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Abstract

An Ordered Weighted Averaging (OWA) operator provides
a parameterized family of aggregation operators which in-
clude many of the well-known operators such as the maxi-
mum, the minimum and the mean. We introduce OWA opera-
tors as propositional belief merging operators and investigate
their logical properties, as well as their relation with IC and
pre-IC merging operators.

Introduction
The OWA operators were originally introduced in (Yager
1988) to provide means for aggregating information. They
have proved to be a useful family of aggregation operators
which have a fundamental aspect of assigning weights to the
values being aggregated.

On the other hand, the area of propositional belief merg-
ing studies the fusion of independent and equally reliable
sources of information expressed in propositional logic, and
considers some aspects of rationality. In this paper, we will
focus on model-based operators, where we will be using the
notions of IC merging operators. An IC merging operator
satisfies nine basic IC logical postulates ((ICO)-(IC8)). Be-
sides, there are two sub-classes of belief merging operators:
utilitarian and egalitarian operators (Konieczny and Pino-
Pérez 1999; 2011; Everaere, Konieczny, and Marquis 2014).

When regarding egalitarian operators, it is natural to con-
sider merging operators which tries to achieve a fair result.
In (Everaere, Konieczny, and Marquis 2014), two egalitarian
conditions coming from social choice theory were translated
into the propositional belief merging framework: Hammond
equity (HE) (Hammond 1976) and Pigou-Dalton condition
(PD) (Dalton 1920). Besides, two new families of belief
merging operators based on the median and on a cumula-
tive sum were introduced. A general family of belief merg-
ing operators called pre-IC merging operators was defined,
by weakening two IC logical postulates ((IC5) and (IC6)).

One of the aims of this paper is to continue this investi-
gation on egalitarian operators, by introducing OWA merg-
ing operators. As our main contributions, we will define
OWA merging operators and show their logical properties.

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

As the operators defined in (Everaere, Konieczny, and Mar-
quis 2014), OWA merging operators we will not satisfy all
the usual IC logical postulates. We will show what condi-
tions need to be achieved for an OWA merging operator to
satisfy some missing IC logical postulates. Depending on
the chosen weights, OWA merging operators can be in the
family of IC or pre-IC merging operators.

Belief Merging with OWA Operators
OWA operators (Yager 1988) are a parameterized family of
aggregation operators which include many well-known op-
erators such as the maximum, minimum and the simple av-
erage (Yager and Kacprzyk 1997).

Definition 1 (OWA Operator) (Yager 1988) An OWA op-
erator is a mapping fW : Rn → R, such that W =
[w1, w2, . . . , wn] is a vector of weights, (1) wi ∈ [0, 1] and
(2)
∑
i

wi = 1. Furthermore fW (a1, . . . , an) =
∑
j

wjbj ,

where bj is the jth largest of the ai in (a1, . . . , an).

OWA operators are distinguished by their vector of
weights. In (Yager 1988) it was pointed out three important
cases of vectors: W ∗ = [1, 0, . . . , 0]; W∗ = [0, . . . , 0, 1];
and WA =

[
1
n , . . . ,

1
n

]
. W ∗ gives weight only to the high-

est value of a vector (whilst W∗ gives it to the lowest
value) and the rest of the values have no associated weight.
WA associates an equal weight to all values in a vector.
It can easily be seen that fW∗(a1, . . . , an) = max

i
(ai);

fW∗(a1, . . . , an) = min
i

(ai); and fWA
(a1, . . . , an) =

1
n

∑
i

ai. An OWA Merging Operator may be defined di-

rectly in the following way:

Definition 2 (OWA Merging Operators) Let d be a dis-
tance measure and E = {K1, . . . ,Kn} a belief set. For
each outcome ω, we consider the vector LωE = (lω1 , . . . , l

ω
n)

where lωi = d(ω,Kσ(i)) is the distance between Kσ(i)

and ω, and σ is the permutation of {1, . . . , n} such that
lωi ≥ lωi+1 for every 1 ≤ i < n. Then we define the vec-
tor W = [w1, . . . , wn], where wi ∈ [0, 1] and

∑
i wi = 1.

Let d(W,LωE) =
n∑
i=1

wil
ω
i . Then we have the following
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pre-order: ωi ≤d,WE ωj iff d(W,LωiE ) ≤ d(W,L
ωj
E ). The

OWA merging operator ∆d,W
µ is defined by ∆d,W

µ (E) =

min(mod(µ),≤d,WE ).

The idea for an OWA merging operator is to give the pos-
sibility of allowing different priorities for the information in
a group. Different from max and leximax, which give pri-
ority to the worst case, an OWA is flexible enough to give
more or less priority for any position in a group, and conse-
quently dealing with different degrees of priorities.

Theorem 1 ∆d,W
µ satisfies (IC0), (IC1), (IC3), (IC4),

(IC5b), (IC7) and (IC8).
In general, an OWA merging operator is not an IC or pre-

IC merging operator, since it does not satisfy (IC2), (IC5),
(IC6) or (IC6b). However, it is possible to state some con-
ditions which validates some of these logical properties.

Theorem 2 ∆d,W
µ satisfies (IC6b) if and only if wi 6= 0, for

all wi ∈ W . ∆d,W
µ satisfies (IC2) if and only if w1 6= 0,

where w1 ∈W .

(IC6b) is equivalent to Strong Pareto, which can be trans-
lated as: if ∀i d(ω′,Ki) ≤ d(ω,Ki) and ∃j d(ω′,Kj) <
d(ω,Kj), then ω′ < ω. Thus, The existence of a wj = 0 is
sufficient to falsify this condition. The reason why (IC2) is
not always true comes from the fact that even if an outcome
does not have a consensus between agents, it can still be
a choice of the merging operator. Consequently, any OWA
merging operator ∆d,W

µ is a pre-IC merging operator when
it satisfies the conditions of Theorem 2.

Corollary 1 If wi = 1
n , for all wi ∈ W and W = |n|,

then ∆d,W
µ satisfies (Maj), (IC5) and (IC6). If w1 = 1 and

wi = 0, for all i 6= 1, then ∆d,W
µ satisfies (IC5). If wn = 1

and wi = 0, for all i 6= n, then ∆d,W
µ satisfies (IC5).

It is not known if have two-sided conditions for (IC5),
(IC6) and (Maj) in relation with OWA merging operators.
The same holds for (Arb).
Theorem 3 Let d be a distance measure, ω an interpreta-
tion and m = max({d(ω, ω′) | ω, ω′ ∈ Ω}). If w1 >

(m− 1)w2, then ∆
d,[w1,w2]
µ satisfies (Arb) .

When we refer to (PD), we have the following result:

Theorem 4 ∆d,W
µ satisfies (PD) if and only if w1 > w2 >

w3 > · · · > wn, for W = [w1, . . . , wn].

In other words, if we are giving more priority to the worst
case, and the weights are successively decreasing for the
next cases, we are guaranteeing a more balanced merging
for the group.

OWA operators are powerful enough to simulate the
leximax ordering. In (Yager 1997) it was defined an OWA
which simulates it, and following this operator we can define
a leximax like merging operator.

Definition 3 (leximax like OWA Operators) We say fWδ

is a leximax like OWA Operator if their weights are defined
as Wδ = [w1, . . . , wn], such that δ ∈]0, 1], wi = δi−1

(1+δ)i , for

i 6= n; and wn = δn−1

(1+δ)n−1 .

The idea of this operator is to give the highest weight to
the highest value of a vector and this weight decreases to
the consequent values. Depending of the value of δ, the dif-
ference of weights are so large that the operator gives an
absolute priority to the highest value than the other values of
the vector.

Theorem 5 Let d be a distance measure, ω an interpreta-
tion and m = max({d(ω, ω′) | ω, ω′ ∈ Ω}). Consider
W = [w1, . . . , wn], where wi = δi−1

(1+δ)i , for i 6= n and

wn = δn−1

(1+δ)n−1 . If δ ≤ 1
m , then ∆d,Wδ

µ satisfies (HE).

In other words, ∆d,Wδ
µ is not equivalent to

∆d,leximax
µ (E), but as every belief set E has a finite

number of belief bases, which are also finite, it is possible
to find a δ′ such that ∆

d,Wδ′
µ (E) ≡ ∆d,leximax

µ (E).

Conclusion
The choice of the weights plays a fundamental role in the
relation of the satisfaction of some IC logical postulates.
In general, logical postulates as (IC2), (IC5), (IC6), (Maj)
and (Arb) are not satisfied by OWA merging operators. We
showed that when some conditions are met, these properties
can be satisfied. Furthermore, we still explored two egalitar-
ian conditions: Pigou-Dalton and Hammond Equity. We also
proved these conditions can be satisfied when some restric-
tions are applied to the weights. Therefore, OWA merging
operators are powerful enough to represent IC and pre-IC
merging operators.
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