, ap-
plying the inclusion exclusion principle increases the runtime
by at most one exponent, since we have to store the counters
for the potential equivalence classes, c.f., (Fichte et al. 2018).

A natural question is whether we can significantly improve
this runtime. To this end, one would usually like to take the
exponential time hypothesis (ETH) into account, which states
that there is some real s > 0 such that we cannot decide satis-
fiability of a given 3-CNF formula F in time 2s·|F | · ‖F‖O(1).
While we obtain lower bounds from the ETH for SAT (single-
exponential) and for ∀∃-SAT/∃∀-SAT (double-exponential),
to our knowledge it is unproven whether this extends to ∀∃∀-
SAT and ∃∀∃-SAT (triple-exponential). Since it was antic-
ipated by Marx and Mitsou (2016) that it follows just by
assuming ETH, we state this as hypothesis. In particular,
they claimed that quantifier alternations are the reason for
large dependence on treewidth. However, proofs can be quite
involved, trading an additional alternation for exponential
compression.

2We assume γ(n) to be the number of operations that are
required to multiply two n-bit integers, which can be done in
time n · log n · log log n (Knuth 1998).

Hypothesis 1 (3ETH). The ∀∃∀-SAT problem for a QBF Q

of treewidth k can not be decided in time 222o(k)

· ‖Q‖o(k).
Using this hypothesis, we obtain the following result.

Theorem 2 (?). Unless 3ETH fails, the problem #PDA for
disjunctive programs Π of treewidth k ofGΠ cannot be solved

in time 222o(k)

· ‖Π‖o(k) .

Conclusion and Future Work
We considered counting the projected answer sets (#PDA)
of disjunctive programs. Our approach employs dynamic
programming in order to exploit small treewidth of the primal
graph of the input program. We stated a hypothesis that one
cannot solve 3-QBF in polynomial time in the instance size
while being significantly better than triple exponential in the
treewidth (3ETH). Finally, we showed that under 3ETH it is
not possible to solve #PDA in time double exponential of the
treewidth. We believe that our approach works for other hard
combinatorial problems, such as circumscription (Durand,
Hermann, and Kolaitis 2005), QBF (Charwat and Woltran
2016), or default logic (Fichte, Hecher, and Schindler 2018).

References
Aziz, R. A. 2015. Answer Set Programming: Founded
Bounds and Model Counting. Ph.D. Dissertation, The Uni-
versity of Melbourne.
Bodlaender, H. L., and Kloks, T. 1996. Efficient and construc-
tive algorithms for the pathwidth and treewidth of graphs. J.
Algorithms 21(2).
Brewka, G.; Eiter, T.; and Truszczyński, M. 2011. Answer
set programming at a glance. Comm. of the ACM 54(12).
Charwat, G., and Woltran, S. 2016. Dynamic programming-
based QBF solving. In QBF’16.
Cygan, M.; Fomin, F. V.; Kowalik, Ł.; Lokshtanov, D.;
Dániel Marx, M. P.; Pilipczuk, M.; and Saurabh, S. 2015.
Parameterized Algorithms. Springer Verlag.
Durand, A.; Hermann, M.; and Kolaitis, P. G. 2005. Subtrac-
tive reductions and complete problems for counting complex-
ity classes. Theoretical Computer Science 340(3).
Fichte, J. K.; Hecher, M.; Morak, M.; and Woltran, S. 2017.
Answer set solving with bounded treewidth revisited. LP-
NMR’17.
Fichte, J. K.; Hecher, M.; Morak, M.; and Woltran, S. 2018.
Exploiting treewidth for projected model counting and its
limits. SAT’18.
Fichte, J. K.; Hecher, M.; and Schindler, I. 2018. Default
Logic and Bounded Treewidth. LATA’18.
Graham, R. L.; Grötschel, M.; and Lovász, L. 1995. Hand-
book of combinatorics, volume I. Elsevier.
Jakl, M.; Pichler, R.; and Woltran, S. 2009. Answer-set
programming with bounded treewidth. IJCAI’09.
Knuth, D. E. 1998. How fast can we multiply? In The Art of
Computer Programming, volume 2.
Marx, D., and Mitsou, V. 2016. Double-Exponential and
Triple-Exponential Bounds for Choosability Problems Pa-
rameterized by Treewidth. ICALP’16.

640

