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Abstract

We consider an action language extended with quantitative
notions of uncertainty. In our setting, the initial beliefs of
an agent are represented as a probabilistic knowledge base
with axioms formulated in the Description LogicALCO. Ac-
tion descriptions describe the possibly context-sensitive and
non-deterministic effects of actions and provide likelihood
distributions over the different possible outcomes of actions.
In this paper, we prove decidability of the projection prob-
lem which is the basic reasoning task needed for predicting
the outcome of action sequences. Furthermore, we investi-
gate how the non-determinism in the action model affects the
complexity of the projection problem.

Introduction
Integrating probabilistic notions of uncertainty into lan-
guages for reasoning about actions is a popular approach to
adequately deal for instance with possibly fallible acting and
perception. Probabilistic extensions of the Situation Calcu-
lus (McCarthy and Hayes 1969; Reiter 2001), where first-
order logic is the underlying base logic, have been studied
for instance in (Bacchus, Halpern, and Levesque 1999; Ga-
baldon and Lakemeyer 2007; Belle and Lakemeyer 2017). A
basic reasoning problem in such a language is the projection
problem. For given statements about the initial probabilistic
beliefs of an agent and a finite sequence of stochastic ac-
tions the problem is to check whether a given query is true
after executing the action sequence. Solving such lookahead
tasks is for example important in planning and for high-level
control of autonomous robots.

As a motivating example, we consider a domestic service
robot that has the task of serving food to a person named
John. In this scenario, we assume that the knowledge of the
robot about the ingredients of food and possible food al-
lergies of John is non-crisp and incomplete. Furthermore,
the outcome of actions needed to deliver food is also un-
known to a certain degree. For example, in the programming
language Readylog (Ferrein, Fritz, and Lakemeyer 2005;
Ferrein and Lakemeyer 2008), that has the Situation Cal-
culus as its formal underpinning and is a variant of Golog
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(Levesque et al. 1997), one could write the following high-
level program

while ∃x.AvailableFood(x) ∧WantsFood(john) do
if pproj (Healthy(john), serve(x, john)) ≥ 0.9 then

serve(x, john)

end
end

It describes an agent weighing the outcome of an action se-
quence named serve(x, john) in terms of the health status
of John before actually serving the food x. The if-condition
with pproj is a construct for probabilistic projection. Here,
it checks whether the degree of belief in Healthy(john) is
above the threshold after projecting serve(x, john).

The problem is that in representations based on a proba-
bilistic Situation Calculus like the one of (Bacchus, Halpern,
and Levesque 1999) the projection problem is undecid-
able. One well-established principled approach to obtain
an expressive action formalism with a decidable projection
problem is to use an action language based on Descrip-
tion Logics (DLs) (Baader et al. 2003; 2017) such as the
ones in e.g. (Baader et al. 2005; Gu and Soutchanski 2010;
Baader, Lippmann, and Liu 2010; Zarrieß and Claßen 2015;
Ahmetaj et al. 2017). Most of these formalisms have in com-
mon that they can be considered as fragments of the Sit-
uation Calculus, that are elaboration tolerant, can handle
incomplete information, allow to integrate complex back-
ground knowledge in form of DL ontologies and have a de-
cidable projection problem with a complexity that is often
not higher than standard reasoning problems in the under-
lying expressive DLs. For example, in the service robot do-
main described above it would be useful to also integrate
static terminological knowledge about food allergies and
other health care related terms as it is provided for example
in bio-medical ontologies like SNOMED CT. However, to
the best of our knowledge, adding probabilistic degrees of
belief and stochastic actions to those DL-based action for-
malisms has not been considered so far.

In the present work, we propose a DL-based action for-
malism where one can talk about the probabilistic beliefs
of an agent and can represent stochastic actions to deal
with uncertainty about action outcomes. Our main con-
tribution is an analysis of the impact of these extensions
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on the complexity of the projection problem. In particu-
lar, to represent the initial belief state of the agent we con-
sider knowledge bases with subjective probabilities applied
to ABox facts (assertions about concrete individuals) and
TBox statements (ontologies) formulated in the basic ex-
pressive DLALCO. The resulting logic for formulating KBs
can be seen as a member of the Prob-ALC family of prob-
abilistic DLs studied in detail in (Lutz and Schröder 2010;
Gutiérrez-Basulto et al. 2017) and is a decidable fragment
of Halpern’s Type 2 probabilistic first-order logic (Halpern
1990). For the dynamics, action descriptions similar to the
ones in (Baader et al. 2005) represent the possibly condi-
tional effects of primitive deterministic actions. A stochastic
action is then decomposed into a finite set of primitive ac-
tions representing the set of possible outcomes. A discrete
probability distribution on this set describes the likelihood
of the respective outcome. Projection queries are again for-
mulated as probabilistic KBs over ALCO-axioms. For ex-
ample, the question whether action executions preserve the
agent’s belief in an ALCO-ontology can be formulated as
an instance of the projection problem. We show that the pro-
jection problem is EXPTIME-complete if only sequences of
deterministic actions are considered. However, in presence
of stochastic actions we show 2EXPTIME-completeness.

Detailed proofs can be found in a technical report (Zarrieß
2018).

Probabilistic KBs over ALCO-Axioms
First, we provide basic definitions of the standard (non-
probabilistic) DL ALCO, and second, we define probabilis-
tic KBs over ALCO-axioms.

Description Logic ALCO
We consider a fixed vocabulary with countably infinite pair-
wise disjoint sets NC of concept names, NR of role names,
and NI of individual names. Concept descriptions are built
from the vocabulary and several concept constructors.
Definition 1. An ALCO-concept description (concept for
short) C is built according to the following syntax rule

C ::= A | {a} | C u C | ¬C | ∃r.C,

where A ∈ NC stands for a concept name, a ∈ NI for an
individual name and r ∈ NR for a role name. Additional
concept constructors are defined as the usual abbreviations:
> := At¬A for some arbitrary but fixed concept nameA ∈
NC; ⊥ := ¬>; C tD := ¬(¬C u ¬D);∀r.C := ¬∃r.¬C,
where C and D are arbitrary concepts and r a role name.

Next, we define the syntax of knowledge bases.
Definition 2. A concept inclusion (CI) is an axiom of the
form C v D, where C and D are concepts. A knowledge
base (KB for short) ϕ is built according to the following syn-
tax rule:

ϕ ::= C v D | ¬ϕ | ϕ ∧ ϕ,

where C v D stands for a CI. Other Boolean connectives
like ∨ (disjunction) and → (implication) are defined as the
usual abbreviations.

A CI of the form {a} v C is also written as C(a) (called
concept assertion) and one of the form {a} v ∃r.{b} as
r(a, b) (called role assertion). The semantics is defined in
terms of interpretations.

Definition 3. An interpretation is a pair I = (∆I , ·I),
where ∆I is a non-empty domain and ·I a mapping that
maps each A ∈ NC to a set AI ⊆ ∆I , each role name
r ∈ NR to a binary relation rI ⊆ ∆I × ∆I and each indi-
vidual name a ∈ NI to an element aI ∈ ∆I .

The extension of a concept C under I, denoted by CI , is
defined as a subset of ∆I by induction on the structure of C
as follows

{a}I := {aI}; (D u E)I := DI ∩ EI ;

(¬D)I := ∆I \DI ;

(∃r.D)I := {d ∈ ∆I | ∃e ∈ ∆I .(d, e) ∈ rI ∧ e ∈ DI},

where A ∈ NC, a ∈ NI, r ∈ NR and D and E are concepts.
Let I be an interpretation and ϕ a KB. Satisfaction of ϕ

in I, denoted by I |= ϕ, is defined by induction on the
structure of ϕ as follows:

I |= C v D iff CI ⊆ DI ; I |= ¬ϕ1 iff I 6|= ϕ1;

I |= ϕ1 ∧ ϕ2 iff I |= ϕ1 and I |= ϕ2.

I is a model of a KB ϕ iff ϕ is satisfied in I. We say that a
KB is consistent iff it has a model.

Checking consistency of a KB is EXPTIME-complete.

Probabilistic Knowledge Bases
Our language for formulating probabilistic KBs is a frag-
ment of Halpern’s Type 2 probabilistic first-order logic, i.e.
probabilities are subjective and are viewed as degrees of be-
lief which seems to be appropriate for the agent-oriented set-
ting of this paper. The logic we obtain is similar in spirit
to the probabilistic DL Prob-ALC studied in (Lutz and
Schröder 2010; Gutiérrez-Basulto et al. 2017). However, we
do not allow probabilistic operators for forming concepts
and only talk about probabilistic uncertainty at the level of
axioms.

Syntax and Semantics Syntactically, our logic is the same
as the one in (Fagin, Halpern, and Megiddo 1990) but with
KBs in place of atomic propositions.

Definition 4. A belief term B is an expression that is built
according to the following syntax rule:

B ::= 0 | 1 | Bϕ | B + B | B× B,

where ϕ stands for a KB. A belief (in)equality is of the form

B1 ∼ B2 with ∼ ∈ {>,≥,=,≤, <},

where B1 and B2 are belief terms. A probabilistic knowl-
edge base (PKB for short)K is built according the following
syntax rule

K ::= B1 ∼ B2 | ¬K | K ∧ K,

where B1 ∼ B2 stands for a belief inequality.
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Intuitively, a belief term of the form Bϕ stands for the de-
gree of belief in the (objective) KB ϕ formulated in ALCO.
Note that rational constants in inequalities can be expressed
by clearing the denominator and appropriate normalization.

The semantics is given in terms of possible worlds, where
each world is associated with a standard DL interpretation
(Def. 3). There is a discrete probability distribution over the
set of all possible worlds.
Definition 5. A probabilistic interpretation is of the form

I = (∆,W, (Iw)w∈W , µ),

where
• ∆ is a non-empty domain;
• W a non-empty set of possible worlds;
• (W,µ) is a discrete probability space with sample space
W and probability function µ;

• for each w ∈W , Iw is an interpretation with ∆Iw = ∆.
Furthermore, we assume rigid individuals, i.e. aIw = aIw′

for all a ∈ NI and all w,w′ ∈W .
Since (W,µ) is defined as a discrete probability space,

W and the probability measure µ have the following gen-
eral properties: W is countable; for each w ∈ W we have
µ({w}) ∈ [0, 1]; for each set S ⊆ W it holds that µ(S) =∑
w∈S µ({w}). Thus, µ is uniquely determined by the val-

ues assigned to each singleton set consisting of a possible
world.
Definition 6 (semantics of PKBs). Let B be a belief term
and let I = (∆,W, (Iw)w∈W , µ) a probabilistic interpreta-
tion. By induction on the structure of B we define a function
·I that maps B to its degree of belief in I denoted by BI. It
is defined as follows:

0I := 0 and 1I := 1;

(Bϕ)I := µ ({w ∈W | Iw |= ϕ}) ;

(B1 + B2)I := (B1)I + (B2)I and

(B1 × B2)I := (B1)I × (B2)I.

Let K be a PKB and I a probabilistic interpretation. Satis-
faction of K in I, written as I |= K, is defined by induction
on the structure of K as follows

I |= B1 ∼ B2 iff (B1)I ∼ (B2)I;

I |= ¬K1 iff I 6|= K1;

I |= K1 ∧ K2 iff I |= K1 and I |= K2.

I is a model of K iff I |= K. K is called consistent iff it has
a model.

Note that the semantics is based on exactly the same un-
derlying assumptions as in (Lutz and Schröder 2010).
Example 7. Based on the example in the introduction we
define a simple PKB about food allergies and some concrete
facts about individuals. Concept names start with an upper-
case letter and role and individual names with a lowercase
letter. First, some known facts are given:

B(Person v ∀has-allergy-to.Allergen) = 1 ∧
B((Person uHealthy)(john)) = 1 ∧
B(Food(f1) ∧ Food(f2)) = 1.

A person can only have an allergy to an allergen. And we
talk about a healthy person john and some concrete food f1
and f2. The agent believes that john has an allergy to peanuts
with a degree of at least 0.9:

B(has-allergy-to(john, peanut)) ≥ 0.9,

Furthermore, the agent believes that f1 is more allergy-
friendly than f2 and that both corresponding degrees are in-
dependent of each other:

Bϕ1 > Bϕ2 ∧
B(ϕ1 ∧ ϕ2) = Bϕ1 ×Bϕ2

with

ϕ1 := (∃in.{f1} v ¬Allergen),

ϕ2 := (∃in.{f2} v ¬Allergen),

where ϕ1 and ϕ2 say that the all the ingredients (related via
the role name in) of f1 and f2, respectively, are not allergens.

Note that a PKB does not represent a fixed probability
distribution. It incompletely describes a probabilistic belief
state by providing some constraints for a distribution. Also
note that a PKB is a purely subjective theory and does not
talk about objective truth.

Deciding Consistency of Probabilistic KBs
For deciding consistency of a PKB the corresponding re-
sults for Prob-ALC in (Gutiérrez-Basulto et al. 2017) do not
directly apply to our problem because ALCO in addition
provides nominals and PKBs talk about degrees of belief in
concept inclusions which is not possible with Prob-ALC-
KBs. However, the chosen extensions for the present work
do not pose any major additional difficulties.

The algorithm for deciding consistency is basically of the
same kind as the one for Prob-ALC, which in turn uses
ideas from (Fagin, Halpern, and Megiddo 1990) (abbrevi-
ated by FHM in the following). The main idea is based on
KB-types which are maximal consistent subsets of the set of
all KBs mentioned in a PKB. Intuitively, a type is a proposi-
tional abstraction of a (non-probabilistic) interpretation. To
obtain a probabilistic model one has to choose a set of pos-
sible worlds and assign types and probabilities to them such
that the polynomial inequalities in the PKB are satisfied. As
shown in FHM only a polynomial number of types is needed
to construct a model. Based on the types and the PKB, a sys-
tem of polynomial inequalities can be constructed in a way
that a solution of this system, if it exists, provides the prob-
abilities we can assign to the types. Thus, the decision pro-
cedure computes KB-types by checking consistency of KBs
formulated in ALCO which is in EXPTIME, and it checks
systems of polynomial inequalities for satisfiability over the
real numbers which can be done in PSPACE (Canny 1988).
In this way, the PSPACE procedure from FHM for the propo-
sitional case extends to a EXPTIME procedure for our PKBs.

EXPTIME-hardness follows from the hardness of decid-
ing consistency of an ordinary non-probabilistic KB. Let ϕ
be a KB. It holds that ϕ is consistent iff the PKB

(Bϕ) > 0

is consistent. We obtain the following result.
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Theorem 8. The problem of checking consistency for PKBs
is EXPTIME-complete.

Stochastic Actions and Projection Queries
In this section, we define syntax and semantics of an action
theory and define a query language for talking about degrees
of belief after actions.

Action Description
Similar to a STRIPS-like language the domain designer pro-
vides a complete add- and delete-list of literals for each ac-
tion. In our case, KBs in ALCO are used as effect condi-
tions. The semantics of an action is then defined in terms of
interpretation updates.

First, the notion of effect descriptions is defined.
Definition 9. Let A ∈ NC be a concept name, r ∈ NR a role
name, o, o′ ∈ NI individual names and ϕ a KB. An effect
description (effect for short) has one of the following forms

ϕ . 〈A(o)〉+, ϕ . 〈r(o, o′)〉+ (called add-effect),

ϕ . 〈A(o)〉−, ϕ . 〈r(o, o′)〉− (called delete-effect),

where ϕ is called effect condition. In case the effect condi-
tion ϕ is a tautology like for example> v >, then the effect
description is called unconditional and is written without the
effect condition. We use the symbol l to denote an uncondi-
tional effect.

In an action theory, we distinguish between a primitive
action that is deterministic and is associated with a set of ef-
fects, and a stochastic action that is associated with a finite
set of primitive actions describing all possible outcomes of
this stochastic action. In addition, each stochastic action is
equipped with a probability distribution over the set of out-
comes.
Definition 10. An action theory is a tuple of the form

Σ = (AP,AS,Eff,Out, (`α)α∈AS
),

where
• AP is a finite set of primitive action names;
• AS is a finite set of stochastic action names;
• Eff maps each primitive action name α ∈ AP to a finite

set of effects Eff(α);
• Out maps each stochastic action α ∈ AS to a set of prim-

itive actions Out(α) ⊆ AP, and
• for each α ∈ AS there is a probability distribution `α over

Out(α).
We use the following notational conventions. The sym-

bols (possibly indexed or primed) α, β stand for primitive
action names, the bold symbols α,β for stochastic action
names, and the symbols σ and σ for a sequence of primitive
actions and stochastic actions, respectively. In an action the-
ory Σ, we assume that for each α ∈ AP and for each α ∈ AS

the sets Eff(α) and Out(α), respectively, are explicitly pro-
vided. For each element α ∈ Out(α) the likelihood value as
a rational number, denoted by `α(α), is also explicitly given.
Note that a stochastic action α can also be deterministic in
case Out(α) is a singleton set.

Example 11. We extend the representation of the domain
from Example 7 with describing some dynamic aspects us-
ing an action theory Σ.

Using the two primitive action names eat(john, f1) and
eat(john, f2) we describe how the health status of john
might be affected by eating the food with the following ef-
fect set:

Eff(eat(john, f1)) := {ϕ . 〈Healthy(john)〉−}
with ϕ := (∃has-allergy-to.∃in.{f1})(john). If john has an
allergy to something that is an ingredient of f1, then john is
no longer healthy and nothing else is changed. Otherwise,
if ϕ is not satisfied, then nothing is changed. A stochastic
version of the action where it is uncertain whether an allergic
reaction actually occurs or nothing happens is defined for the
stochastic action name s-eat(john, f1) with

Out(s-eat(john, f1)) := {eat(john, f1), no-eff},
where Eff(no-eff) := ∅ and the likelihood of a possible
allergic reaction is `s-eat(eat(john, f1)) := 0.7. The action
eat(john, f2) is defined analogously. There is also a deter-
ministic action for adding an ingredient to some food with

Eff(add-ingr(f1, peanut)) := {〈in(peanut, f1)〉+}.
Thus, the action adds the pair of individuals to the interpre-
tation of in and changes nothing else.

Projection
To formulate queries about the agent’s probabilistic belief
after the execution of an action sequence an action modality
J·KΣ is written in front of belief terms. We write

JσKΣBϕ

to denote the probabilistic degree of belief in ϕ after do-
ing the action sequence σ described in the action theory Σ.
Those expressions can then be used to formulate dynamic
belief inequalities as in the static case.
Definition 12. Let Σ = (AP,AS,Eff,Out, (`α)α∈AS

) be an
action theory. A dynamic belief term w.r.t. Σ, denoted by
BΣ, is built according to the following syntax rule

BΣ ::= 0 | 1 | JσKΣBϕ | BΣ + BΣ | BΣ × BΣ,

where ϕ stands for an objective KB and σ ∈ AS
∗ for a se-

quence of stochastic action names from Σ. With dynamic
belief terms as primitives dynamic belief inequalities over Σ
and dynamic probabilistic KBs (dPKB for short) over Σ are
defined accordingly as for the static case in Definition 4.

The semantics of the actions enclosed in the modality J·KΣ
is defined in terms of updates of probabilistic interpreta-
tions. We start with defining how a non-probabilistic inter-
pretation is updated given a set of effect descriptions.
Definition 13. Let I = (∆I , ·I) be an interpretation and L
a set of unconditional effects. The update of I with L is an
interpretation denoted by IL and is defined as follows
• ∆IL := ∆I ;
• AIL

:= AI \ {aI | 〈A(a)〉− ∈ L} ∪ {bI | 〈A(b)〉+ ∈ L}
for all A ∈ NC;
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• rIL

:= rI \ {(aI , bI) | 〈r(a, b)〉− ∈ L} ∪
{(cI , dI) | 〈r(c, d)〉+ ∈ L} for all r ∈ NR

• aIL

:= aI for all a ∈ NI.
Let E be a set of (possibly conditional) effects. The update
of I with E, denoted by IE, is given by the update IE(I) with

E(I) := {l | (ϕ . l) ∈ E, I |= ϕ}.

The semantics respects the frame assumption: the domain
designer is only required to describe all the changes using ef-
fect descriptions whereas the non-changes are kept implicit.

The next step is to define how a stochastic action updates
a probabilistic interpretation.
Definition 14. Let Σ = (AP,AS,Eff,Out, (`α)α∈AS

) be an
action theory, α ∈ AS a stochastic action name and

I = (∆,W, (Iw)w∈W , µ)

a probabilistic interpretation. The update of I with α w.r.t.
Σ is a probabilistic interpretation of the form

IΣ(α) = (∆,Wα, (Jw)w∈Wα , µα)

such that the following conditions are satisfied
• Wα =

⋃
w∈W
{w[α] | α ∈ Out(α)};

• for each w[β] ∈ Wα (with w ∈ W and β ∈ Out(α)) we
have

Jw[β] = (Iw)
Eff(β)

;

• for each w[β] ∈ Wα (with w ∈ W and β ∈ Out(α)) we
have

µα({w[β]}) = `α(β)× µ({w}).
Let σ ∈ AS

∗ be a sequence of stochastic action names. The
update of I with σ w.r.t. Σ, denoted by IΣ(σ), is defined by
induction on the length of σ in the obvious way.

For each possible world w ∈ W , before executing α and
each possible outcome α ∈ Out(α) of α there is a new
possible world denoted by w[α] after doing α. The (non-
probabilistic) interpretation associated to w[α] is obtained
by updating the interpretation associated to w with the ef-
fects of α. The probability of w given by µ is split up among
the successor worlds according to the likelihood of the re-
spective outcome.

Let α1α2 · · ·αn ∈ (AP)∗ be a sequence of primitive ac-
tion names and w ∈ W a possible word in some prob-
abilistic interpretation. We write w[α1α2 · · ·αn] to denote
the world after doing the sequence α1α2 · · ·αn instead of
w[α1][α2] · · · [αn]. Note that the update does not change the
domain.

Now, we are ready to define the semantics of dynamic
probabilistic KBs over action theories. To evaluate a dy-
namic belief term of the form JσKΣBϕ in a probabilistic
interpretation I, we evaluate Bϕ in its corresponding up-
dated version IΣ(σ).
Definition 15. Let Σ = (AP,AS,Eff,Out, (`α)α∈AS

) be
an action theory, BΣ a dynamic belief term over Σ and
I = (∆,W, (Iw)w∈W , µ) a probabilistic interpretation. By
induction on the structure of BΣ we define a function ·I that

maps BΣ to its degree of belief in I denoted by (BΣ)
I. If BΣ

is of the form JσKΣBϕ for some σ ∈ AS
∗ and some KB ϕ,

then we define

(JσKΣBϕ)I := (Bϕ)I
Σ(σ)

. (1)

The remaining cases are as in Definition 6. Likewise, for
a dPKB ψ over Σ, the definition of satisfaction of ψ in I,
denoted by I |=Σ ψ, extends to the dynamic case in the
obvious way.

Next, we are ready to define the projection problem.

Definition 16. Let Σ = (AP,AS,Eff,Out, (`α)α∈AS
) be an

action theory, K a PKB representing the initial beliefs and ψ
a dPKB over Σ representing the projection query.

We say that ψ is satisfiable w.r.t. K iff there exists a prob-
abilistic interpretation I such that I |= K and I |=Σ ψ. We
say that ψ is entailed by K, denoted by K |=Σ ψ iff ev-
ery probabilistic interpretation I with I |= K also satisfies
I |=Σ ψ.

It holds that ψ is entailed by K iff ¬ψ is not satisfiable
w.r.t. K. Thus, we focus on the satisfiability problem in the
following and call it projection problem.

Example 17. For an ontology T (given as a conjunction of
concept inclusions) that is a known part of the initial PKB
and an action sequence σ one might want to check whether
the agent’s belief in the ontology is preserved after executing
σ using the query

(JσKΣ(BT )) = 1.

Next, let K be the PKB from Example 7 and Σ the action
theory from Example 11. For john it is more healthy to eat
f1 than f2:

K |=Σ (Jeat(john, f1)KΣB) > (Jeat(john, f2)KΣB)

with B := B(Healthy(john)), because in K it is more likely
that f1 does not contain any allergens that can cause the ef-
fect condition of the eat action to be true. This might change
if peanut is added as an ingredient to f1. We can for example
formulate that

JσKΣB(¬Healthy(john)) ≥ 0.6

with σ = add-ingr(f1, peanut) s-eat(john, f1).

Using projection queries one can directly compare the de-
grees of belief after different action sequences. This is useful
to represent the behavior of an agent that has to make a de-
cision among different action alternatives. It is possible to
formulate both qualitative and quantitative statements.

Deciding the Projection Problem
In this section, we show a 2EXPTIME upper bound for the
projection problem.

In the reasoning about actions literature there are two ma-
jor approaches for solving projection. One is called progres-
sion where one updates the initial KB such that it only talks
about the situation after doing the given action sequence
and then checks whether the projection query is entailed by
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the progressed KB. The reversed method is called regres-
sion that rewrites the projection query through the action se-
quence into a query about the initial situation and then an-
swers it w.r.t. the initial KB. The problem with pure regres-
sion (as it can be done with axioms in a basic action theory
of the Situation Calculus (Reiter 2001)) is that due to condi-
tional effects it can cause an avoidable exponential blow-up
of the query even in the deterministic non-stochastic case
with a single action sequence (Gu and Soutchanski 2010).
Pure progression is also problematic in our setting because
the query possibly mentions different dynamic belief terms
involving different action sequences that need to be evalu-
ated in the same probabilistic interpretation.

To deal with these problems we use a combined approach
with two steps that are briefly outlined in the following be-
fore we discuss them in more detail. The overall goal is to
reduce the projection problem to the consistency problem
for static PKBs.

1. We first put aside the probabilities in the input of the
problem and view stochastic actions as non-deterministic
choices between primitive deterministic actions that in
turn describe updates on non-probabilistic interpretations.
The execution of a sequence of non-deterministic updates
in an interpretation then yields a tree of interpretations
with one node for each execution step. Those interpreta-
tion trees are encoded into a single model of a tree-shaped
reduction ALCO-KB that is constructed by introducing
time-stamped copies for each relevant subformula in the
input and for each execution step. The construction is very
similar to the reduction approach that was first introduced
in (Baader et al. 2005) with the difference that we now
deal with several trees of updates rather than just one se-
quence. This step corresponds to the progression part of
our approach.

2. To deal with the probabilities in the initial belief state we
simply take the initial PKB and replace each objective
subformula in it by the copy that refers to the root of the
execution tree. With the projection query we proceed as
follows: each dynamic belief term of the form JσKΣBϕ
in the query is replaced by a sum of static belief terms.
There is one static belief term for each leaf of the exe-
cution tree that uses the corresponding copies at the leaf.
Each of the static belief terms in the sum has a factor that
is given by the likelihood of the primitive action sequence
leading to that leaf. This way we split up the initial prob-
ability among the different possible outcomes. The over-
all construction yields a static PKB that is consistent iff
the projection query is satisfiable w.r.t. the initial PKB K.
This problem is then decidable.

Construction of the Reduction KB
For a given action theory Σ = (AP,AS,Eff,Out, (`α)α∈AS

),
initial PKB K and projection query ψ (dPKB over Σ) we
construct a PKB that is consistent iff ψ is satisfiable w.r.t.K.
In this subsection, we describe the construction of an objec-
tiveALCO-KB Trees(Σ,K, ψ) encoding trees of interpreta-
tions.

First, some auxiliary notions are introduced. With Seq(ψ)

we denote the set of all sequences of stochastic action names
mentioned in ψ. Let σ ∈ (AS)∗ be a sequence of length at
least one. We define the set of outcomes of σ, denoted by
Out(σ), as a subset of (AP)∗ by induction on the length of
σ. In case σ is a single action, Out(σ) is already defined in
the action theory. For a sequence longer than one we have

Out(σ′ ·α) := {σ · α | σ ∈ Out(σ′), α ∈ Out(α)}.
Let σ ∈ (AP)∗ be a sequence of primitive action names.
With pref(σ) we denote the set of all prefixes of σ including
the empty sequence denoted by ε. Let σ be a sequence of
stochastic action names. We define

Pref(σ) :=
⋃

σ∈Out(σ)

pref(σ).

Thus, for each σ ∈ Seq(ψ) we obtain a tree Pref(σ) where
the nodes are sequences of primitive deterministic actions.

With Ind we denote the finite set of individual names men-
tioned in Σ and in ψ and with sub(Σ,K, ψ) we denote the
set of all subconcepts occurring in the input, i.e. in K, in
some effect condition of some action from AP and in ψ.

We now adopt the reduction approach introduced in
(Baader et al. 2005). For each possible execution step, each
relevant concept name, role name and subconcept a new
name is introduced as follows.
• For each concept nameA occurring in Σ,K, orψ and each
ρ ∈ Pref(σ) for some σ ∈ Seq(ψ) there is a new name
A(ρ). The name A(ε) represents the initial extension of A
andA(ρ) with ρ 6= ε represents the set of individual names
from Ind that belong to A after executing ρ. Similarly, for
each role name r mentioned in the input a new role name
r(ρ) is introduced.

• For each C ∈ sub(Σ,K, ψ) and each ρ ∈ Pref(σ) for
some Seq(ψ) a new concept name T (ρ)

C is introduced rep-
resenting the extension of C after an update with the ef-
fects of ρ.

• A new concept name N is introduced representing the set
of all individual names from Ind.

Let ϕ be a KB in ALCO that mentions only concepts from
sub(Σ,K, ψ) and ρ ∈ Pref(σ) for some Seq(ψ) a sequence.
With

ϕ(ρ)

we denote the KB that is obtained from ϕ by replacing each
concept C occurring in ϕ by T (ρ)

C .
The new names of the form T

(ρ)
C are defined in a KB

named ϕcopy which is a conjunction of CIs defined in the
same fashion as in (Baader et al. 2005). For example, for a
concept name A the definition (as a conjunction of two CIs)
is as follows:

T
(ρ)
A ≡

(
N uA(ρ)

)
t
(
¬N uA(ε)

)
.

Thus, we make use of the fact that only named individuals
are changed by primitive actions. The other definitions can
be found in the technical report.

To represent the updates caused by an action execution
we define for each ρ · α ∈ Pref(σ) for some σ ∈ Seq(ψ) a
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KB as follows. For add-effects on a role name we have the
axiom ∧

(ϕ.〈P (a,b)〉+)∈Eff(α)

ϕ(ρ) →
(
r(ρ·α)(a, b)

)
.

The KB denoted by ϕρ·αeff consists of such a conjunct for each
case of add-effects and delete-effects on role names and con-
cept names. In a KB named ϕρ·αmin for each ρ · α ∈ Pref(σ)
the frame assumption is explicitly encoded for all the named
individuals in the input. To represent the tree of all possi-
ble outcomes of the sequences in Seq(ψ) we now obtain the
following KB:

Trees(Σ,K, ψ) :=ϕcopy ∧∧
σ∈Seq(ψ)

∧
ρ·α∈Pref(σ)

(
ϕρ·αeff ∧ ϕ

ρ·α
min

)
.

(2)

To show some properties of Trees(Σ,K, ψ) we need an-
other auxiliary notion regarding the execution of a sequence
of primitive actions. Let I be an interpretation and σ ∈
(AP)∗ a sequence of actions. With Eff(I, σ) we denote the
set of unconditional effects we obtain if σ is executed in I.
The set is defined by accumulating the individual sets of ef-
fects.
Lemma 18. Let σ ∈ (AS)∗ be a sequence of stochastic ac-
tion names, I = (∆,W, (Iw)w∈W , µ) a probabilistic inter-
pretation and IΣ(σ) = (∆,Wσ, (Jw)w∈Wσ , µσ) the up-
date of I with σ w.r.t. Σ. The following is true. For ev-
ery w[σ] ∈ Wσ with σ ∈ Out(σ) it holds that Jw[σ] =

(Iw)
Eff(Iw,σ).

We now characterize the models of the reduction KB
Trees(Σ,K, ψ). Note that the models of Trees(Σ,K, ψ) are
ordinary non-probabilistic interpretations.
Lemma 19. For every firt-order interpretation of the form
I = (∆I , ·I) there exists an interpretation J = (∆J , ·J )
with J |= Trees(Σ,K, ψ) and ∆J = ∆I such that

IEff(I,ρ) |= ϕ iff J |= ϕ(ρ)

is true for any ρ ∈ Pref(σ) for some σ ∈ Seq(ψ) and
any KB ϕ that mentions only concepts from sub(Σ,K, ψ).
The other direction is true as well: for every interpretation
J = (∆J , ·J ) with J |= Trees(Σ,K, ψ) there exists an
interpretation I = (∆I , ·I) with ∆I = ∆J such that

J |= ϕ(ρ) iff IEff(I,ρ) |= ϕ

is true for any ρ ∈ Pref(σ) for some σ ∈ Seq(ψ) and any
KB ϕ that mentions only concepts from sub(Σ,K, ψ).

Incorporating the Probabilities
In the next step of the reduction, we integrate Trees(Σ,K, ψ)
with the belief inequalities in the initial PKB K of Σ.

Let K be the initial PKB. With K(ε) we denote the PKB
that is obtained from K by replacing each belief term Bϕ
occurring in K with the belief term B(ϕ(ε)). Furthermore,
we define

Init(K) := K(ε) ∧B(Trees(Σ,K, ψ)) = 1.

Next, we rewrite the projection query.
The likelihood distribution `α is defined as a probability

distribution over Out(α) for each single stochastic action
α ∈ AS. First, we define inductively a corresponding distri-
bution `σ over Out(σ) for a sequence σ. In case σ is a single
action `σ is already defined. For each σ′ · α ∈ Out(σ′ · α)
we have

`σ′·α(σ′ · α) := `σ′(σ′)× `α(α).

Let ψ be the projection query (dPKB over Σ). With

Red(ψ)

we denote the PKB that is obtained fromψ by replacing each
occurring dynamic belief term of the form JσKΣBϕ by the
following static belief term∑

σ∈Out(σ)

`σ(σ)×B
(
ϕ(σ)

)
.

The next lemma formulates the correctness.
Lemma 20. ψ is satisfiable w.r.t. K iff Init(K) ∧ Red(ψ) is
consistent.

Proof. We only sketch the proof of one direction. Assume
that ψ is satisfiable w.r.t.K. By definition there exists a prob-
abilistic interpretation I = (∆,W, (Iw)w∈W , µ) such that

I |= K and I |=Σ ψ.

Using Lemma 19 it can be shown that there exists a proba-
bilistic interpretation

I′ = (∆,W, (Yw)w∈W , µ)

that differs from I only in the non-probabilistic interpre-
tations associated to the possible worlds such that I′ |=
Init(K) is true and for all w ∈ W , all KBs ϕ occurring in ψ
and all σ ∈ Out(σ) it holds that

Yw |= ϕ(σ) iff (Iw)Eff(Iw,σ) |= ϕ. (3)

Let JσKΣBϕ be a dynamic belief term occurring in ψ. In the
following we show that

(JσKΣBϕ)
I

=

 ∑
σ∈Out(σ)

`σ(σ)×B
(
ϕ(σ)

)I′

is true which then implies I′ |= Init(K) ∧ Red(ψ). Let

IΣ(σ) = (∆,Wσ, (Jw)w∈Wσ , µσ)

be the update of I with σ w.r.t. Σ. From Lemma 18 it follows
that

Wσ = {w[σ] | w ∈W,σ ∈ Out(σ)}. (4)

For everyw[σ] ∈Wσ with σ ∈ Out(σ) andw ∈W it holds
that

Jw[σ] = (Iw)Eff(Iw,σ) ∧ µσ({w[σ]}) = `σ(σ)× µ({w}).
(5)

It holds that

(JσKΣBϕ)
I

= (Bϕ)
IΣ(σ)
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= µσ ({w ∈Wσ | Jw |= ϕ})

= µσ

( ⋃
σ∈Out(σ)

{w[σ] ∈Wσ | Jw[σ] |= ϕ}

)
with (4)

=
∑

σ∈Out(σ)

µσ
(
{w[σ] ∈Wσ | Jw[σ] |= ϕ}

)
=

∑
σ∈Out(σ)

`σ(σ)×µ
(
{w ∈W | (Iw)Eff(Iw,σ) |= ϕ}

)
with

(5)
=

∑
σ∈Out(σ)

`σ(σ)× µ
(
{w ∈W | Yw |= ϕ(σ)}

)
with (3)

=
∑

σ∈Out(σ)

`σ(σ)×
(
B
(
ϕ(σ)

))I′

=

( ∑
σ∈Out(σ)

`σ(σ)×B
(
ϕ(σ)

))I′

To decide the projection problem we need to compute the
PKB Init(K) ∧ Red(ψ) and check it for consistency.

The size of the input of the projection problem is the sum
of the size of the action theory, the length of the action se-
quence and the length of the projection query. The reduction
KB Init(K) ∧ Red(ψ) is at most exponentially large in the
size of the input. It consists of exponentially many symbols
in the length of the action sequence. Therefore, the consis-
tency check requires double-exponential time.

Theorem 21. Projection is decidable in 2EXPTIME.

In case of deterministic actions, i.e. if Out(α) is a sin-
gleton set for each stochastic action α, then the reduction
knowledge base Init(K)∧Red(ψ) is of polynomial size and
the projection problem can be decided in EXPTIME.

Corollary 22. The projection problem with only determin-
istic actions is EXPTIME-complete.

Note that for the reduction linear belief inequalities are
sufficient.

Hardness
In this section, we show that the projection problem is
2EXPTIME-hard. We reduce the problem of checking con-
sistency of anALCOV-TBox that extendsALCO with nom-
inal schemas (Krötzsch et al. 2011; Krötzsch and Rudolph
2014) to the projection problem. A nominal schema looks
like an ordinary nominal concept but with a variable name
in place of an individual that is called schema variable.
The semantics is defined in terms of substitutions for a
given finite set of individual names. The problem of check-
ing whether a ALCOV-TBox is consistent is 2EXPTIME-
complete (Krötzsch and Rudolph 2014). In our reduction to
the projection problem, we use primitive actions that mim-
ick variable substitutions and the stochastic actions (one
for each schema variable) choose non-deterministically a
possible grounding. With the projection query we then ask
whether the TBox is known after doing the sequence of
stochastic actions.

Reasoning with Nominal Schemas Let NV be a count-
ably infinite set of variable names. An ALCOV-concept C
is of the form

C ::= A | {t} | ¬C | C u C | ∃r.C

with t ∈ NV ∪NI. Let C be anALCOV-concept. A variable
mapping ν is a function of the form ν : NV → NI. With Cν
we denote theALCO-concept obtained fromC by replacing
each variable name x in C by the individual ν(x).

An ALCOV-TBox is a finite set of CIs with ALCOV-
concepts. Let T be an ALCOV-TBox and Var the finite set
of all variable names mentioned in T and Ind a finite set of
individual names. Furthermore, let Map(Var, Ind) be the set
of all variable mappings of the form ν : NV ∩ Var → NI

satisfying ν(x) ∈ Ind for all x ∈ Var. The grounding of T
w.r.t. Ind, denoted by ground(T , Ind) is given by

ground(T , Ind) := {Cν v Dν |C v D ∈ T ,
ν ∈ Map(Var, Ind)}.

We say that T is consistent w.r.t. Ind iff ground(T , Ind) is
consistent. Note that the set ground(T , Ind) is exponentially
large in the size of T and Ind. In (Krötzsch and Rudolph
2014), it is shown that nominal schemas raise the complexity
of consistency by one exponential.
Theorem 23 ((Krötzsch and Rudolph 2014)). Deciding con-
sistency of an ALCOV-TBox w.r.t. a finite set of individual
names is 2EXPTIME-complete.

Reduction to the Projection Problem We reduce consis-
tency of an ALCOV-TBox w.r.t. a finite set of individual
names to the projection problem.

Let T be aALCOV-TBox, Var = {x1, . . . , xn} for some
n > 0 the finite set of variable names mentioned in T and
Ind = {a1, . . . , am} for some m > 0 a finite set of individ-
ual names.

We define an action theory Σ and an initial PKB as
follows. First, we introduce a set of new concept names
{Ax1

, . . . , Axn
} not mentioned in T , one for each variable

name in Var. Let TA be the TBox that is obtained from T by
replacing each occurrence of a nominal schema {xi} with
i ∈ {1, . . . , n} by the concept name Axi . The initial PKB K
is given by

(BTA) = 1 ∧
∧
x∈Var

B (Ax v {a1} t · · · t {am}) = 1

We use the following set of primitive action names

AP := {α0} ∪ {αajxi
| j ∈ {1, . . . ,m}, i ∈ {1, . . . , n}}.

There is one action α0 for initialization and one action αax
for each pair (a, x) ∈ Ind × Var. The effects are given as
follows

Eff(α0) := {〈Axi
(aj)〉− | xi ∈ Var, aj ∈ Ind}

Eff(αajxi
) := {〈Axi

(aj)〉+} for all (aj , xi) ∈ Ind× Var.

After executing α0 in a model of K all concept names Ax
are interpreted as empty sets. With the execution of αax we
assign individual a to the variable x by making Ax(a) true
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and change nothing else in the interpretation. Therefore, it
is the frame assumption for action effects that allows us to
simulate variable substitutions using primitive actions.

We use the following set of stochastic action names

AS := {α0} ∪ {αx1
, . . . ,αxn

}.

There is one stochastic action for each variable name. The
outcomes are defined as follows

Out(α0) := {α0}
Out(αx) := {αa1

x , . . . α
am
x } for each x ∈ Var.

The likelihood distribution `αx is a uniform distribution
for each x ∈ Var. Executing a stochastic action αx with
x ∈ Var means non-deterministically choosing an assign-
ment for the variable x. Since the outcome of the actions αx
is unknown, all possible groundings are present in the belief
state after executing the action sequence. It is now straight-
forward to show that

Lemma 24. T is consistent w.r.t. Ind iff

Jα0αx1 · · ·αxnKΣ(BTA) = 1

is satisfiable w.r.t. K.

Thus, we get the following result.

Theorem 25. The projection problem with stochastic ac-
tions is 2EXPTIME-complete.

From the reduction it follows that the hardness result al-
ready holds for a purely qualitative setting. The only be-
lief equality used is of the form B(·) = 1 that can be
viewed as an S5 knowledge modality. Obviously, the proof
would also work for non-deterministic but non-probabilistic
actions where the outcome is uncertain for the agent. Fur-
thermore, for the reduction unconditional effects on concept
names that are used to simulate variable substitutions are
sufficient.

Conclusion
We have studied the computational properties of the proba-
bilistic projection problem in an action language based on
the DL ALCO with stochastic actions and for projection
queries where one can express both qualitative and quan-
titative statements about probabilistic beliefs. Our results
show that in presence of beliefs and probabilistic uncertainty
about the outcome of actions the complexity raises from
EXPTIME in the deterministic case to 2EXPTIME. In case
of non-probabilistic deterministic actions degrees of belief
in the representation of the initial belief state and in the pro-
jection query are essentially for free complexity-wise. How-
ever, in presence of probabilistic actions a simple knowledge
modality is sufficient to cause a jump in complexity. Essen-
tially, it is the combination of non-deterministic actions, be-
lief modalities and the strong frame assumption on action
effects that makes projection hard.

The 2EXPTIME-hardness proof is done by reducing con-
sistency of TBoxes with nominal schemas to projection. In
(Krötzsch et al. 2011; Krötzsch and Rudolph 2014) it has
been shown that one can encode exponentially large TBoxes

using nominal schemas. Thus, the exponential blow-up of
the belief state representation in the length of the action se-
quence seems to be unavoidable in general. However, if, for
instance, the lookahead depth of the agent is limited to some
fixed depth that is not considered as part of the input, then
the complexity does not increase.

Decision procedures for probabilistic projection have al-
ready been devised for propositional languages. Kooi shows
decidability of probabilistic dynamic epistemic logic (Kooi
2003) in a multi-agent setting and provides a polynomial
space lower bound and an exponential space upper bound for
the validity problem. Recently, Lang and Zanuttini (2015)
have shown that the problem of verifying propositional
probabilistic knowledge-based programs w.r.t. a finite hori-
zon (for the single-agent case) is decidable in polynomial
space. In (Rens, Meyer, and Lakemeyer 2014) a dynamic
logic for specifying and reasoning about MDPs is proposed.
Decidability is shown but the complexity is not discussed.

A Situation Calculus in a first-order modal logic with
modalities for actions, degrees of belief and introspection
has been introduced in (Belle and Lakemeyer 2017). In order
to formalize introspection they propose a general semantics
without the restriction to only discrete probability distribu-
tions, which is an assumption we have made here and which
is present in Prob-ALC and Halpern’s logic (Halpern 1990)
as well. However, how to perform effective reasoning in the
language of Belle and Lakemeyer has not been studied in
their paper.

For the study of the impact of probabilistic uncertainty
about action outcomes on the complexity of the projection
problem in this work, a relatively simple action language
was already sufficient. To increase the expressiveness for use
in an high-level programming language it would be however
interesting to add for example context-sensitive likelihood
distributions on the outcome of a stochastic actions or a rep-
resentation of uncertain observations to model perception of
an agent. Furthermore, verification of action programs with
loops in a setting with probabilistic beliefs is an interesting
topic for future work.
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