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Abstract

In their seminal paper, Darwiche and Pearl proposed four ax-
ioms for preserving conditional beliefs under iterated belief
revision which were recently adapted to iterated belief con-
traction by Konieczny and Pino Perez. For (semi-)quantitative
frameworks like probabilities, Kern-Isberner presented a fully
axiomatized principle of conditional preservation for iterated
belief change that was shown to cover the axioms both of
Darwiche and Pearl, and Konieczny and Pino Perez in the se-
mantic framework of Spohn’s ranking function. This paper
closes the gap between these works by presenting a purely
qualitative principle of conditional preservation for iterated
belief change that can be derived from Kern-Isberner’s semi-
quantitative principle and implies all axioms of the men-
tioned works, showing in particular that iterated belief re-
vision and belief contraction share common methodological
grounds which can be adapted by the respective success con-
dition. Moreover, the approach presented in this paper signif-
icantly extends the scope of previous works in that it applies
to much more general change problems when epistemic states
are changed by sets of conditional beliefs.

1 Introduction
AGM theory (Alchourrón, Gärdenfors, and Makinson 1985)
laid the foundations of modern belief change theory by pro-
viding a frame in terms of postulates for rational belief
change, guided by the paradigm that beliefs should not be
adopted or given up without justification (minimal change
paradigm), and that changes should respect logical depen-
dencies. The two major operations of change that AGM the-
ory deals with are revision ∗ and contraction −, where re-
vision integrates a new belief A into a prior belief set K,
yielding K ∗A as a result, while contraction is for giving up
beliefs A in K, resulting in the posterior belief set K − A.
The reference point of AGM theory is classical (proposi-
tional) logic which ensures a solid logical quality of AGM
belief change, but also restricts its scope a lot. Moreover,
an AGM change operator is not necessarily a fully binary
operator between belief sets and propositions, but usually
depends on the prior belief set K, hence iteration of change
is difficult and not actually dealt with in AGM theory. Dar-
wiche and Pearl (Darwiche and Pearl 1997) broadened the
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AGM framework a lot by implementing its basic postulates
for the revision of epistemic states, where revision now is
a binary operator taking a prior epistemic state Ψ and a
proposition A and returns a revised state Ψ ∗ A in which
A is believed. Furthermore, they were the first to observe
that following the minimal change paradigm in iterated be-
lief revision may lead to unwanted loss, or establishment
of conditional beliefs, and they proposed four further pos-
tulates that should ensure that conditional beliefs are neither
given up nor adopted in special cases. In this way, they intro-
duced the paradigm of conditional preservation for revising
epistemic states as an important supplement to the minimal
change paradigm on the propositional level. In (Konieczny
and Pino Pérez 2017) build upon Darwiche and Pearl’s work
to propose advanced postulates for iterated belief contrac-
tion, however, without mentioning the idea of conditional
preservation.

In (Kern-Isberner 1998), Kern-Isberner axiomatized a
principle of conditional preservation for probabilistic be-
lief revision that she transferred to semi-quantitative frame-
works later on (Kern-Isberner 2001; 2004), in particu-
lar to ordinal conditional functions (OCF) (Spohn 1988;
2012) which have become quite a popular framework for be-
lief change and nonmonotonic reasoning. She showed that
her OCF principle of conditional preservation for iterated
revision implied Darwiche and Pearl’s postulates (Kern-
Isberner 1999) and extended them for conditional revision.
Moreover, the OCF principle proved also to be very help-
ful (Kern-Isberner and Krümpelmann 2011; Kern-Isberner
and Huvermann 2017) to solve problems related to inde-
pendence for iterated revision (Jin and Thielscher 2007;
Delgrande and Jin 2012). In (Kern-Isberner et al. 2017), the
authors proposed an OCF principle of conditional preserva-
tion for general belief change and showed that from this, to-
gether with mild prerequisites, the postulates of (Konieczny
and Pino Pérez 2017) for iterated contraction can be de-
rived. Therefore, the axiomatized principle of conditional
preservation for (semi-)quantitative frameworks presented
in (Kern-Isberner 2004) could be considered as a very fun-
damental and strong universal principle for (iterated, ad-
vanced) belief change if it were not based crucially on num-
bers and arithmetic operations which might be principally
responsible for the impact of the principle. Moreover, the
relevance of this principle for purely qualitative frameworks,
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i.e., where epistemic states are simply equipped with total
preorders, seems to be questionable.

In this paper, we now present a purely qualitative ver-
sion of conditional preservation for iterated belief change
which can easily derived from that of (Kern-Isberner et
al. 2017) since it is much weaker, but still strong enough
to imply all postulates of (Darwiche and Pearl 1997) and
(Konieczny and Pino Pérez 2017), when combined with the
respective success axioms for revision and contraction and
with stability axioms that help to ensure minimal change
for iterated revision. In spite of being purely qualitative,
our principle is nevertheless applicable in very advanced
belief change scenarios where epistemic states have to be
revised by sets of conditional beliefs, thus going far be-
yond the scenarios considered in (Darwiche and Pearl 1997;
Konieczny and Pino Pérez 2017). Indeed, exploiting conse-
quently the concept of conditionals as basic entities of be-
lief for belief change problems not only helps overcoming
the narrow bounds of propositional logic that have limited
AGM theory but proves to be a unifying paradigm solving
different belief change tasks on the base of a single, power-
ful principle which can be supplemented by other axioms to
meet specific demands.

The main contributions of this paper are as follows:
• We present axiomatic guidelines for iterated change of

epistemic states (equipped with total preorders) by sets
of conditional beliefs, thus covering also the cases where
an epistemic state is changed by a single conditional, or
by a single proposition.

• All axioms for iterated revision by (Darwiche and Pearl
1997) as well as all axioms for iterated contraction by
(Konieczny and Pino Pérez 2017) can be derived from
just one principle, together with respective success ax-
ioms and a basic principle of minimal change.

• Our principle of conditional preservation can be consid-
ered as a purely qualitative version of the corresponding
principle for ordinal conditional functions published in
(Kern-Isberner et al. 2017).
This paper is organized as follows: In the next sec-

tion 2, we summarize formal preliminaries regarding the
used propositional logic, conditionals, ordinal conditional
functions, and epistemic states in general. Section 3 re-
calls mainly the results from (Darwiche and Pearl 1997)
and (Konieczny and Pino Pérez 2017) which are most rel-
evant for this paper. In section 4, the novel qualitative prin-
ciple of conditional preservation for iterated belief change is
developed and is related to the OCF principle from (Kern-
Isberner et al. 2017). Section 5 focuses on the case that epis-
temic states are changed by just one conditional, resp. just
one propositional belief, and hence relates our approach to
the ones of (Darwiche and Pearl 1997) and (Konieczny and
Pino Pérez 2017). In Section 6, we summarize the results of
this paper and point out future work.

2 Formal Preliminaries
Let L be a finitely generated propositional language, with
atoms represented by a, b, c, . . ., and with formulas repre-
sented by A,B,C, . . .. For conciseness of notation, we will

omit the logical and-connector, writingAB instead ofA∧B,
and overlining propositions will indicate negation, i.e. A
means ¬A. If A is a formula, then Ȧ is any of A or A.
Let Ω denote the set of possible worlds over L; Ω will be
taken here simply as the set of all propositional interpreta-
tions over L. ω |= A means that the propositional formula
A ∈ L holds in the possible world ω ∈ Ω. The models of
A are given by Mod (A) = {ω | ω |= A}. If A,B ∈ L
are formulas, then B is a consequence of A, in symbols:
A |= B, iff Mod (A) ⊆ Mod (B), and A and B are se-
mantically equivalent, A ≡ B, iff Mod (A) = Mod (B).
By slight abuse of notation, we will use ω both for the
model and the corresponding conjunction of all positive or
negated atoms. Given a set of possible worlds Ω′ ⊆ Ω,
T (Ω′) = {A ∈ L | ω |= A for all ω ∈ Ω′} denotes the
set of formulas which are true in all elements of Ω′.

By introducing a new binary operator |, we obtain the set
(L | L) = {(B|A) | A,B ∈ L} of conditionals over L.
(B|A) formalizes “if A then usually B” and establishes a
plausible connection between the antecedent A and the con-
sequent B. As to the semantics of conditionals, we follow
basically the approach of de Finetti (DeFinetti 1974) who
considered conditionals as generalized indicator functions:

(B|A)(ω) =


1 : ω |= AB
0 : ω |= AB
u : ω |= A

(1)

where u stands for unknown or indeterminate. Hence, condi-
tionals are three-valued logical entities and thus extend the
binary setting of classical logics substantially. Two condi-
tionals (B|A), (D|C) are equivalent according to (DeFinetti
1974) if they result in the same indicator function, i.e., iff
AB ≡ CD and AB ≡ CD. In this sense, conditionals
with tautological antecedents are equivalent to propositional
statements, so we may identify the conditional (A|>) with
the proposition A.

Ordinal conditional functions (OCFs), (also called rank-
ing functions) κ : Ω → N ∪ {∞} with κ−1(0) 6= ∅, were
introduced (in a more general form) first by (Spohn 1988).
They express degrees of (im)plausibility of possible worlds
under the convention that lower degrees mean more plausi-
ble worlds. So, most plausible worlds have rank 0, and for
consistency reasons, there must be at least one such world.
With JκK = {ω | κ(ω) = 0}, we denote the set of most
plausible worlds of κ. Also propositional formulas A are as-
signed degrees of disbelief by defining κ(A) := min{κ(ω) |
ω |= A}, so that κ(A∨B) = min{κ(A), κ(B)}. Hence, due
to κ−1(0) 6= ∅, at least one of κ(A), κ(A) must be 0. A con-
ditional (B|A) is accepted in the epistemic state represented
by κ, written as κ |= (B|A), iff κ(AB) < κ(AB), i.e. iff
AB is more plausible than AB.

In more general settings, epistemic states Ψ will be repre-
sented by a total preorder �Ψ on Ω which is most suitable
in the context of belief revision (cf. Section 3). As usual,
ω1 ≺Ψ ω2 iff ω1 �Ψ ω2 and not ω2 �Ψ ω, and ω1 ≈Ψ ω2

iff both ω1 �Ψ ω2 and ω2 �Ψ ω1. In a natural way �Ψ

can be lifted to a total preorder on the set of propositions via
A �Ψ B iff for all ω2 ∈ Mod (B), there is ω1 ∈ Mod (A)
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such that ω1 �Ψ ω2; for total preorders, this is equivalent to
saying that there is an ω1 ∈ Mod (A) such that ω1 �Ψ ω2

for all ω2 ∈ Mod (B). A ≺Ψ B and A ≈Ψ B are defined in
the same way as above.

If Ω′ ⊆ Ω, then min�Ψ
(Ω′) = {ω1 ∈ Ω′ | ω1 �Ψ

ω2 for all ω2 ∈ Ω′} denotes the set of minimal mod-
els in Ω′ with respect to �Ψ. If Ω′ = Ω, then we sim-
ply write min(Ψ) instead of min�Ψ(Ω). If A ∈ L, then
min�Ψ(A) = min�Ψ(Mod (A)). The minimal models of
an epistemic state induce its associated belief set: Bel (Ψ) =
T (min(Ψ)), i.e., the agent believes exactly the propositions
that are valid in all most plausible worlds.

Similarly to what holds for OCFs, a conditional (B|A)
is accepted by the epistemic state Ψ, Ψ |= (B|A), iff
AB ≺Ψ AB. This means that, by definition, Ψ accepts all
conditionals (B|A) such thatAB is contradictory whileAB
is not, and does not accept any conditional (B|A) where
AB is contradictory. One might extend this definition to also
cover limiting cases where the antecedent of a conditional is
contradictory by defining that any such conditional be ac-
cepted, but this would be an artefact reminding of material
implication which is neither justified in our semantic frame-
work of conditionals, nor is it necessary. Please note that our
conditional approach sketched in the beginning of section 4
also works for conditionals (B|A) where AB or AB are
contradictory. However, such conditionals may lead easily
to trivial belief change tasks because revision resp. contrac-
tion by such conditionals is either vacuous, or not possible
at all. Therefore, the focus of this paper is on “most nor-
mal” conditionals (B|A) where both AB and AB are non-
contradictory because our aim is to show how relationships
between verifying (i.e., ω |= AB) and falsifying worlds (i.e.,
ω |= AB) are influenced by belief change via the principle
of conditional preservation.

Note that also OCFs κ induce total preorders on Ω via
ω1 �κ ω2 iff κ(ω1) 6 κ(ω2), so everything we state on
general epistemic states will apply to OCFs, but OCFs al-
low for more expressive statements because of their usage
of natural numbers and the corresponding arithmetics. For
an OCF κ, we have accordingly Bel (κ) = T (JκK); thus, a
proposition A is believed under κ if κ(A) > 0 (which im-
plies particularly κ(A) = 0).

3 Basics on Belief Change and Related Work
AGM revision of an epistemic state Ψ (in the sense of (Dar-
wiche and Pearl 1997) can be ensured by assuming that a
so-called faithful ranking underlies Ψ such that the revised
beliefs can be computed from the minimal models according
to the ranking. Here, a faithful ranking is a total preorder �
on the possible worlds that is assigned to Ψ in such a way
that the minimal models of � are precisely the models of
the belief set K = Bel (Ψ) associated with Ψ, containing
the most plausible beliefs of Ψ.

Proposition 1 ((Darwiche and Pearl 1997)) A revision
operator ∗ that assigns a posterior epistemic state Ψ ∗ A
to a prior state Ψ and a proposition A is an AGM revision
operator for epistemic states extending propositional
revision on K = Bel (Ψ) iff there exists a faithful preorder

� such that for every proposition C it holds that:

K ∗ C = Bel (Ψ ∗ C) = T (min(�, C))

This proposition allows us to study AGM-style revisions by
focussing on total preorders assigned to epistemic states Ψ,
henceforth denoted by�Ψ. As pointed out by Darwiche and
Pearl, and others, some of the revisions characterised by
Proposition 1 lead to unintuitive results in the case of iter-
ated revision. An iterative revision operator ∗ should fulfill
further postulates, especially those that ensure that the or-
dering of specific worlds is kept:

Proposition 2 ((Darwiche and Pearl 1997)) Let ∗ be an
AGM revision operator for epistemic states Ψ with corre-
sponding faithful preorder �Ψ. Then ∗ is an iterative revi-
sion operator in the sense of (Darwiche and Pearl 1997) iff
for every proposition C it holds that:

(DP1) If ω1, ω2 |= C, then ω1 �Ψ ω2 iff ω1 �Ψ∗C ω2.

(DP2) If ω1, ω2 |= C , then ω1 �Ψ ω2 iff ω1 �Ψ∗C ω2.

(DP3) If ω1 |= C and ω2 |= C , then ω1 ≺Ψ ω2 implies
ω1 ≺Ψ∗C ω2.

(DP4) If ω1 |= C and ω2 |= C , then ω1 �Ψ ω2 implies
ω1 �Ψ∗C ω2.

This approach by Darwiche and Pearl has been widely ac-
cepted, and is the basis for many results on iterated belief
revision.

Some authors have transferred the semantic postulates of
(Darwiche and Pearl 1997) to the framework of iterated con-
traction (Chopra et al. 2008; Ramachandran, Nayak, and
Orgun 2012; Konieczny and Pino Pérez 2017)1, we recall
the postulates of (Konieczny and Pino Pérez 2017) here:

Proposition 3 ((Konieczny and Pino Pérez 2017)) Let −
be an AGM contraction operator for epistemic states Ψ with
corresponding faithful preorder �Ψ. Then − is an itera-
tive contraction operator in the sense of (Konieczny and
Pino Pérez 2017) iff for every proposition C it holds that:

(KPP1) If ω1, ω2 |= C , then ω1 �Ψ ω2 iff ω1 �Ψ−C ω2.

(KPP2) If ω1, ω2 |= C , then ω1 �Ψ ω2 iff ω1 �Ψ−C ω2.

(KPP3) If ω1 |= C and ω2 |= C, then ω1 ≺Ψ ω2 implies
ω1 ≺Ψ−C ω2.

(KPP4) If ω1 |= C and ω2 |= C, then ω1 �Ψ ω2 implies
ω1 �Ψ−C ω2.

For further explanations of the postulates of (Darwiche and
Pearl 1997) and (Konieczny and Pino Pérez 2017), for their
syntactic counterparts and illustrations, please see the origi-
nal papers.

The principle of conditional preservation for multiple iter-
ated change operators ◦, OCFs, and setsR of conditionals of
(Kern-Isberner et al. 2017) is also highly relevant, but since
it shares common theoretical grounds with the novel quali-
tative principle of conditional preservation to be developed
in this paper, we postpone recalling it to the next section.

1I am grateful to an anonymous reviewer for pointing out some
of these references to me.
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4 A Qualitative Principle of Conditional
Preservation

In this section, we will study the following iterated change
problem:

Given an epistemic state Ψ, building upon a log-
ical language L and equipped with a total pre-
order �Ψ on its possible worlds Ω, a set R =
{(B1|A1), . . . , (Bn|An)} ⊆ (L | L) of conditional
beliefs, and a change operator ◦, how should Ψ be
changed in a rational way to yield a posterior state
Ψ◦ = Ψ ◦R (also equipped with a total preorder) such
that the change complies with the characteristics of ◦
and such that conditional beliefs in Ψ andR are treated
adequately? In particular, conditional beliefs should be
preserved if there is no reason to give them up.

In order to not trivialize the change task, we assumeR to be
consistent in the following, i.e., there should be at least one
total preorder on Ω that accepts all conditionals inR.

The idea of rational change will be ensured by starting
from an AGM framework resp. the extensions of AGM pro-
vided by (Darwiche and Pearl 1997), i.e., by obeying Propo-
sition 1. The characteristics of ◦ are given by the respective
success conditions in the first place, i.e., if ◦ is a revision
operator, then we expect that Ψ◦ |= R, while for a contrac-
tion, we expect Ψ◦ 6|= R in the sense, that Ψ◦ 6|= (B|A)
for any conditional in R; however, one may consider fur-
ther characteristics here. The most problematic issue to be
addressed is to devise a strategy how to preserve conditional
beliefs. Of course, there are simple cases, for example, if
Ψ |= (B|A), (B|A) ∈ R and ◦ = ∗ is a revision oper-
ator, then we expect that (B|A) is overridden by the con-
ditional beliefs in R. But there are far more complicated
cases – what if Ψ |= (B|A) and R contains conditionals
such as (A|B), (C|AB), or (B|AC)? Then the question of
which conditional beliefs in Ψ are affected by the new con-
ditional beliefs in R and which are not, is not at all trivial.
And indeed, the problem is even worse: Not only the be-
liefs in Ψ vs. those inR interact, also the conditional beliefs
within Ψ resp.R interact, they may support one another, like
(B|A) and (A|B) (cf. (Eichhorn, Kern-Isberner, and Ragni
2018)), or state exceptions to other conditionals, like (B|A)
and (B|AC).

The theory of conditional structures (Kern-Isberner 2001;
2004) provides a suitable basis to make these interactions
transparent. Since we base also our qualitative principle of
conditional preservation on this algebraic framework, we re-
call its basic facts which are relevant for this paper. Condi-
tional structures are kind of labels that are assigned to pos-
sible worlds in order to reveal clearly how the world evalu-
ates all conditionals inR. Basically, we follow the approach
(1), but since we deal with multiple conditionals at the same
time, we have to be able to tell their influences on the possi-
ble world apart. We solve this problem by assigning differ-
ent algebraic symbols to different conditionals, thus treating
each conditional as an independent piece of information (see
also (Kern-Isberner and Huvermann 2017)).

More formally, let R = {(B1|A1), . . . , (Bn|An)} ⊆
(L | L) be a finite set of conditionals, and let

a+
1 ,a

−
1 , . . . ,a

+
n ,a

−
n be distinct algebraic symbols that

are used as generators of a (free abelian2) group (Fine
and Rosenberger 1999) FR = 〈a+

1 ,a
−
1 , . . . ,a

+
n ,a

−
n 〉. In

short, this group structure provides us with a multiplication
(written as juxtaposition) and with a neutral element 1 that
symbolizes non-applicability. Furthermore, the property of
free abelian makes a parallel handling of the conditionals
(without any order of application assumed) possible, as
well as independence between different conditionals (by
forbidding cancellations between different symbols). In
extending the basic idea of (1) to the case of multiple
conditionals, for each i, 1 6 i 6 n, we define a function
σi = σ(Bi|Ai) : Ω→ FR by setting

σi(ω) :=

 a+
i if ω |= AiBi (verification)

a−i if ω |= AiBi (falsification)
1 if ω |= Ai (non-applicability)

σi(ω) represents the manner in which the conditional
(Bi|Ai) applies to the possible world ω. The function σR :
Ω→ FR given by

σR(ω) :=
∏

16i6n

σi(ω) =
∏

16i6n
ω|=AiBi

a+
i

∏
16i6n

ω|=AiBi

a−i

describes the all-over effect ofR on ω. Furthermore, σR(ω)
is called the conditional structure of ω with respect to R.
SinceFR is a free (abelian) group, the conditional structures
of worlds are uniquely determined by their σi-components
and hence by their logical relation to each conditional: For
any two worlds ω1, ω2, we have

σR(ω1) = σR(ω2) iff σi(ω1) = σi(ω2) (2)
for all i, 1 6 i 6 n.

The following simple example illustrates the notion of
conditional structures and shows how to calculate in this
framework:
Example 1 LetR = {(c|a), (c|b)}, where a, b, c are atoms,
and let FR = 〈a+

1 ,a
−
1 ,a

+
2 ,a

−
2 〉. We associate a±1 with the

first conditional, (c|a), and a±2 with the second one, (c|b).
For instance, the world abc verifies both conditionals, so we
have σR(abc) = a+

1 a
+
2 . The following table shows the val-

ues of the function σR on arbitrary worlds ω ∈ Ω:

ω σR(ω) ω σR(ω) ω σR(ω) ω σR(ω)

abc a+
1 a

+
2 abc a+

2 abc a−1 a
−
2 abc a−2

abc a+
1 abc 1 abc a−1 abc 1

We find that σR(abc) ·σR(abc) = a+
1 a

+
2 ·1 = (a+

1 ) ·(a+
2 ) =

σR(abc) ·σR(abc), which may be interpreted by saying that
the sets of worlds {abc, abc} and {abc, abc} show identical
conditional effects – they are balanced with respect to the ef-
fects of the conditionals inR. Although abc, abc, abc, abc all
have different conditional structures, the relationships be-
tween them with respect toR are clearly revealed.

2Free abelian groups have no relations except for those induced
by commutativity.
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The last example shows that not only the conditional
structures of single worlds are informative but that also that
(multi)sets3 of worlds can form sort of coalitions to evalu-
ate the conditionals inR. So, we generalize the definition of
conditional structures to multisets, making use of the multi-
plicative structure within FR:

Definition 1 Let [Ω1] = {ω1, . . . , ωm} be a multiset. Then

σR([Ω1]) = σR(ω1) · · ·σR(ωm) (3)

is the conditional structure of [Ω]. If [Ω1] does not contain
multiple copies of elements and hence is simply a set, we
write σR(Ω1).

Example 2 In Example 1, for the sets Ω1 = {abc, abc} and
Ω2 = {abc, abc}, we have σR(Ω1) = σR(Ω2) = a+

1 a
+
2 .

Lemma 1 Let [Ω1] = {ω1, . . . , ωm} be a multiset of
worlds. Then

σR([Ω1]) =
∏

16i6n

(a+
i )|{j:σi(ωj)=a+

i }|

·
∏

16i6n

(a−i )|{j:σi(ωj)=a−i }|,

where | · | denotes the cardinality of a multiset, i.e., multiple
occurrences of worlds are counted.

Let [Ω2] = {ω′1, . . . , ω′m} also be a multiset of worlds
with the same cardinality as [Ω1]. Then σR([Ω1]) =
σR([Ω2]) iff for all i, 1 6 i 6 n, |{j : σi(ωj) = a+

i }| =
|{j : σi(ω

′
j) = a+

i }| and |{j : σi(ωj) = a−i }| = |{j :

σi(ω
′
j) = a−i }|, i.e., iff for each conditional (Bi|Ai) in R,

Ω1 and Ω2 show the same number of verifications resp. fal-
sifications.

Proof. Since FR is commutative, the generators a+
i and a−i

can be rearranged, and multiple occurrences are expressed
by suitable exponents. This proves the first statement. More-
over, they are also free generators, which means that there
are no cancellations between different a+

i , a−i , hence two
elements of FR can be the same only if their exponents of
each generator coincide. This shows the second statement.
2

With these notations, a principle of conditional preser-
vation for multiple iterated change operators ◦, OCFs, and
setsR of conditionals was presented in (Kern-Isberner et al.
2017):

(PCPocf◦ ) Let ◦ be a change operation for OCFs κ and con-
ditional belief sets R = {(B1|A1), . . . , (Bn|An)} ⊆
(L | L). If two multisets of possible worlds [Ω1] =
{ω1, . . . , ωm} and [Ω2] = {ω′1, . . . , ω′m} with the same
cardinality fulfill σR([Ω1]) = σR([Ω2]) then prior κ and
posterior κ◦ = κ ◦ R are related by

(κ(ω1)+. . .+κ(ωm))−(κ(ω′1)+. . .+κ(ω
′
m))

= (κ◦(ω1)+. . .+κ
◦(ωm))−(κ◦(ω′1)+. . .+κ

◦(ω′m))
(4)

3I.e., the worlds need not all be distinct.

Rearranging (4) shows that (PCPocf◦ ) guarantees that the
overall amount of change within the two multisets measured
by the (iterated) differences between prior and posterior κ-
value for each world is the same if they behave the same
with respect to the new conditional beliefs, i.e., if

(κ(ω1)− κ◦(ω1)) + . . .+ (κ(ωm)− κ◦(ωm))

= (κ(ω′1)− κ◦(ω′1)) + . . .+ (κ(ω′m))− κ◦(ω′m))
(5)

For relations of this property to independence properties of
iterated belief revision, please see (Kern-Isberner and Hu-
vermann 2017).

Of course, (PCPocf◦ ) requires the ranking framework to
provide basic arithmetic features. The following characteri-
sation of the change of ranking functions under the princi-
ple of conditional preservation was also presented in (Kern-
Isberner et al. 2017):
Theorem 1 ((Kern-Isberner et al. 2017)) Let R =
{(B1|A1), . . . , (Bn|An)} ⊆ (L | L) be a finite set of
conditionals, and let κ ◦ R = κ◦ be a belief change of
κ by R. Then this change satisfies (PCPocf◦ ) iff there are
rational4 numbers κ0, γ

+
i , γ

−
i , 1 6 i 6 n such that

κ◦(ω) = κ0 + κ(ω) +
∑

16i6n
ω|=AiBi

γ+
i +

∑
16i6n

ω|=AiBi

γ−i . (6)

Iterated belief change operators of the form (6) are called
c-change operators.

γ+
i and γ−i are constants associated with each conditional

affecting verifying and falsifying worlds in a uniform way,
and κ0 is a normalizing constant ensuring that κ◦ is an OCF,
i.e. there is at least one world ω such that κ◦(ω) = 0.

Transferring these ideas to the purely qualitative case
where we consider a general epistemic state Ψ equipped
with a total preorder �Ψ, we are no longer able to make
use of any arithmetic operation like addition or subtrac-
tion (which were essential for formalizing (4)) but may only
compare worlds to one another. For this, rearranging the dif-
ferences in (4) equivalently yields an equation that is much
more helpful for the purely qualitative case:

(κ(ω1)− κ(ω′1)) + . . .+ (κ(ωm)− κ(ω′m)) =

= (κ◦(ω1)− κ◦(ω′1)) + . . .+ (κ◦(ωm)− κ◦(ω′m)).
(7)

Equation (7) says that (aggregated) prior and posterior dif-
ferences between worlds from [Ω1] and [Ω2] are perfectly
balanced, given that both multisets satisfy the necessary pre-
requisites. Without the addition operation, we can hardly ex-
press a perfect balance except for trivial cases but we can
control tendencies. Observing that κ(ω) − κ(ω′) 6 0 iff
ω �κ ω′, we obtain an important consequence of (PCPocf◦ )
which makes only use of comparisons:

If there is i s.t. ωi≺κω′i, and for all j 6= i, ωj�κω′j ,
then there is j s.t. ωj≺κ◦ ω′j .

(8)

An analogous statement can be derived from (7) with �κ
and �κ◦ interchanged. Notably, we can still maintain a very

4Note that indeed, κ0, γ
+
i , γ

−
i can be rational, but κ◦ has to

satisfy the requirements for OCF, in particular, all κ◦(ω) must be
non-negative integers.
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general view on belief change not being forced to specify
whether the general change operator ◦ is to perform revision
or contraction in advance. Based on these intuitions, we can
now formalize a qualitative principle of conditional preser-
vation for iterated belief change by slightly rephasing (8) for
general epistemic states Ψ:

(QPCP◦) Let ◦ be a change operation for epistemic
states Ψ and conditional knowledge bases R =
{(B1|A1), . . . , (Bn|An)} ⊆ (L | L). If for two mul-
tisets of possible worlds [Ω1] = {ω1, . . . , ωm} and
[Ω2] = {ω′1, . . . , ω′m} with the same cardinality, we have
σR([Ω1]) = σR([Ω2]) then prior Ψ and posterior Ψ◦ =
Ψ ◦ R fulfill the following two conditions:

(1) If there is i, 1 6 i 6 m, such that ωi ≺Ψ ω′i holds, then
there is j, 1 6 j 6 m, such that ωj ≺Ψ◦ ω

′
j holds, or

there is j 6= i such that ω′j ≺Ψ ωj .
(2) If there is i, 1 6 i 6 m, such that ωi ≺Ψ◦ ω

′
i holds,

then there is j, 1 6 j 6 m, such that ωj ≺Ψ ω′j holds,
or there is j 6= i such that ω′j ≺Ψ◦ ωj .

Expressed in simple words, (QPCP◦) says that if all pairs
(ωi, ω

′
i) are oriented in the same way with respect to� in the

prior (resp., posterior) epistemic state, and there is at least
one pair that makes a difference, then at least one such pair
of worlds with the same orientation can be found in the pos-
terior (resp., prior) state that makes a difference, too. Since
no specific order of elements is assumed in [Ω1] and [Ω2],
any arrangement of pairs from both multisets is taken into
account. So, in the qualitative case, it is even clearer that
we need to consider multisets because we actually consider
pairs (ωi, ω

′
i) resp. relations ωi � ω′i which are compared

to one another, and one and the same world can be com-
pared to different worlds, i.e., can occur several times in
such pairs. This happens quite naturally when dealing with
the transivity of �Ψ. For instance, consider a case where we
have R = {A}, and ω1 ≺Ψ ω2 ≺Ψ ω3 ≺Ψ ω4 such that
ω1, ω4 |= A, while ω2, ω3 |= ¬A. Then we might want
to consider the implications for ≺Ψ◦ of the comparisons
ω1 ≺Ψ ω2, ω1 ≺Ψ ω3, ω2 ≺Ψ ω4, ω3 ≺Ψ ω4 which are im-
plied by transitivity. The multisets [Ω1] = {ω1, ω1, ω2, ω3}
and [Ω2] = {ω2, ω3, ω4, ω4} have the same conditional
structure with respect to R and thus can be used to apply
(QPCP◦). Each of the multisets mentions one world twice,
and this is needed to capture the implications of transitivity.
However, since it is mandatory to consider all arrangements
of worlds in pairs with one world from [Ω1] and one world
from [Ω2], the order in the multisets does not matter, and so
we stick to our set notation. Note that this principle applies
to most general change scenarios, since it covers not only it-
erated change but also multiple and conditional change and
therefore goes far beyond the scope of previous works but
indeed, makes only use of comparisons between worlds.

It is straightforward to check that (QPCP◦) is a conse-
quence of (PCPocf◦ ):

Proposition 4 (PCPocf◦ ) implies (QPCP◦), i.e., every belief
change operator for OCFs and conditional belief sets that
satisfies (PCPocf◦ ) also satisfies (QPCP◦).

Proof. This is indeed clear thanks to the equivalence of (4)
and (7), and the fact that (8) is an easy consequence of (7).
(QPCP◦)(1) is then an equivalent rephrasing of (8). In the
same way, (QPCP◦)(2) can be derived from (7). 2

Remark. In the given form, (QPCP◦) can also be used as a
guideline for changing partial preorders ≺Ψ to partial pre-
orders ≺Ψ◦ by sets of conditionals.

Contrapositions of the axioms (1) and (2) of (QPCP◦)
yield axioms for �Ψ and �Ψ◦ :

Proposition 5 A change operator ◦ for epistemic states Ψ
and conditional knowledge basesR satisfies (QPCP◦) iff for
any two multisets of possible worlds [Ω1] = {ω1, . . . , ωm}
and [Ω2] = {ω′1, . . . , ω′m} with the same cardinality and the
same conditional structure σR([Ω1]) = σR([Ω2]), prior Ψ
and posterior Ψ◦ = Ψ ◦ R fulfill the following two condi-
tions:

(1’) If there is i, 1 6 i 6 m, such that ωi �Ψ ω′i holds, then
there is j, 1 6 j 6 m, such that ωj ≺Ψ◦ ω

′
j holds, or for

all i, 1 6 i 6 m, we have ωi �Ψ◦ ω
′
i, or there is j 6= i

such that ω′j ≺Ψ ωj .

(2’) If there is i, 1 6 i 6 m, such that ωi �Ψ◦ ω
′
i holds,

then there is j, 1 6 j 6 m, such that ωj ≺Ψ ω′j holds, or
for all i, 1 6 i 6 m, we have ωi �Ψ ω′i, or there is j 6= i
such that ω′j ≺Ψ◦ ωj .

Proof. (1’) is the contrapositive form of (QPCP◦)(2), and
(2’) is the contrapositive form of (QPCP◦)(1). 2

We refer to conditions (1’) resp. (2’) of Proposition 5 as
(QPCP◦)(1’) resp. (QPCP◦)(2’) in the following.

In the next section, we focus on the case where an epis-
temic state is changed by a single conditional, and we show
connections to the works (Darwiche and Pearl 1997) and
(Konieczny and Pino Pérez 2017).

5 Changing Epistemic States By a Single
Conditional

In the following, we derive from (QPCP◦) first general re-
sults of changing epistemic states by sets R = {(B|A)}
consisting of a single conditional, and then show conse-
quences for the specific case of iterated revision and con-
traction. In this case, FR is the free abelian group that is
generated by a+

1 ,a
−
1 . Since propositions A can be identified

with the conditional (A|>), these results are immediately
relevant also for the (usually considered) case where epis-
temic states are changed by single propositions.

Proposition 6 Let ◦ be a change operator for epistemic
states Ψ equipped with a total preorder �Ψ and for con-
ditional belief bases that satisfies (QPCP◦). Let R =
{(B|A)}, and let Ψ◦ = Ψ ◦ R. Then for any two worlds
ω1, ω2 the following conditions are satisfied:

(CP1a) If ω1, ω2 |= AB then ω1 �Ψ ω2 iff ω1 �Ψ◦ ω2.

(CP1b) If ω1, ω2 |= AB then ω1 �Ψ ω2 iff ω1 �Ψ◦ ω2.

(CP1c) If ω1, ω2 |= A then ω1 �Ψ ω2 iff ω1 �Ψ◦ ω2.
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Proof. If ω1, ω2 |= AB, we have σR(ω1) = σR(ω2) =
a+

1 . So, the two sets Ω1 = {ω1} and Ω2 = {ω2} satisfy
σR(Ω1) = σR(Ω2), and since both sets contain just one
element, ω1 �Ψ ω2 implies ω1 �Ψ◦ ω2 by (QPCP◦)(1’),
and ω1 �Ψ◦ ω2 implies ω1 �Ψ ω2 by (QPCP◦)(2’). This
proves (CP1a).

The proofs for (CP1b) and (CP1c) are completely analo-
gous because we have σR(ω1) = σR(ω2) in each case. 2

In case of a single proposition A ≡ (A|>), verification
of the conditional coincides with A being true, and falsifica-
tion means that A is false. These are exactly the first two
cases that are addressed by the axioms in (Darwiche and
Pearl 1997) and (Konieczny and Pino Pérez 2017) where
both propose the same axioms:

Proposition 7 Let ◦ be a change operator for epistemic
states Ψ equipped with a total preorder �Ψ and for single
propositions. Then ◦ satisfies (CP1a-b) iff it satisfies (DP1-
2) resp. (KPP1-2).

This establishes the first important connection to the
works of (Darwiche and Pearl 1997) and (Konieczny and
Pino Pérez 2017) and reveals that their first two axioms do
not coincide just for technical reasons but that they can be
justified by a common change prinicple which is implied by
(QPCP◦).

In order to show that also the other axioms of (Darwiche
and Pearl 1997) and (Konieczny and Pino Pérez 2017) are
covered by (QPCP◦), we have to consider the specific cases
of iterated revision and contraction which most crucially dif-
fer by their success conditions: For revision operators which
will be denoted by ∗, beliefs should be adopted, and for
contraction operators denoted by −, beliefs should be given
up. For the case of (sets of) conditional beliefs, they can be
adapted in a straightforward way:

(Success∗) Ψ∗R |= R, i.e., Ψ∗R |= (B|A) for all (B|A) ∈
R.

(Success−) Ψ − R 6|= R, i.e., Ψ − R 6|= (B|A) for some
(B|A) ∈ R.

We further need to express an idea of minimal change that
is most basic to AGM theory and aims at avoiding unneces-
sary change in case the new beliefs are already present in the
prior state:

(Stability∗) If Ψ |= R, then Ψ ∗ R = Ψ.

(Stability−) If Ψ 6|= R, i.e., Ψ 6|= (B|A) for some (B|A) ∈
R, then Ψ−R = Ψ.

(Stability∗) has been proposed already in (Kern-Isberner
2001; 2004; Kern-Isberner and Huvermann 2017) for vari-
ous forms of iterated revision. In general, the stability ax-
ioms make clear that the change operators considered here
are not to strengthen resp. weaken beliefs. These might be
desirable effects of change but indicate change scenarios that
are substantially different from those that are considered in
this paper. Nevertheless, (QPCP◦) as a general guidelines
for changes may also be relevant for other change scenarios
because it is formalized independently of success or stability
conditions.

We are now ready to show further important consequences
of (QPCP◦); we denote the respective version of (QPCP◦)
for revision and contraction by (QPCP∗) resp. (QPCP−).
First, we deal with the case of revision:

Proposition 8 Let ∗ be an iterated revision operator for
epistemic states Ψ and for conditional belief bases that
satisfies (QPCP∗), (Success∗), and (Stability∗). Let R =
{(B|A)}, and let Ψ∗ = Ψ ∗ R. Then for any two worlds
ω1, ω2 the following conditions are satisfied:
(CP2∗) If ω1 |= AB and ω2 |= AB, then ω1 ≺Ψ ω2 implies
ω1 ≺Ψ∗ ω2.

(CP3∗) If ω1 |= AB and ω2 |= AB, then ω1 �Ψ ω2 implies
ω1 �Ψ∗ ω2.

Proof. As a general set-up for the proof, let ω1 |= AB and
ω2 |= AB. Due to (Success∗), Ψ∗ |= (B|A), and hence
minΨ∗(AB) ≺Ψ∗ minΨ∗(AB). Let ω′1 ∈ minΨ∗(AB)
and ω′2 ∈ minΨ∗(AB), then ω′1 ≺Ψ∗ ω′2. Because of
(CP1a-b), the order among models of AB resp. AB is
maintained under revision, so also ω′1 ∈ minΨ(AB) and
ω′2 ∈ minΨ(AB). Consider the sets Ω1 = {ω1, ω

′
2} and

Ω2 = {ω2, ω
′
1}. We have ω1, ω

′
1 |= AB and ω2, ω

′
2 |= AB,

so σR(Ω1) = a+
1 a
−
1 = σR(Ω2).

First, we show (CP2∗). Here, we have ω1 ≺Ψ ω2. Ac-
cording to (QPCP∗)(1), ω1 ≺Ψ ω2 implies (i) ω1 ≺Ψ∗ ω2,
or (ii) ω′2 ≺Ψ∗ ω

′
1, or (iii) ω′1 ≺Ψ ω′2. In case (i), we are

done; case (ii) cannot occur because of ω′1 ≺Ψ∗ ω′2. So
we are left with case (iii) where we have AB ≺Ψ AB, so
Ψ |= (B|A), and by (Stability∗), Ψ∗ = Ψ which immedi-
ately yields ω1 ≺Ψ∗ ω2.

Regarding (CP3∗), let ω1 �Ψ ω2. By (QPCP∗)(1’), we
have (i) ω1 ≺Ψ∗ ω2, or (ii) ω′2 ≺Ψ∗ ω

′
1, or (iii) ω1 �Ψ∗ ω2

and ω′2 �Ψ∗ ω
′
1, or (iv) ω′1 ≺Ψ ω′2. Cases (ii) and (iii) cannot

occur due to (Success∗). In case (i), we also have ω1 �Ψ∗

ω2, so we are done. In case (iv), again (Stability∗) ensures
that Ψ∗ = Ψ and hence ω1 �Ψ∗ ω2. 2

A similar result can be proved for iterated contraction:

Proposition 9 Let− be an iterated contraction operator for
epistemic states Ψ and conditional belief bases that satisfies
(QPCP−), (Success−), and (Stability−). LetR = {(B|A)},
and let Ψ− = Ψ − R. Then for any two worlds ω1, ω2 the
following conditions are satisfied:
(CP2−) If ω1 |= AB and ω2 |= AB, then ω1 ≺Ψ ω2 im-

plies ω1 ≺Ψ− ω2.
(CP3−) If ω1 |= AB and ω2 |= AB, then ω1 �Ψ ω2 im-

plies ω1 �Ψ− ω2.

Proof. The proof of this proposition follows lines very sim-
ilar to the proof of Proposition 8, with the roles of AB and
AB interchanged. The general set-up for the proof is as
follows: Let ω1 |= AB, ω2 |= AB. Due to (Success−),
Ψ− 6|= (B|A), and hence minΨ−(AB) �Ψ− minΨ−(AB).
Let ω′1 ∈ minΨ−(AB) and ω′2 ∈ minΨ−(AB), then
ω′1 �Ψ− ω′2. Because of (CP1a-b), the order among mod-
els of AB resp. AB is maintained under contraction, so also
ω′1 ∈ minΨ(AB) and ω′2 ∈ minΨ(AB). Consider the sets
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Ω1 = {ω1, ω
′
2} and Ω2 = {ω2, ω

′
1}. Again, σR(Ω1) =

a+
1 a
−
1 = σR(Ω2).

Starting with (CP2−), let ω1 ≺Ψ ω2. According to
(QPCP−)(1), ω1 ≺Ψ ω2 implies (i) ω1 ≺Ψ− ω2, or (ii)
ω′2 ≺Ψ− ω′1, or (iii) ω′1 ≺Ψ ω′2. In case (i), we are done;
case (ii) cannot occur because of (Success−). In case (iii),
we have AB ≺Ψ AB, so Ψ 6|= (B|A), and by (Stability−),
Ψ− = Ψ which immediately yields ω1 ≺Ψ− ω2.

For (CP3−), let ω1 �Ψ ω2. By (QPCP−)(1’), we have (i)
ω1 ≺Ψ− ω2, or (ii) ω′2 ≺Ψ− ω′1, or (iii) ω1 �Ψ− ω2 and
ω′2 �Ψ− ω

′
1, or (iv) ω′1 ≺Ψ ω′2. In cases (i) and (iii), we are

done, case (ii) conflicts with (Success−). In case (iv), again
(Stability−) ensures that Ψ− = Ψ and hence ω1 �Ψ− ω2. 2

Now, it can be seen immediately that postulates (DP3-4)
are equivalent to (CP2∗) and (CP3∗) for the case (A|>) ≡
A, as well as that postulates (KPP3-4) are equivalent to
(CP2−) and (CP3−) for the same case. Taking also the re-
sults from Proposition 7 into account, we obtain one of the
main results of this paper:

Theorem 2 The qualitative principle of conditional preser-
vation (QPCP∗) for revision together with (Success∗) and
(Stability∗) imply all postulates (DP1-4) of (Darwiche and
Pearl 1997). Moreover, the qualitative principle of condi-
tional preservation (QPCP−) for contraction together with
(Success−) and (Stability−) imply all postulates (KPP1-4)
of (Konieczny and Pino Pérez 2017).

So together with the basic axioms of success and sta-
bility, the qualitative principle of conditional preservation
(QPCP◦) is able to cover major approaches to iterated revi-
sion and contraction previously published, and even is able
to provide guidelines for much more general revision prob-
lems. It is capable of axiomatizing the idea of conditional
preservation much more deeply than (Darwiche and Pearl
1997) by making use of conditional structures which can
truely handle (sets of) conditionals.

(QPCP◦) has been shown to have a good theoretical im-
pact by bringing together major previous approaches to iter-
ated belief change, and opening the way to conditional be-
lief change even for qualitative epistemic states. For prac-
tical problems and illustrations, however, the approach of
c-change operators as characterized in Theorem 1 is usually
much more intuitive and easier to understand. Numerous ex-
amples of c-revisions can be found in (Kern-Isberner 2001;
2004; Kern-Isberner and Huvermann 2017) and related
works. Therefore, we illustrate c-contractions and the idea
of conditional preservation in the following example.

Example 3 Consider the conditional belief base R =
{(f |b), (b|p) containing the conditionals (f |b) “birds (usu-
ally) fly” and (b|p) “penguins are birds”. Table 1 shows an
OCF κ that acceptsR.

As one might have expected, κ |= (f |p) holds, i.e., pen-
guins are believed to be flying objects, but κ is indifferent
with respect to penguins and birds since κ 6|= p, p, b, b. We
want to forget that penguins can fly which can be done via a
contraction κ− (f |p) = κ−. Making use of (PCPocf◦ ) resp.
the schema given by Theorem 1 with appropriate parame-

ω κ(ω) ω κ(ω)

p b f 0 p b f 0
p b f 1 p b f 1
p b f 1 p b f 0
p b f 1 p b f 0

Table 1: An OCF model ofR in Example 3

ω κ(ω) κ−(ω) κ−,−

p b f 0 1 0
p b f 0 0 0
p b f 1 1 0
p b f 1 1 1
p b f 1 2 1
p b f 0 0 0
p b f 1 1 0
p b ff 0 0 0

Table 2: OCFs κ, κ− and κ−,− for Example 3.

ters, we obtain

κ− (f |p)(ω) = κ(ω) +

 1 if ω |= pf
0 if ω |= pf
0 if ω |= p

as a suitable c-contraction. Here, we find the new condi-
tional belief κ− |= (f |pb) which was not present in κ

(κ 6|= (ḟ |pb)). Still κ is indifferent to birds (κ− 6|= ḃ), but
now κ− |= p – penguins are believed to be exceptional in
κ− which makes perfect sense.

However, assume that now we want to forget that pen-
guins are exceptional:

κ−,− = κ− − p.
The c-contraction κ−,− can do the job:

κ−,−(ω) = κ−(ω) +

{
0 if ω |= p
−1 if ω |= p

As expected, we find κ−,− 6|= ṗ, ḃ, as in κ; however, also
(f |b), (b|p) have been forgotten – κ−,− 6|= (ḟ |b), (ḃ|p). Of
course, we have contracted beliefs which have been induced
by our first belief base R, raising doubts about the condi-
tionals inR in this way, which is reflected by κ−,−. But still
we expect to find some traces of the conditionals in R un-
der the paradigm of conditional preservation. And indeed,
as can easily be seen from Table 2, κ−,− still remembers the
original conditionals, but in a refined form:

κ−,− |= (f |bp) and κ−,− |= (b|pf)

This example illustrates how interactions among condi-
tional beliefs in the prior and the posterior state and between
those states are taken into account and dealt with in a careful
way by the principle of conditional preservation.
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6 Conclusion and Future Work
In this paper, we presented a purely qualitative version of
the powerful principle of conditional preservation for it-
erated belief change that has brought forth solutions to
many important problems in belief change theory (Dar-
wiche and Pearl 1997; Konieczny and Pino Pérez 2017;
Jin and Thielscher 2007; Delgrande and Jin 2012). Indeed,
we showed that this principle is able to provide the missing
link connecting major works in iterated belief change the-
ory. Remarkably, although making use only of comparisons
between worlds, the principle may help solving advanced
belief change problems such as multiple and conditional be-
lief change, and combinations thereof.

For future work, we will apply this novel qualitative prin-
ciple to more problems in iterated belief change that have
been solved successfully by its semi-quantitative archetype
for OCFs (Kern-Isberner 2004; Kern-Isberner et al. 2017),
in particular, we will focus on independence properties in
multiple belief change (Jin and Thielscher 2007; Delgrande
and Jin 2012; Kern-Isberner and Huvermann 2017).

Of course, having a syntactic counterpart to (QPCP◦) and
a representation theorem would be desirable. However, con-
ditional interactions can be extremely complicated on the
syntactic level, so a representation theorem will be very hard
to set up, and then might only provide few insights and little
benefit, in particular, when compared to the clear represen-
tation Theorem 1. It might be more useful to derive further
postulates for iterated (conditional) belief change in ways
that are similar to the proofs of Propositions 8 and 9.
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