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Abstract

The classical approach for repairing a Description Logic on-
tology O in the sense of removing an unwanted consequence
α is to delete a minimal number of axioms from O such that
the resulting ontology O′ does not have the consequence α.
However, the complete deletion of axioms may be too rough,
in the sense that it may also remove consequences that are ac-
tually wanted. To alleviate this problem, we propose a more
gentle notion of repair in which axioms are not deleted, but
only weakened. On the one hand, we investigate general prop-
erties of this gentle repair method. On the other hand, we pro-
pose and analyze concrete approaches for weakening axioms
expressed in the Description Logic EL.

Introduction
Description logics (DLs) (Baader et al. 2017) are a family
of logic-based knowledge representation formalisms, which
are employed in various application domains, such as natu-
ral language processing, configuration, databases, and bio-
medical ontologies, but their most notable success so far
is the adoption of the DL-based language OWL1 as stan-
dard ontology language for the Semantic Web. As the size
of DL-based ontologies grows, tools that support improv-
ing the quality of such ontologies become more important.
DL reasoners2 can be used to detect inconsistencies and to
infer other implicit consequences, such as subsumption and
instance relationships. However, for the developer of a DL-
based ontology, it is often quite hard to understand why
a consequence computed by the reasoner actually follows
from the knowledge base, and how to repair the ontology in
case this consequence is not intended.

Axiom pinpointing (Schlobach and Cornet 2003) was
introduced to help developers or users of DL-based on-
tologies understand the reasons why a certain consequence
holds by computing so-called justifications, i.e., minimal
subsets of the ontology that have the consequence in ques-
tion. Black-box approaches for computing justifications
such as (Schlobach et al. 2007; Kalyanpur et al. 2007;
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1See https://www.w3.org/TR/owl2-overview/ for its most re-
cent edition OWL 2.

2See http://owl.cs.manchester.ac.uk/tools/list-of-reasoners/.

Baader and Suntisrivaraporn 2008) use repeated calls of ex-
isting highly-optimized DL reasoners for this purpose, but
it may be necessary to call the reasoner an exponential
number of times. In contrast, glass-box approaches such as
(Baader and Hollunder 1995; Schlobach and Cornet 2003;
Parsia, Sirin, and Kalyanpur 2005; Meyer et al. 2006) com-
pute all justifications by a single run of a modified, but usu-
ally less efficient reasoner.

Given all justifications of an unwanted consequence, one
can then repair the ontology by removing one axiom from
each justification. However, removing complete axioms may
also eliminate consequences that are actually wanted. For
example, assume that our ontology contains the following
terminological axioms:

Prof v ∃employed .Uni u ∃enrolled .Uni ,
∃enrolled .Uni v Studi .

These two axioms are a justification for the incorrect con-
sequence that professors are students. While the first axiom
is the culprit, removing it completely would also remove the
correct consequence that professors are employed by a uni-
versity. Thus, it would be more appropriate to replace the
first axiom by the weaker axiom Prof v ∃employed .Uni .
This is the basic idea underlying our gentle repair approach.
In general, in this approach we weaken one axiom from each
justification such that the modified justifications no longer
have the consequence.

Approaches for repairing ontologies while keeping more
consequences than the classical approach based on com-
pletely removing axioms have already been considered in
the literature. On the one hand, there are approaches that
first modify the given ontology, and then repair this modified
ontology using the classical approach. In the work by Hor-
ridge, Parsia, and Sattler (2008), a specific syntactic struc-
tural transformation is applied to the axioms in an ontol-
ogy, which replaces them by sets of logically weaker ax-
ioms. More recently, Du, Qi, and Fu (2014) have general-
ized this idea by allowing for different specifications of the
structural transformation of axioms. They also introduce a
specific structural transformation that is based on specializ-
ing left-hand sides and generalizing right-hand sides of ax-
ioms in a way that ensures finiteness of the obtained set of
axioms. Closer to our gentle repair approach is the one of
Lam et al. (2008), which adapts the tracing technique from
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Baader and Hollunder (1995) to identify not only the axioms
that cause a consequence, but also the parts of these axioms
that are actively involved in deriving the consequence. This
provides them with information for how to weaken these ax-
ioms. In (Troquard et al. 2018), repairs are computed by
weakening axioms with the help of refinement operators
(Lehmann and Hitzler 2010).

In this paper, we introduce a general framework for repair-
ing ontologies based on axiom weakening. This framework
is independent of the concrete method employed for weak-
ening axioms and of the concrete ontology language used to
write axioms. It only assumes that ontologies are finite sets
of axioms, that there is a monotonic consequence operator
defining which axioms follow from which, and that weaker
axioms have less consequences. However, all our examples
will consider ontologies expressed in the light-weight DL
EL. Our first important result is that, in general, the gentle
repair approach needs to be iterated, i.e., applying it once
does not necessarily remove the consequence. This problem
has actually been overlooked in (Lam et al. 2008), which
means that their approach does not always yield a repair.
Our second result is that at most exponentially many itera-
tions are always sufficient to reach a repair. The authors of
(Troquard et al. 2018) had already realized that iteration is
needed, but they did not give an example explicitly demon-
strating this, and they had no termination proof. Instead of
allowing for arbitrary ways of weakening axioms, we then
introduce the notion of a weakening relation, which restricts
the way in which axioms can be weakened. Subsequently,
we define conditions on such weakening relations that equip
the gentle repair approach with better algorithmic properties
if they are satisfied. Finally, we address the task of defining
specific weakening relations for the DL EL. After showing
that two quite large such relations do not behave well, we
introduce two restricted relations, which are based on gener-
alizing the right-hand sides of axioms semantically or syn-
tactically. Both of them satisfy most of our conditions, but
from a complexity point of view the syntactic variant be-
haves considerably better. Due to space constraints, some of
the proofs of our results cannot be given here. They can be
found in (Baader et al. 2018).

Basic Definitions
In the first part of this section, we introduce basic notions
from DLs to equip us with concrete examples for how on-
tologies and their axioms may look like. In the second
part, we provide basic definitions regarding ontology repair,
which are independent of the ontology language these on-
tologies are written in.

Description Logics
A wide range of DLs of different expressive power have
been investigated in the literature. Here, we only introduce
the DL EL, for which reasoning is tractable (Brandt 2004).

Let NC and NR be mutually disjoint sets of concept and
role names, respectively. Then EL concepts over these names
are constructed from these names using the top concept (>),
conjunction (C uD), and existential restriction (∃r.C).

The size of an EL concept C is the number of occurrences
of > as well as concept and role names in C, and its role
depth is the maximal nesting of existential restrictions. If S
is a finite set of EL concepts, then we denote the conjunction
of these concepts as

d
S.

Knowledge is represented using appropriate axioms for-
mulated using concepts, role names and an additional set of
individual names NI . An EL axiom is either a general con-
cept inclusion (GCI) of the form C v D with C,D con-
cepts, or an assertion of the form C(a) (concept assertion)
or r(a, b) (role assertion), with a, b ∈ NI , r ∈ NR, and C a
concept. A finite set of GCIs is called a TBox; a finite set of
assertions is an ABox. An ontology is a finite set of axioms.

The semantics of EL is defined through interpretations
I = (∆I , ·I), where ∆I is a non-empty set, called the do-
main, and ·I is the interpretation function, which maps ev-
ery a ∈ NI to an element aI ∈ ∆I , every A ∈ NC to
a set AI ⊆ ∆I , and every r ∈ NR to a binary relation
rI ⊆ ∆I × ∆I . This function ·I is extended to arbitrary
EL concepts by setting >I := ∆I , (C uD)I := CI ∩DI ,
(∃r.C)I := {e ∈ ∆I | ∃f ∈ CI .(e, f) ∈ rI}.

We say that the interpretation I satisfies the GCI C v D
if CI ⊆ DI ; it satisfies the assertion C(a) and r(a, b), if
aI ∈ CI and (aI , bI) ∈ rI , respectively. It is a model of the
TBox T , the ABox A, and the ontology O, if it satisfies all
the axioms in T , A, and O, respectively. Given an ontology
O, and an axiom α, α is a consequence of O (or O entails α)
if every model of O satisfiesα. In this case, we write O |= α.
The set of all consequences of O is denoted by Con(O). As
shown in (Brandt 2004), consequences in EL can be decided
in polynomial time. The two axioms α, β are equivalent if
Con({α}) = Con({β}).

A tautology is an axiom α such that ∅ |= α, where ∅ is the
ontology that contains no axioms. For example, GCIs of the
form C v > and C v C, and assertions of the form >(a)
are tautologies. We write C v∅ D to indicate that the GCI
C v D is a tautology. In this case we say thatC is subsumed
by D. The concepts C,D are equivalent (written C ≡∅ D)
ifC v∅ D andD v∅ C. The conceptC is strictly subsumed
by D (written C @∅ D) if C v∅ D and C 6≡∅ D.

Repairing Ontologies
For the purpose of this subsection and also large parts of the
rest of this paper, we leave it open what sort of axioms and
ontologies are allowed in general, but we draw our examples
from EL ontologies. We only assume that there is a mono-
tone consequence relation O |= α between ontologies (i.e.,
finite sets of axioms) and axioms, and that Con(O) consists
of all consequences of O.

Assume in the following that the ontology O = Os∪Or is
the disjoint union of a static ontology Os and a refutable on-
tology Or. When repairing the ontology, only the refutable
part may be changed. For example, the static part of the
ontology could be a carefully hand-crafted TBox whereas
the refutable part is an ABox that is automatically gener-
ated from (possibly erroneous) data. It may also make sense
to classify parts of a TBox as refutable, for example if
the TBox is obtained as a combination of ontologies from
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different sources, some of which may be less trustworthy
than others. In a privacy application (Cuenca Grau 2010;
Baader, Borchmann, and Nuradiansyah 2017), it may be the
case that parts of the ontology are publicly known whereas
other parts are hidden. In this setting, in order to hide critical
information, it only makes sense to change the hidden part
of the ontology.
Definition 1. Let O = Os ∪Or be an ontology consisting
of a static and a refutable part, and α an axiom such that
O |= α and Os 6|= α. The ontology O′ is a repair of O w.r.t.
α if Con(Os ∪O′) ⊆ Con(O) \ {α}.

The repair O′ is an optimal repair of O w.r.t. α if there is
no repair O′′ of O w.r.t. α with Con(Os ∪O′) ⊂ Con(Os ∪
O′′). The repair O′ is a classical repair of O w.r.t. α if O′ ⊂
Or, and it is an optimal classical repair of O w.r.t. α if there
is no classical repair O′′ of O w.r.t. α such that O′ ⊂ O′′.

The condition Os 6|= α ensures that O does have a repair
w.r.t.α since obviously the empty ontology ∅ is such a repair.
In general, optimal repairs need not exist.
Proposition 2. There is an EL ontology O = Os ∪Or and
an EL axiom α such that O does not have an optimal repair
w.r.t. α.

Proof. We set α := A(a), Os := T , and Or := A where

T := {A v ∃r.A, ∃r.A v A} and A := {A(a)}.
To show that there is no optimal repair of O w.r.t. α, we
consider an arbitrary repair O′ and show that it cannot be
optimal. Thus, let O′ be such that

Con(T ∪O′) ⊆ Con(O) \ {A(a)}.
Without loss of generality we assume that O′ contains asser-
tions only: if O′ contains a GCI that does not follow from T ,
then Con(T ∪O′) 6⊆ Con(O). This is an easy consequence
of the fact that, in EL, a GCI follows from a TBox together
with an ABox iff it follows from the TBox alone. It is also
easy to see that O′ cannot contain role assertions since no
such assertions are entailed by O. In addition, concept as-
sertions following from T ∪O′ must have a specific form.

Claim: If the assertion C(a) is in Con(T ∪O′), then C does
not contain A.

Proof of claim. By induction on the role depth n of C.
Base case: If n = 0 and A is contained in C, then A is
a conjunct of C and thus C(a) ∈ Con(T ∪ O′) implies
A(a) ∈ Con(T ∪O′), which is a contradiction.
Step case: If n > 0 and A occurs at role depth n in C,
then C(a) ∈ Con(T ∪ O′) implies that there are roles
r1, . . . , rn such that (∃r1. · · · ∃rn.A)(a) ∈ Con(T ∪ O′).
Since Con(T ∪O′) ⊆ Con(O), this can only be the case if
r1 = . . . = rn = r since O clearly has models in which all
roles different from r are empty. Since T contains the GCI
∃r.A v A and rn = r, (∃r1. · · · ∃rn.A)(a) ∈ Con(T ∪O′)
implies (∃r1. · · · ∃rn−1.A)(a) ∈ Con(T ∪ O′). Induction
now yields that this is not possible, which completes the
proof of the claim.

Furthermore, as argued in the proof of the claim, any as-
sertion belonging to Con(O) cannot contain roles other than

r. The same is true for concept names different fromA. Con-
sequently, all assertions C(a) ∈ Con(T ∪O′) are such that
C is built using r and > only. Any such concept C is equiv-
alent to a concept of the form (∃r.)n>.

Since O′ is finite, there is a maximal n0 such that
((∃r.)n0>)(a) ∈ O′, but ((∃r.)n>)(a) 6∈ O′ for all n > n0.
Since (∃r.)n> v (∃r.)m> if m ≤ n, we can assume with-
out loss of generality that O′ = {((∃r.)n0>)(a)}. It is now
easy to show that ((∃r.)n>)(a) 6∈ Con(T ∪O′) if n > n0.
Consequently, if we choose n such that n > n0 and define
O′′ := {((∃r.)n>)(a)}, then Con(T ∪O′) ⊂ Con(T ∪O′′).
In addition, Con(T ∪O′′) ⊆ Con(O) \ {A(a)}, i.e., O′′ is a
repair. This shows that O′ is not optimal. Since we have cho-
sen O′ to be an arbitrary repair, this shows that there cannot
be an optimal repair.

In contrast, optimal classical repairs always exist. One ap-
proach for computing such a repair uses justifications and
hitting sets (Reiter 1987).

Definition 3. Let O = Os ∪ Or be an ontology and α an
axiom such that O |= α and Os 6|= α. A justification for α in
O is a minimal subset J of Or such that Os∪J |= α. Given
justifications J1, . . . , Jk for α in O, a hitting set of these
justifications is a set H of axioms such that H ∩ Ji 6= ∅ for
i = 1, . . . , k. This hitting set is minimal if there is no other
hitting set strictly contained in it.

Note that the condition Os 6|= α implies that justifications
are non-empty. Consequently, hitting sets and thus minimal
hitting sets always exist.

The algorithm for computing an optimal classical repair
of O w.r.t. α proceeds in two steps: (i) compute all justifica-
tions J1, . . . , Jk for α in O; and then (ii) compute a minimal
hitting set H of J1, . . . , Jk and remove the elements of H
from Or, i.e., output O′ = Or \H .

It is not hard to see that, independently of the choice of
the hitting set, this algorithm produces an optimal classical
repair. Conversely, all optimal classical repairs can be gen-
erated this way by going through all hitting sets.

Gentle Repairs
Instead of removing axioms completely, as in the case of
classical repairs, gentle repairs replace them by weaker ax-
ioms.

Definition 4. Let β, γ be axioms. Then γ is weaker than β if
Con({γ}) ⊂ Con({β}).

Alternatively, we could have introduced the notion of
weaker w.r.t the strict part of the ontology, by requiring that
Con(Os ∪ {γ}) ⊂ Con(Os ∪ {β}).3 In this paper, we do
not consider this alternative definition, although most of the
results in this section would also hold w.r.t. it (e.g., Theo-
rem 6). The difference between the two definitions is, how-
ever, relevant in the next section, where we consider con-
crete approaches for how to weaken axioms. If the whole
ontology is refutable, there is of course no difference be-
tween the two definitions.

3Defining weaker w.r.t the whole ontology O does not make
sense since this ontology is possibly erroneous.
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Obviously, the weaker-than relation from Definition 4 is
transitive, i.e., if α is weaker than β and β is weaker than γ,
then α is also weaker than γ. In addition, a tautology is al-
ways weaker than a non-tautology. Replacing an axiom by a
tautology is obviously the same as removing this axiom. We
assume in the following that there exist tautological axioms,
which is obviously true for EL.

Gentle repair algorithm: we still compute all justifica-
tions J1, . . . , Jk for α in O and a minimal hitting set H of
J1, . . . , Jk, but instead of removing the elements of H from
Or, we replace them by weaker axioms. More precisely, if
β ∈ H and Ji1 , . . . , Ji` are all the justifications containing
β, then replace β by a weaker axiom γ such that

Os ∪ (Jij \ {β}) ∪ {γ} 6|= α for j = 1, . . . , `. (1)

Note that such a weaker axiom γ always exists. In fact, we
can choose a tautology as axiom γ. If γ is a tautology, then
replacing β by γ is the same as removing β. Thus, we have
Os ∪ (Jij \ {β}) ∪ {γ} 6|= α due to the minimality of Jij .
In addition, minimality of Jij also implies that β is not a
tautology since otherwise Os ∪ (Jij \ {β}) would also have
the consequence α. In general, different choices of γ yield
different runs of the algorithm.

In principle, the algorithm could always use a tautology
γ, but then this run would produce a classical repair. To ob-
tain more gentle repairs, the algorithm needs to use a strat-
egy that chooses stronger axioms (i.e., axioms γ that are
less weak than tautologies) if possible. In contrast to what
is claimed in the literature (Lam et al. 2008), this approach
does not necessarily yield a repair.

Lemma 5. Let O′ be the ontology obtained from Or by re-
placing all elements of the hitting set by weaker ones such
that (1) is satisfied. Then Con(Os ∪ O′) ⊆ Con(O), but in
general we may still have α ∈ Con(Os ∪O′).

Proof. The definition of “weaker” (Definition 4) obviously
implies that Con(Os ∪O′) ⊆ Con(O).

We give an example where this approach does not produce
a repair. Let O = Os ∪Or for Os = A and Or = T , where
A = {A(a), r(a, a)}, and T = {A v B, ∃r.B v B}, and
let α be the consequence B(a). The only justification for α
is {β = A v B}. The weakening γ = ∃r.A v ∃r.B of β
satisfies (1), but the resulting ontology Os∪(Or\{β})∪{γ}
still implies B(a).

The example from the previous proof shows that applying
the gentle repair approach only once may not lead to a re-
pair. For this reason, we need to iterate this approach, i.e., if
the resulting ontology Os ∪O′ still has α as a consequence,
we again compute all justifications and a hitting set for them,
and then replace the elements of the hitting set with weaker
axioms as described above. This is iterated until a repair is
reached. We can show that this iteration indeed always ter-
minates after finitely many steps with a repair.

Theorem 6. Let O(0) = O
(0)
s ∪ O

(0)
r be a finite ontology

and α an axiom such that O(0) |= α and O
(0)
s 6|= α. Applied

to O(0) and α, the iterative algorithm described above stops

after a finite number of iterations that is at most exponential
in the cardinality of O(0)

r , and yields as output an ontology
that is a repair of O(0)

s w.r.t. α.

Proof. Assume that O(0)
r contains n axioms, and that there

is an infinite run R of the algorithm on input O(0) and α.
Take a bijection `0 between O

(0)
r and {1, . . . , n} that as-

signs unique labels to axioms. Whenever we weaken an ax-
iom during a step of the run, the new weaker axiom inher-
its the label of the original axiom. Thus, we have bijections
`i : O

(i)
r → {1, . . . , n} for all ontologies O

(i)
r considered

during the run R of the algorithm. For i ≥ 0 we define

Si := {K ⊆ {1, . . . , n} |
Os ∪ {β ∈ O

(i)
r | `i(β) ∈ K} |= α},

i.e., Si contains all sets of indices such that the correspond-
ing subset of O(i)

r together with Os has the consequence α.
We claim that Si+1 ⊂ Si. Note that Si+1 ⊆ Si is an im-

mediate consequence of the fact that `i(γ) = j = `i+1(γ′)
implies that γ = γ′ or γ′ is weaker than γ. Thus, it remains
to show that the inclusion is strict. This follows from the
following observations. Since the algorithm does not termi-
nate with the ontology O

(i)
r , we still have Os ∪ O

(i)
r |= α,

and thus there is at least one justification ∅ ⊂ J ⊆ O
(i)
r .

Consequently, the hitting set H used in this step of the al-
gorithm contains an element β of O

(i)
r . When going from

O
(i)
r to O

(i+1)
r , β is replaced by a weaker axiom β′ such that

Os∪(J \{β})∪{β′} 6|= α. But then the set {`i(γ) | γ ∈ J}
belongs to Si, but not to Si+1.

Since S0 contains at most exponentially many sets, the
strict inclusion Si+1 ⊂ Si can happen at most exponentially
often, which contradicts our assumption that there is an infi-
nite run R of the algorithm on input O(0) and α. This shows
termination after exponentially many steps. However, if the
algorithm terminates with output O(i)

r , then Os ∪O(i)
r 6|= α;

otherwise, it would be possible to weaken O
(i)
r into O

(i+1)
r

since it would always be possible to replace the elements of a
hitting set by tautologies, i.e., perform a classical repair.

When computing a classical repair, considering all justifi-
cations and then removing a minimal hitting set of these jus-
tifications guarantees that one immediately obtains a repair.
We have seen in the proof of Lemma 5 that with our gentle
repair approach this need not be the case. Nevertheless, we
were able to show that, after a finite number of iterations of
the approach, we obtain a repair. The proof of termination
actually shows that it is sufficient to weaken only one axiom
of one justification such that the resulting set is no longer
a justification. This motivates the following modification of
our approach:

Modified gentle repair algorithm: compute one justifica-
tions J for α in O and choose an axiom β ∈ J . Replace β
by a weaker axiom γ such that

Os ∪ (J \ {β}) ∪ {γ} 6|= α. (2)
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Clearly, one needs to iterate this approach, but it is easy to
see that the termination argument used in the proof of Propo-
sition 6 also applies here.

Corollary 7. Let O(0) = O
(0)
s ∪ O

(0)
r be a finite ontology

and α an axiom such that O(0) |= α and O
(0)
s 6|= α. Applied

to O(0) and α, the modified iterative algorithm stops after a
finite number of iterations that is at most exponential in the
cardinality of O(0)

r , and yields as output an ontology that is
a repair of O(0)

s w.r.t. α.

An important advantage of this modified approach is that
the complexity of a single iteration step may decrease con-
siderably. For example, for the DL EL, a single justification
can be computed in polynomial time, while computing all
justifications may take exponential time (Baader, Peñaloza,
and Suntisrivaraporn 2007). In addition, to compute a min-
imal hitting set one needs to solve an NP-complete prob-
lem (Garey and Johnson 1979) whereas choosing one axiom
from a single justification is easy. However, as usual, there
is no free lunch: we can show that the modified gentle re-
pair algorithm may indeed need exponentially many itera-
tion steps.4

Proposition 8. There exists a sequence of EL ontologies
O(n) = O

(n)
s ∪ O

(n)
r with O

(n)
s = ∅ and an EL axiom α

such that the modified gentle repair algorithm applied to
O(n) and α has a run with exponentially many iterations
in the size of O(n).

Proof. Let I(n) = {Pi, Qi | 1 ≤ i ≤ n}, n ≥ 1 be a set of
concept names, and define O(n) := O

(n)
r := T (n)

1 ∪ T (n)
2 ,

where

T (n)
1 := {A v ∃r.

d
I(n), ∃r.(Pn uQn) v B} ∪

{Pi uQi v Pi+1, Pi uQi v Qi+1 | 1 ≤ i < n},
T (n)
2 := {∃r.(X u Y ) v DXY , DXY uX v Y |

X ∈ {Pi, Qi}, Y ∈ {Pi+1, Qi+1}, 1 ≤ i < n} ∪
{∃r.P1 v P1, ∃r.Q1 v Q1, Pn v B, Qn v B}.

It is easy to see that the size of O(n) is polynomial in n and
that O(n) |= A v B. Suppose that we want to get rid of
this consequence using the modified gentle repair approach.
First, we can find the justification

{A v ∃r.
l
I(n), ∃r.(Pn uQn) v B}.

We repair it by weakening the first axiom to

γ := A v ∃r.
l

(I(n) \ {Pn}) u ∃r.
l

(I(n) \ {Qn}).

At this point, we can find a justification that uses γ and
Pn−1 uQn−1 v Pn. We further weaken γ to

A v ∃r.
d

(I(n) \ {Pn, Pn−1}) u
∃r.

d
(I(n) \ {Pn, Qn−1}) u ∃r.

d
(I(n) \ {Qn}).

4It is not clear yet whether this is also the case for the unmodi-
fied gentle repair algorithm.

Repeating this approach, after 2n weakenings we have only
changed the first axiom, weakening it to the axiom

A v
l

Xi∈{Pi,Qi},1≤i≤n

∃r.(X1 u · · · uXn), (3)

whose right-hand side is a conjunction with 2n conjuncts,
each of them representing a possible choice of Pi or Qi at
every location i, 1 ≤ i ≤ n.

So far, we have just considered axioms from T (n)
1 . Taking

also axioms from T (n)
2 into account, we obtain for every

conjunct ∃r.(X1 u · · · uXn) in axiom (3) a justification for
A v B that consists of (3) and the axioms

{ ∃r.X1 v X1, Xn v B } ∪
{ ∃r.(Xi uXi+1) v DXiXi+1 ,

DXiXi+1
uXi v Xi+1 | 1 ≤ i < n }.

This justification can be removed by weakening (3) further
by deleting one concept name appearing in the conjunct. The
justifications for other conjuncts are not influenced by this
modification. Thus, we can repeat this for each of the expo-
nentially many conjuncts, which shows that overall we have
exponentially many iterations of the modified gentle repair
algorithm in this run.

Weakening relations
To obtain better bounds on the number of iterations of our al-
gorithms, we restrict the way in which axioms can be weak-
ened. Before introducing concrete approaches for how to do
this for EL axioms in the next section, we investigate such
restricted weakening relations in a more abstract setting.
Definition 9. Given a pre-order � (i.e., an irreflexive and
transitive binary relation) on axioms, we say that it is
• a weakening relation if β � γ implies Con({γ}) ⊂

Con({β});
• bounded (linear, polynomial) if, for every axiom α, there

is a (linear, polynomial) bound b(α) on the length of all
�-chains issuing from α;
• complete if, for any axiom β that is not a tautology, there

is a tautology γ such that β � γ.
If we use a linear (polynomial) and complete weakening

relation, then termination with a repair is guaranteed after a
linear (polynomial) number of iterations.
Proposition 10. Let � be a linear (polynomial) and com-
plete weakening relation. If in the (modified) gentle repair
algorithm we have β � γ whenever β is replaced by γ, then
the algorithm stops after a linear (polynomial) number of it-
erations and yields as output an ontology that is a repair of
O = Os ∪Or w.r.t. α.

Proof. For every axiom β in Or we consider the length of
the longest �-chain issuing from it, and then sum up these
numbers over all axioms in Or. The resulting number is lin-
early (polynomially) bounded by the size of the ontology
(assuming that this size is given as sum of the sizes of all
its axioms). Call this number the chain-size of the ontology.
Obviously, if β is replaced by β′ with β � β′, then the length
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of the longest �-chain issuing from β′ is smaller than the
length of the longest �-chain issuing from β. Consequently,
if O(i+1)

r is obtained from O
(i)
r in the i-th iteration of the

algorithm, then the chain-size of O(i)
r is strictly larger than

the chain-size of O(i+1)
r . This implies that there can be only

linearly (polynomially) many iterations.
Consider a terminating run of the algorithm that produces

the sequence of ontologies Or = O
(0)
r ,O

(1)
r , . . . ,O

(n)
r .

Then, since � is a weakening relation, we have that
Con(Os∪Or) ⊇ Con(Os∪O(1)

r ) ⊇ . . . ⊇ Con(Os∪O(n)
r ).

If the algorithm terminated because α 6∈ Con(Os ∪ O
(n)
r ),

then O
(n)
r is a repair of O w.r.t. α. Otherwise, the only rea-

son for termination is that, although α ∈ Con(Os ∪ O
(n)
r ),

the algorithm cannot generate a new ontology O
(n+1)
r . In the

unmodified gentle repair approach this means that there is an
axiom β in the hitting set H such that there is no axiom γ
with β � γ satisfying (1). However, using a tautology as the
axiom γ actually allows us to satisfy the condition (1). Thus,
completeness of � implies that this reason for termination
without success cannot occur. An analogous argument can
be used for the modified gentle repair approach.

When describing our (modified) gentle repair algorithm,
we have said that the chosen axiom β needs to be replaced
by a weaker axiom γ such that (1) or (2) holds. But we have
not said how such an axiom γ can be found. This of course
depends on which ontology language and which weakening
relation is used. In the abstract setting of this section, we
assume that an “oracle” provides us with a weaker axiom.
Definition 11. Let � be a weakening relation. An oracle
for � is a computable function W that, given an axiom β
that is not�-minimal, provides us with an axiomW (β) such
that β � W (β). For �-minimal axioms β we assume that
W (β) = β.

If the weakening relation is complete and well-founded
(i.e., there is no infinite descending �-chain β1 � β2 �
β2 � · · · ), we can effectively find an axiom γ such that (1)
or (2) holds. We show this formally only for (2), but condi-
tion (1) can be treated similarly.
Lemma 12. Assume that J is a justification for the conse-
quence α, and β ∈ J . If � is a well-founded and complete
weakening relation and W is an oracle for �, then there is
an n ≥ 1 such that (2) holds for γ = Wn(β). If � is ad-
ditionally linear (polynomial), then n is linear (polynomial)
in the size of β.

Proof. Well-foundedness implies that the �-chain β �
W (β) � W (W (β)) � . . . is finite; thus there is an n
such that Wn+1(β) = Wn(β), i.e., Wn(β) is �-minimal.
Since � is complete, this implies that Wn(β) is a tautology.
Minimality of the justification J yields Os ∪ (J \ {β}) ∪
{Wn(β)} 6|= α. Linearity (polynomiality) of � ensures that
the length of the �-chain β � W (β) � W (W (β)) � . . . is
linearly (polynomially) bounded by the size of β.

Thus, to find an axiom γ satisfying (1) or (2), we itera-
tively apply W to β until an axiom satisfying the required

property is found. The proof of Lemma 12 shows that at the
latest this is the case when a tautology is reached, but of
course the property may already be satisfied before that by a
non-tautological axiom W i(β).

In order to weaken axioms as gently as possible, W
should realize small weakening steps. The smallest such step
is one where there is no step in between.
Definition 13. Let � be a pre-order. The one-step relation5

induced by � is defined as

�1 := {(β, γ) ∈ � | there is no δ such that β � δ � γ}.
We say that �1 covers � if its transitive closure is again �,
i.e., �+

1 = �. In this case we also say that � is one-step
generated.

If� is one-step generated, then every weaker element can
be reached by a finite sequence of one-step weakenings, i.e.,
if β � γ, then there are finitely many elements δ0, . . . , δn
(n ≥ 1) such that β = δ0 �1 δ1 �1 . . . �1 δn = γ. This
leads us to the following characterization of pre-orders that
are not one-step generated.
Lemma 14. The pre-order � is not one-step generated iff
there is a pair of comparable elements β � γ such that
every finite chain β = δ0 � δ1 � . . . � δn = γ can be
refined in the sense that there is an i, 0 ≤ i < n, and an
element δ such that δi � δ � δi+1.

If β � γ are such that any finite chain between them can
be refined, then obviously there cannot be an upper bound
on the length of the chains issuing from β. Thus, Lemma 14
implies the following result.
Proposition 15. If � is bounded, then it is one-step gener-
ated.

The following example shows that well-founded pre-
orders need not be one-step generated.
Example 16. Consider the pre-order � on the set

P := {β} ∪ {δi | i ≥ 0},
where β � δi for all i ≥ 0, and δi � δj iff i > j. It is easy to
see that � is well-founded and �1 = {(δi+1, δi) | i ≥ 0}.
Consequently, �1

+ contains none of the tuples (β, δi) for
i ≥ 0, which shows that �1 does not cover �. In particular,
any finite chain between β and δi can be refined.

If we add elements γi (i ≥ 0) with β � γi � δi to this
pre-order, then it becomes one-step generated.

One-step generated weakening relations allow us to find
maximally strong weakenings satisfying (1) or (2). Again,
we consider only condition (2), but all definitions and results
can be adapted to deal with (1) as well.
Definition 17. Let J be a justification for the consequence
α, and β ∈ J . We say that γ is a maximally strong weak-
ening of β in J if Os ∪ (J \ {β}) ∪ {γ} 6|= α, but
Os ∪ (J \ {β}) ∪ {δ} |= α for all δ with β � δ � γ.

In general, maximally strong weakenings need not exist.
As an example, assume that the pre-order introduced in Ex-
ample 16 (without the added axioms γi) is a weakening re-
lation on axioms, and assume that J = {β} and that none

5This is sometimes also called the transitive reduction of �.
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of the axioms δi have the consequence. Obviously, in this
situation there is no maximally strong weakening of β in J .

Next, we introduce conditions under which maximally
strong weakenings always exist, and can also be computed.
We say that the one-step generated weakening relation � is
effectively finitely (linearly) branching if for every axiom β
the cardinality of the set {γ | β �1 γ} is finite (linear in the
size of β) and this set can effectively be computed.

Proposition 18. Let � be a well-founded, one-step gener-
ated, and effectively finitely branching weakening relation
and assume that the consequence relation |= is decidable.
Then all maximally strong weakenings of an axiom in a jus-
tification can effectively be computed.

Proof. Let J be a justification for the consequence α, and
β ∈ J . Since � is well-founded, one-step generated, and
finitely branching, König’s Lemma implies that there are
only finitely many γ such that β � γ, and all these γ can
be reached by following �1. Thus, by a breadth-first search,
we can compute the set of all γ such that there is a path
β �1 δ1 �1 . . . �1 δn �1 γ with Os∪(J \{β})∪{γ} 6|= α,
but Os ∪ (J \ {β}) ∪ {δi} |= α for all i, 1 ≤ i ≤ n. If
this set still contains elements that are comparable w.r.t. �
(i.e., there is a �1-path between them), then we remove the
weaker elements. It is easy to see that the remaining set con-
sists of all maximally strong weakenings of β in J .

Note that the additional removal of weaker elements in
the last proof is really necessary. Assume that β �1 δ1 �1 γ
and β �1 δ2 �1 γ, and Os ∪ (J \ {β}) ∪ {γ} 6|= α, Os ∪
(J \{β})∪{δ1} |= α, but Os∪(J \{β})∪{δ2} 6|= α. Then
both δ2 and γ belong to the set computed in the breadth-first
search, but only δ2 is a maximally strong weakening (see
Example 24, where it is shown that this situation can really
occur when repairing EL ontologies).

In particular, this also means that iterated application of
a one-step oracle, i.e., an oracle W satisfying β �1 W (β),
does not necessarily yield a maximally strong weakening.

Weakening Relations for EL Axioms
In this section, we restrict the attention to EL ontologies, but
some of our approaches and results could also be transferred
to other DLs. We start with observing that weakening rela-
tions for EL axioms need not be one-step generated.

Proposition 19. If we define β �g γ if Con(γ) ⊂ Con(β),
then �g is a weakening relation on EL axioms that is not
one-step generated.

Proof. It is obvious that �g is a weakening relation.6 To see
that it is not one-step generated, consider a GCI β that is
not a tautology and an arbitrary tautology γ. Then we have
β � γ. Let β = δ0 �g δ1 �g . . . �g δn = γ be a finite
chain leading from β to γ. Then δn−1 must be a GCI that
is not a tautology. Assume that δn−1 = C v D. Then δ :=
∃r.C v ∃r.D satisfies δn−1 �g δ �g γ. By Lemma 14, this
shows that � is not one-step generated.

6In fact, it is the greatest one w.r.t. set inclusion.

Our main idea for obtaining more well-behaved weaken-
ing relations is to weaken a GCI C v D by generalizing the
right-hand side D and/or by specializing the left-hand side
C. Similarly, a concept assertion D(a) can be weakened by
generalizingD. For role assertions we can use as weakening
an arbitrary tautological axiom, but will no longer consider
them explicitly in the following.
Proposition 20. If we define

C v D �s C ′ v D′ if C ′ v∅ C, D v∅ D′ and
{C ′ v D′} 6|= C v D,

D(a) �s D′(a) if D @∅ D′,

then �s is a complete weakening relation.

Proof. To prove that �s is a weakening relation we must
show that β �s γ implies Con({γ}) ⊂ Con({β}). If C ′ v∅
C and D v∅ D′, then Con({C ′ v D′}) ⊆ Con({C v D})
and Con({a : D′}) ⊆ Con({a : D}). The second inclu-
sion is strict iff D @∅ D′. However, for the first inclusion
to be strict, C ′ @∅ C or D @∅ D′ is a necessary condi-
tion, but it is not sufficient. This is why we explicitly require
{C ′ v D′} 6|= C v D, which yields strictness of the in-
clusion. Completeness is trivial due to the availability of all
tautologies of the form C v > and >(a).

To see why, for example, D @∅ D′ does not imply
Con({C v D′}) ⊂ Con({C v D}), consider the follow-
ing example: we have A u ∃r.A @∅ ∃r.A, but Con({A v
∃r.A}) = Con({A v A u ∃r.A}).

Unfortunately, the weakening relation �s introduced in
Proposition 20 is not well-founded since left-hand sides can
be specialized indefinitely. For example, we have> v A �s

∃r.> v A �s ∃r.∃r.> v A �s · · · . To avoid this problem,
we now restrict the attention to sub-relations of�s that only
generalize the right-hand sides of GCIs. We will not consider
concept assertions, but they can be treated similarly.

Generalizing the Right-Hand Sides of GCIs
We define
C v D �sub C′ v D′ if C′ = C and C v D �s C′ v D′.

Theorem 21. The relation �sub on EL axioms is a well-
founded, complete, and one-step generated weakening rela-
tion, but it is not polynomial.

Proof. Proposition 20 implies that �sub is a weaken-
ing relation and completeness follows from the fact that
C v D �sub C v > whenever C v D is not a tautology.
In EL, the inverse subsumption relation is well-founded, i.e.,
there cannot be an infinite sequence C0 @∅ C1 @∅ C2 @∅

. . . of EL concepts. Looking at the proof of this result given
in (Baader and Morawska 2010), one sees that it actually
shows that @∅ is bounded. This implies that�sub is bounded
as well, and thus one-step generated by Proposition 15.

It remains to show that�sub is not polynomial. Let n ≥ 1
and Nn := {A1, . . . , A2n} be a set of 2n distinct concept
names. Then we have

∃r.
l
Nn @∅

l

X⊆Nn∧|X|=n

∃r.
l
X.
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Note that the size of ∃r.
d
Nn is linear in n, but that the

conjunction on the right-hand side of this strict subsumption
consists of exponentially many concepts ∃r.

d
X that are in-

comparable w.r.t. subsumption. Consequently, by removing
one conjunct at a time, we can generate an ascending chain
w.r.t. @∅ of EL concepts whose length is exponential in n.
Using these concepts as right-hand sides of GCIs with left-
hand side B for a concept name B 6∈ Nn, we obtain an
exponentially long descending chain w.r.t. �sub .

To be able to apply Proposition 18, it remains to show
that �sub is effectively finitely branching. For this purpose,
we first investigate the one-step relation @∅1 induced by @∅.
Given an EL concept C, we want to characterize the set of
its upper neighbors Upper(C) := {D | C @∅1 D}.

In a first step, we reduce the concept C by exhaustively
replacing subconcepts of the formEuF withE v∅ F byE
(modulo associativity and commutativity of u). As shown in
(Küsters 2001), this can be done in polynomial time, and two
conceptsC,D are equivalent (i.e.,C ≡∅ D) iff their reduced
forms are equal up to associativity and commutativity of u.

Lemma 22. Let C be a reduced EL concept. Then,
Upper(C) can be computed in polynomial time. More pre-
cisely, it consists of the concepts D that can be obtained
from C as follows:

• Remove a concept name A from the top-level conjunction
of C.

• Remove an existential restriction ∃r.E from the top-level
conjunction of C, and replace it by the conjunction of all
existential restrictions ∃r.F for F ∈ Upper(E).

For example, if C = A u ∃r.(B1 u B2 u B3), then
Upper(C) consists of the two concepts ∃r.(B1 u B2 u B3)
and A u ∃r.(B1 uB2) u ∃r.(B1 uB3) u ∃r.(B2 uB3).

Unfortunately, this result does not transfer immediately
from concept subsumption to axiom weakening. In fact, as
we have seen before, strict subsumption need not produce a
weaker axiom (see the remark below Proposition 20). Thus,
to find all GCIs C v D′ with C v D �sub

1 C v D′, it is
not sufficient to consider only concepts D′ with D @∅1 D

′.
In caseC v D′ is equivalent toC v D, we need to consider
upper neighbors of D′, etc.

Proposition 23. The one-step relation �sub
1 induced by

�sub is effectively finitely branching.

Proof. Since @∅ is one-step generated, finitely branching,
and well-founded, for a given concept D, there are only
finitely many concepts D′ such that D @∅ D′. Thus, a
breadth first search along @∅1 can be used to compute all
concepts D′ for which there is a path D @∅1 D1 @∅1
. . . Dn @∅1 D

′ such that C v D is equivalent to C v Di

for i = 1, . . . , n, and C v D �sub C v D′. Since @∅ is
one-step generated, it is easy to see that all axioms γ with
C v D �sub

1 γ can be obtained this way. However, the com-
puted set of axioms may contain elements that are not one-
step successors of C v D. Thus, in a final step, we remove
all axioms that are weaker than some axiom in the set.

> v A u ∃r.A

> v A u ∃r.> > v ∃r.A

> v ∃r.>> v A

|=

|=

|=
6|=

|=
6|= |=6|=|=6|=

Figure 1: One-step weakening

Example 24. To see that the final step of removing ax-
ioms in the last proof is really needed, consider the axiom
β = > v A u ∃r.A shown in Figure 1. The right-hand
side A u ∃r.A has two upper neighbors, namely ∃r.A and
A u ∃r.>. The first yields the axiom > v ∃r.A, which sat-
isfies > v A u ∃r.A �sub

1 > v ∃r.A. The second yields the
axiom > v A u ∃r.>, which is equivalent to β. The upper
neighbor ∃r.> of A u ∃r.> yields the axiom > v ∃r.>,
which is weaker than > v ∃r.A, and thus needs to be re-
moved. In contrast, the upper neighborA ofAu∃r.> yields
> v A, which satisfies > v A u ∃r.A �sub

1 > v A.
A similar, but simpler example can be used to show that

the additional removal of weaker elements in the proof of
Proposition 18 is needed. Let α be the consequence > v A,
J = {β} for β := > v A u B, δ1 := > v A, δ2 := > v
B, and γ := > v >. Then we have exactly the situation
described below the proof of Proposition 18, with �sub as
the employed weakening relation.
Corollary 25. All maximally strong weakenings w.r.t. �sub

of an axiom in a justification can effectively be computed.

Proof. By Proposition 18, this is an immediate consequence
of the fact that �sub is well-founded, one-step generated,
and effectively finitely branching.

The algorithm for computing maximally strong weak-
enings described in the proof of Proposition 18 has non-
elementary complexity for �sub . In fact, the bound for the
depth of the tree that must be searched grows by one expo-
nential for every increase in the role-depth of the concept
on the right-hand side. It is not clear how to obtain an algo-
rithm with a better complexity. Example 30 below yields an
exponential lower-bound, which still leaves a huge gap. We
can also show that even deciding whether a given axiom is a
maximally strong weakening w.r.t. �sub is coNP-hard.

Syntactic Generalization
In order to obtain a weakening relation that has better al-
gorithmic properties than �sub , we consider a syntactic ap-
proach for generalizing EL concepts. Basically, the concept
D is a syntactic generalization of the concept C if D can be
obtained from C by removing occurrences of subconcepts.
To ensure that such a removal really generalizes the concept,
we work here with reduced concepts.
Definition 26. LetC,D be EL concepts. ThenD is a syntac-
tic generalization of C (written C @syn D) if it is obtained
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from the reduced form of C by replacing some occurrences
of subconcepts 6= > with >.

For example, the concept C = A1 u ∃r.(A1 u A2) is al-
ready in reduced form, and its syntactic generalizations in-
clude > u ∃r.(A1 u A2) ≡∅ ∃r.(A1 u A2), A1 u ∃r.(> u
A2) ≡∅ A1 u ∃r.A2, ∃r.>, and >.

Lemma 27. If C @syn D, then C @∅ D, and the length of
any @syn -chain issuing from C is linearly bounded by the
size of C.

Proof. Since the concept constructors of EL are monotonic,
C @syn D implies C v∅ D. Both the linear bound on the
length of @syn -chains and strict subsumption follow from
the fact that the m-size of the reduced form of C is strictly
larger than the m-size of the reduced form of D, where the
m-size counts only occurrences of concept and role names
(see (Baader et al. 2018) for details).

By Proposition 15, this linear bound implies that @syn is
one-step generated. A step in the corresponding one-step re-
lation @syn

1 can be realized by replacing a single concept
name A or ∃r.> with>. Though not all such single replace-
ments are really in @syn

1 , this is sufficient to show that @syn

is effectively linearly branching.
Now, we define our new weakening relation, which syn-

tactically generalizes the right-hand sides of GCIs:

C v D �syn C ′ v D′ if C = C ′, D @syn D′ and
{C ′ v D′} 6|= C v D.

The following theorem is an easy consequence of the prop-
erties of @syn and of our characterization of @syn

1 .

Theorem 28. The relation �syn on EL axioms is a lin-
ear, complete, one-step generated, and effectively linearly
branching weakening relation.

Due to the fact that �syn
1 -steps do not increase the size of

axioms, the linear bounds on the branching of �syn
1 and the

length of �syn -chains imply that the algorithm described in
the proof of Proposition 18 has an exponential search space.

Corollary 29. All maximally strong weakenings w.r.t. �syn

can be computed in exponential time.

The following example shows that there may be exponen-
tially many maximally strong weakenings w.r.t. �syn , and
thus the exponential complexity stated above is optimal.

Example 30. Let βi := Pi uQi v B for i = 1, . . . , n and
β := A v P1uQ1u . . .uPnuQn. Consider O = Os∪Or,
where Os := {βi | 1 ≤ i ≤ n} and Or := {β}. Then
J = {β} is a justification for the consequence α = A v B,
and all axioms of the form A v X1 uX2 u . . . uXn (Xi ∈
{Pi, Qi}) are maximally strong weakenings w.r.t. �syn of β
in J . The same is true for�sub since in the absence of roles,
these two weakening relations coincide.

In contrast, computing a single maximally strong weak-
ening is tractable.

Proposition 31. A single maximally strong weakening w.r.t.
�syn can be computed in polynomial time.

Proof. The algorithm that computes a maximally strong
weakening works as follows. Starting from the concept
D′ := >, it looks at all possible ways of making one step in
the direction ofD using Asyn

1 , i.e., it considers allD′′ where
D vsyn D′′ @syn

1 D′. The concepts D′′ can be obtained by
adding a concept name A or an existential restriction ∃r.>
at a place where (the reduced form of) D has such a con-
cept or restriction. Obviously, there are only polynomially
many such conceptsD′′. For each of them we check whether
Os ∪ (J \ {C v D}) ∪ {C v D′′} |= α. If this is the case
for all D′′, we return C v D′. Otherwise, we choose an ar-
bitrary D′′ with Os ∪ (J \ {C v D}) ∪ {C v D′′} 6|= α,
and continue with D′ := D′′.

This algorithm terminates after linearly many iterations
since in each iteration the size of D′ is increased and it can-
not get larger than D. In addition, C v D′ is maximally
strong since for each axiom C v E with C v D �syn

C v E �syn C v D′ there is a sequence E @syn
1 . . . @syn

1
D′′ @syn

1 D′. Consequently, C v D′′ has the consequence,
and thus also C v E.

Nevertheless, we can show that deciding whether an ax-
iom is a maximally strong weakening w.r.t. �syn is coNP-
complete.

Conclusions
We have introduced a framework for repairing DL-based on-
tologies that is based on weakening axioms rather than delet-
ing them, and have shown how to instantiate this framework
for the DL EL using appropriate weakening relations. Com-
puting maximally strong weakenings w.r.t. these relations
using the algorithm described in the proof of Proposition 18
is analogous to the black-box approach for computing justi-
fications. It would be interesting to see whether a glass-box
approach that modifies an EL reasoning procedure can also
be used for this purpose, similar to the way a tableau-based
algorithm for ALC was modified in (Lam et al. 2008).

Our weakening relations can also be used in the setting
where the ontology is first modified, and then repaired using
the classical approach as in (Du, Qi, and Fu 2014). In fact,
for effectively finitely branching and well-founded weaken-
ing relations such as �sub and �syn , we can add for each
axiom all (or some of) its finitely many weakenings w.r.t. the
given relation, and then apply the classical repair approach.
In contrast to the gentle repair approach proposed in this pa-
per, a single axiom could then be replaced by several axioms,
which might blow up the size of the ontology.

The standard reasoning procedures for EL first normalize
the given TBox, where normalization breaks up large GCIs
into smaller ones (Baader et al. 2017). In some cases, ap-
plying classical repair to the normalized TBox also leads
to more gentle repairs. For example, consider the refutable
TBox T = {A v B1 u B2}, the strict ABox A = {A(a)},
and the consequence α = (B1 u B2)(a). The TBox T is
normalized to T ′ = {A v B1, A v B2}, which has the two
classical repairs T ′1 = {A v B1} and T ′2 = {A v B2}. This
is exactly what our gentle repair approach (using �sub or
�syn ) would yield. However, normalization does not always
do the job as illustrated by the following two examples. As a
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first example, consider the refutable TBox {A v ∃r.B}, the
strict ABox {A(a)}, and the consequence ∃r.B(a). Here,
the TBox is normalized, and classical repair removes the
GCI. In contrast, our gentle repair approach can weaken the
GCI to A v ∃r.>. Another problem with using normaliza-
tion in this setting is that in general it introduces new concept
names. As a second example, consider the refutable TBox
{A v ∃r.∃r.B} and the strict ABox {A(a)}, where the un-
wanted consequence is ∃r.∃r.B(a). Normalizing the TBox
yields {A v ∃r.X,X v ∃r.B}; thus, classical repair yields
as repairs the TBoxes consisting ofA v ∃r.X orX v ∃r.B.
These two axioms do not make sense for the user since X
is a name without meaning in the application. Thus, some
post-processing that can get rid of the new names (similar to
forgetting (Nikitina and Rudolph 2014)) would be required.
While an approach based on appropriate variants of normal-
ization and forgetting may be able to generate gentle repairs
akin to what our approach produces using�syn , it would not
be able to deal with more sophisticated weakening relations
such as�sub . In addition, classical repair applied to the nor-
malized TBox would not distinguish between more or less
gentle repairs, and would also produce all classical repairs
of the original TBox.
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R. 2018. Repairing description logic ontologies by weak-
ening axioms. LTCS-Report 18-01, TU Dresden. See
http://lat.inf.tu-dresden.de/research/reports.html.
Baader, F.; Borchmann, D.; and Nuradiansyah, A. 2017.
The identity problem in description logic ontologies and
its application to view-based information hiding. In Proc.
JIST 2017, volume 10675 of LNCS, 102–117. Springer-
Verlag.
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