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Abstract
LPMLN is a probabilistic extension of answer set programs
with the weight scheme derived from that of Markov Logic.
Previous work has shown how inference in LPMLN can be
achieved. In this paper, we present the concept of weight
learning in LPMLN and learning algorithms for LPMLN de-
rived from those for Markov Logic. We also present a pro-
totype implementation that uses answer set solvers for learn-
ing as well as some example domains that illustrate distinct
features of LPMLN learning. Learning in LPMLN is in ac-
cordance with the stable model semantics, thereby it learns
parameters for probabilistic extensions of knowledge-rich do-
mains where answer set programming has shown to be use-
ful but limited to the deterministic case, such as reachability
analysis and reasoning about actions in dynamic domains. We
also apply the method to learn the parameters for probabilistic
abductive reasoning about actions.

1 Introduction
LPMLN is a probabilistic extension of answer set programs
with the weight scheme derived from that of Markov Logic
(Richardson and Domingos 2006). The language turns out
to be highly expressive to embed several other probabilistic
logic languages, such as P-log (Baral, Gelfond, and Rushton
2009), ProbLog (De Raedt, Kimmig, and Toivonen 2007),
Markov Logic, and Causal Models (Pearl 2000), as de-
scribed in (Lee, Meng, and Wang 2015; Lee and Wang 2016;
Balai and Gelfond 2016; Lee and Yang 2017). Inference en-
gines for LPMLN, such as LPMLN2ASP, LPMLN2MLN (Lee,
Talsania, and Wang 2017), and LPMLN-MODELS (Wang and
Zhang 2017), have been developed based on the reduction
of LPMLN to answer set programs and Markov Logic.

The weight associated with each LPMLN rule roughly as-
serts how important the rule is in deriving a stable model.
It can be manually specified by the user, which may be
okay for a simple program, but a systematic assignment of
weights for a complex program could be challenging. A so-
lution would be to learn the weights automatically from the
observed data.

With this goal in mind, this paper presents the concept
of weight learning in LPMLN and a few learning meth-
ods for LPMLN derived from learning in Markov Logic.
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Weight learning in LPMLN is to find the weights of the
rules in the LPMLN program such that the likelihood of the
observed data according to the LPMLN semantics is maxi-
mized, which is commonly known as Maximum Likelihood
Estimation (MLE) in the practice of machine learning.

In LPMLN, due to the requirement of a stable model,
deterministic dependencies are frequent. Poon and Domin-
gos (2006) noted that deterministic dependencies break the
support of a probability distribution into disconnected re-
gions, making it difficult to design ergodic Markov chains
for Markov Chain Monte Carlo (MCMC) sampling, which
motivated them to develop an algorithm called MC-SAT that
uses a satisfiability solver to find modes for computing con-
ditional probabilities. Thanks to the close relationship be-
tween Markov Logic and LPMLN, we could adapt that al-
gorithm to LPMLN, which we call MC-ASP. Unlike MC-
SAT, algorithm MC-ASP utilizes ASP solvers for perform-
ing MCMC sampling, and is based on the penalty-based for-
mulation of LPMLN instead of the reward-based formulation
as in Markov Logic.

Learning in LPMLN is in accordance with the stable
model semantics, thereby it learns parameters for probabilis-
tic extensions of knowledge-rich domains where answer set
programming has shown to be useful but limited to the de-
terministic case, such as reachability analysis and reasoning
about actions in dynamic domains. More interestingly, we
demonstrate that the method can also be applied to learn pa-
rameters for abductive reasoning about dynamic systems to
associate the probability learned from data with each possi-
ble reason for the failure.

The paper is organized as follows. Section 2 reviews the
language LPMLN, and Section 3 presents the learning frame-
work and a gradient ascent method for the basic case, where
a single stable model is given as the training data. Section 4
presents a few extensions of the learning problem and meth-
ods, such as allowing multiple stable models as the training
data and allowing the training data to be an incomplete inter-
pretation. In addition to the general learning algorithm, Sec-
tion 5 relates LPMLN learning also to learning in ProbLog
and Markov Logic as special cases, which allows for the spe-
cial cases of LPMLN learning to be computed by existing
implementations of ProbLog and Markov Logic. Section 6
introduces a prototype implementation of the general learn-
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ing algorithm and demonstrates it with a few example do-
mains where LPMLN learning is more suitable than other
learning methods.

2 Review: Language LPMLN

The original definition of LPMLN from (Lee and Wang
2016) is based on the concept of a “reward”: the more rules
are true, the larger weight is assigned to the corresponding
stable model as the reward. Alternatively, Lee and Yang
[2017] present a reformulation in terms of a“penalty”: the
more rules are false, the smaller weight is assigned to the
corresponding stable model. The advantage of the latter is
that it yields a translation of LPMLN programs that can be
readily accepted by ASP solvers, the idea that led to the im-
plementation of LPMLN using ASP solvers (Lee, Talsania,
and Wang 2017). Throughout the paper, we refer to this re-
formulation as the main definition of LPMLN.

We assume a first-order signature σ that contains no func-
tion constants of positive arity, which yields finitely many
Herbrand interpretations. An LPMLN program is a pair
〈R,W〉, where R is a list of rules (R1, . . . , Rm), where
each rule has the form

A← B ∧N (1)

where A is a disjunction of atoms, B is a conjunction
of atoms, and N is a negative formula constructed from
atoms using conjunction, disjunction, and negation.1 We
identify rule (1) with formula B ∧ N → A. The expres-
sion {A1} ← Body, where A1 is an atom, denotes the rule
A1 ← Body∧¬¬A1. W is a list (w1, . . . wm) such that each
wi is a real number or the symbol α that denotes the weight
of rule i in R. We can also identify an LPMLN program with
the finite list of weighted rules {wi : Ri | i ∈ {1, . . . ,m}}.
A weighted rule w : R is called soft if w is a real number; it
is called hard if w is α (which denotes infinite weight). Vari-
ables range over an Herbrand Universe, which is assumed to
be finite so that the ground program is finite. For any LPMLN

program Π, by gr(Π) we denote the program obtained from
Π by the process of grounding. Each resulting rule with no
variables, which we call ground instance, receives the same
weight as the original rule.

For any LPMLN program Π = {w1 : R1, . . . , wm : Rm}
and any interpretation I , expression ni(I) denotes the num-
ber of ground instances of Ri that is false in I , and Π de-
notes the set of (unweighted) formulas obtained from Π by
dropping the weight of every rule. When Π has no variables,
ΠI denotes the set of weighted rules w : R in Π such that
I |= R.

In general, an LPMLN program may even have stable
models that violate some hard rules, which encode definite
knowledge. However, throughout the paper, we restrict at-
tention to LPMLN programs whose stable models do not vi-
olate hard rules. More precisely, given an LPMLN program

1For the definition of a negative formula, see (Ferraris, Lee, and
Lifschitz 2011).

Π, SM[Π] denotes the set

{I | I is a (deterministic) stable model of gr(Π)I
that satisfies all hard rules in gr(Π)}.

For any interpretation I , its weight WΠ(I) and its probabil-
ity PΠ(I) are defined as follows.

WΠ(I) =

exp
(
−

∑
wi:Ri ∈ Πsoft

wini(I)

)
if I ∈ SM[Π];

0 otherwise,

where Πsoft consists of all soft rules in Π, and

PΠ(I) =
WΠ(I)∑

J∈SM[Π]

WΠ(J)
.

An interpretation I is called a (probabilistic) stable model
of Π if PΠ(I) 6= 0. When SM[Π] is non-empty, it turns out
that every probabilistic stable model satisfies all hard rules,
and the definitions of WΠ(I) and PΠ(I) above are equiva-
lent to the original definitions (Lee and Wang 2016, Propo-
sition 2).

For any proposition A, the probability of A under Π is
defined as PΠ(A) =

∑
I:I|=A

PΠ(I).

3 LPMLN Weight Learning
3.1 General Problem Statement
A parameterized LPMLN program Π̂ is defined similarly
to an LPMLN program Π except that non-α weights (i.e.,
“soft” weights) are replaced with distinct parameters to be
learned. By Π̂(w), where w is a list of real numbers whose
length is the same as the number of soft rules, we denote the
LPMLN program obtained from Π̂ by replacing the param-
eters with w. The weight learning task for a parameterized
LPMLN program is to find the MLE (Maximum likelihood
Estimation) of the parameters as in Markov Logic. Formally,
given a parameterized LPMLN program Π̂ and a ground for-
mula O (often in the form of conjunctions of literals) called
observation or training data, the LPMLN parameter learning
task is to find the values w of parameters such that the prob-
ability of O under the LPMLN program Π is maximized. In
other words, the learning task is to find

argmax
w

PΠ̂(w)(O). (2)

3.2 Gradient Method for Learning Weights From
a Complete Stable Model

Same as in Markov Logic, there is no closed form solution
for (2) but the gradient ascent method can be applied to find
the optimal weights in an iterative manner.

We first compute the gradient. Given a (non-ground)
LPMLN program Π whose SM[Π] is non-empty and given
a stable model I of Π, the base-e logarithm of PΠ(I),
lnPΠ(I), is

−
∑

wi:Ri∈Πsoft

wini(I)− ln
∑

J∈SM[Π]

exp
(
−

∑
wi:Ri∈Πsoft

wini(J)
)
.

23



The partial derivative of lnPΠ(I) w.r.t. wi(6= α) is

∂lnPΠ(I)

∂wi

= −ni(I) +

∑
J∈SM[Π]

exp(−
∑

wi:Ri∈Πsoft
wini(J))ni(J)

∑
K∈SM[Π]

exp(−
∑

wi:Ri∈Πsoft
wini(K))

= −ni(I) +
∑

J∈SM[Π]

( exp(−
∑

wi:Ri∈Πsoft
wini(J))

∑
K∈SM[Π]

exp(−
∑

wi:Ri∈Πsoft
wini(K))

)
ni(J)

= −ni(I) +
∑

J∈SM[Π]

PΠ(J)ni(J) = −ni(I) + E
J∈SM[Π]

[ni(J)]

where E
J∈SM[Π]

[ni(J)] =
∑

J∈SM[Π]

PΠ(J)ni(J) is the ex-

pected number of false ground rules obtained from Ri.
Since the log-likelihood above is a concave function of the

weights, any local maximum is a global maximum, and max-
imizing PΠ(I) can be done by the standard gradient ascent
method by updating each weight wi by wi + λ · (−ni(I) +
E

J∈SM[Π]
[ni(J)]) until it converges.2

However, similar to Markov Logic, computing
E

J∈SM[Π]
[ni(J)] is intractable (Richardson and Domin-

gos 2006). In the next section, we turn to an MCMC
sampling method to find its approximate value.

3.3 Sampling Method: MC-ASP
The following is an MCMC algorithm for LPMLN, which
adapts the algorithm MC-SAT for Markov Logic (Poon and
Domingos 2006) by considering the penalty-based reformu-
lation and by using an ASP solver instead of a SAT solver
for sampling.

Algorithm 1 MC-ASP

Input: An LPMLN program Π whose soft rules’ weights are
non-positive and a positive integer N .
Output: Samples I1, . . . , IN

1. Choose a (probabilistic) stable model I0 of Π.
2. Repeat the following for j = 1, . . . , N

(a) M ← ∅;
(b) For each ground instance of each rule wi : Ri ∈ Πsoft

that is false in Ij−1, add the ground instance to M with
probability 1− ewi ;

(c) Randomly choose a (probabilistic) stable model Ij of
Π that satisfies no rules in M .

When all the weights wi of soft rules are non-positive,
1 − ewi (at step (b)) is in the range [0, 1) and thus it validly
represents a probability. At each iteration, the sample is cho-
sen from stable models of Π, and consequently, it must sat-
isfy all hard rules. For soft rules, the higher its weight, the
less likely that it will be included in M , and thus less likely
to be not satisfied by the sample generated from M .

2Note that although any local maximum is a global maximum
for the log-likelihood function, there can be multiple combinations
of weights that achieve the maximum probability of the training
data.

The following theorem states that MC-ASP satisfies the
MCMC criteria of ergodicity and detailed balance, which
justifies the soundness of the algorithm.

Theorem 1 The Markov chain generated by MC-ASP satis-
fies ergodicity and detailed balance.3

Steps 1 and 2(c) of the algorithm require finding a proba-
bilistic stable model of LPMLN, which can be computed by
system LPMLN2ASP (Lee, Talsania, and Wang 2017). The
system is based on the translation that turns an LPMLN pro-
gram Π into an ASP program lpmln2asppnt(Π). The trans-
lation turns each (possibly non-ground) soft rule

wi : Headi(x)← Bodyi(x) (3)

into 4

unsat(i, wi,x)← Bodyi(x), not Headi(x)

Headi(x)← Bodyi(x), not unsat(i, wi,x)

:∼ unsat(i, wi,x). [wi, i,x]

and each hard rule

α : Headi(x)← Bodyi(x)

into Headi(x) ← Bodyi(x). System LPMLN2ASP turns
an LPMLN program Π into lpmln2asppnt(Π) and calls
ASP solver CLINGO to find the stable models of
lpmln2asppnt(Π), which coincide with the probabilistic sta-
ble models of Π. The weight of a stable model can be com-
puted from the weights recorded in unsat atoms that are
true in the stable model.

Step 2(c) also requires a uniform sampler for answer sets,
which can be computed by XORRO (Gebser et al. 2016).

Algorithm 2 is a weight learning algorithm for LPMLN

based on gradient ascent using MC-ASP (Algorithm 1) for
collecting samples. Step 2(b) of MC-ASP requires that wi

be non-positive in order for 1− ewi to represent a probabil-
ity. Unlike in the Markov Logic setting, converting positive
weights into non-positive weights cannot be done in LPMLN

simply by replacing w : F with −w : ¬F , due to the dif-
ference in the FOL and the stable model semantics. Algo-
rithm 2 converts Π into an equivalent program Πneg whose
rules’ weights are non-positive, before calling MC-ASP. The
following theorem justifies the soundness of this method.5

Theorem 2 When SM[Π] is not empty, the program Πneg

specifies the same probability distribution as the pro-
gram Π.6

3A Markov chain is ergodic if there is a number m such that
any state can be reached from any other state in any number of
steps greater than or equal to m.

Detailed balance means PΠ(X)Q(X → Y ) = PΠ(Y )Q(Y →
X) for any samples X and Y , where Q(X → Y ) denotes the
probability that the next sample is Y given that the current sample
is X .

4If Headi(x) is a disjunction of atoms a1(x) ; . . . ; an(x),
then not Headi(x) denotes not a1(x), . . . , not an(x).

5Note that Πneg is only used in MC-ASP. The output of Algo-
rithm 2 may have positive weights.

6Non-emptiness of SM[Π] implies that every probabilistic sta-
ble model of Π satisfies all hard rules in Π.
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Algorithm 2 Algorithm for learning weights using
LPMLN2ASP

Input: Π: A parameterized LPMLN program in the input language
of LPMLN2ASP; O: A stable model represented as a set of con-
straints (that is,← not A is in O if a ground atom A is true;← A
is in O if A is not true); δ: a fixed real number to be used for the
terminating condition.
Output: Π with learned weights.
Process:
1. Initialize the weights of soft rulesR1, . . . , Rm with some initial

weights w0.

2. Repeat the following for j = 1, . . . until
max{|wj

i − w
j−1
i | : i = 1, . . . ,m} < δ:

(a) Compute the stable model of Π ∪ O using LPMLN2ASP (see
below); for each soft rule Ri, compute ni(O) by counting
unsat atoms whose first argument is i (i is a rule index).

(b) Create Πneg by replacing each soft rule Ri of the form w :
H(x)← B(x) in Π where w > 0 with

0 : H(x)← B(x),
α : neg(i,x)← B(x), notH(x),
−w :← not neg(i,x).

(c) Run MC-ASP on Πneg to collect a set S of sample stable
models.

(d) For each soft ruleRi, approximate
∑

J∈SM[Π]

PΠ(J)ni(J) with∑
J∈S

ni(J)/|S|, where ni is obtained from counting the num-

ber of unsat atoms whose first argument is i.
(e) For each i ∈ {1, . . . ,m},

wj+1
i ← wj

i + λ · (−ni(O) +
∑
J∈S

ni(J)/|S|).

4 Extensions
The base case learning in the previous section assumes that
the training data is a single stable model and is a complete
interpretation. This section extends the framework in a few
ways.

4.1 Learning from Multiple Stable Models
The method described in the previous section allows only
one stable model to be used as the training data. Now, sup-
pose we have multiple stable models I1, . . . , Im as the train-
ing data. For example, consider the parameterized program
Π̂coin that describes a coin, which may or may not land in
the head when it is flipped,

α : {flip}
w : head← flip

(the first rule is a choice rule) and three stable models as the
training data: I1 = {flip}, I2 = {flip}, I3 = {flip, head}
(the absence of head in the answer set is understood as land-
ing in tail), indicating that {flip, head} has a frequency of
1
3 , and {flip} has a frequency of 2

3 . Intuitively, the more we
observe the head, the larger the weight of the second rule.
Clearly, learning w from only one of I1, I2, I3 won’t result
in a weight that captures all the three stable models: learning

from each of I1 or I2 results in the value of w too small for
{flip, head} to have a frequency of 1

3 while learning from
I3 results in the value of w too large for {flip} to have a
frequency of 2

3 .
To utilize the information from multiple stable models,

one natural idea is to maximize the joint probability of all
the stable models in the training data, which is the product
of their probabilities, i.e.,

P (I1, . . . , Im) =
∏

j∈{1,...,m}

PΠ(Ij).

The partial derivative of lnP (I1, . . . , Im) w.r.t. wi(6= α)
is
∂lnP (I1, . . . , Im)

∂wi
=

∑
j∈{1,...,m}

(
− ni(Ij) + E

J∈SM[Π]
[ni(J)]

)
.

In other words, the gradient of the log probability is simply
the sum of the gradients of the probability of each stable
model in the training data. To update Algorithm 2 to reflect
this, we simply repeat step 2(a) to compute ni(Ik) for each
k ∈ {1, . . . ,m}, and at step 2(e) update wi as follows:

wj+1
i ← wj

i +λ·
(
−

∑
k∈{1,...,m}

ni(Ik)+m·
∑

J∈SM[Π]

PΠ(J)ni(J)
)
.

Alternatively, learning from multiple stable models can be
reduced to learning from a single stable model by introduc-
ing one more argument k to every predicate, which repre-
sents the index of a stable model in the training data, and
rewriting the data to include the index.

Formally, given an LPMLN program Π and a set of its sta-
ble models I1, . . . , Im, let Πm be an LPMLN program ob-
tained from Π by appending one more argument k to the list
of arguments of every predicate that occurs in Π, where k is
a schematic variable that ranges over {1, . . . ,m}. Let

I =
⋃

i∈{1,...,m}

{p(t, i) | p(t) ∈ Ii}. (4)

The following theorem asserts that the weights of the
rules in Π that are learned from the multiple stable mod-
els I1, . . . , Im are identical to the weights of the rules in Πm

that are learned from the single stable model I that conjoins
{I1, . . . , Im} as in (4).

Theorem 3 For any parameterized LPMLN program Π̂, its
stable models I1, . . . , Im and I as defined as in (4), we have

argmax
w

PΠ̂m(w)(I) = argmax
w

∏
i∈{1,...,m}

PΠ̂(w)(Ii).

Example 1 For the program Π̂coin, to learn from the three
stable models I1, I2, and I3 defined before, we consider the
program Π̂3

coin

α : {flip(k)}.
w : head(k)← flip(k).

(k ∈ {1, 2, 3}) and combine I1, I2, I3 into one stable model
I = {flip(1), f lip(2), f lip(3), head(3)}. The weight w
in Π̂3

coin learned from the single data I is identical to the
weight w in Π̂coin learned from the three stable models
I1, I2, I3.
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4.2 Learning in the Presence of Noisy Data
So far, we assumed that the data I1, . . . , Im are (probabilis-
tic) stable models of the parameterized LPMLN program.
Otherwise, the joint probability would be zero regardless of
any weights assigned to the soft rules, and the partial deriva-
tive of lnP (I1, . . . , Im) is undefined. However, data gath-
ered from the real world could be noisy, so some data Ii
may not necessarily be a stable model. Even then, we still
want to learn from the other “correct” instances. We may
drop them in the pre-processing to learning but this could be
computationally expensive if the data is huge. Alternatively,
we may mitigate the influence of the noisy data by introduc-
ing so-called “noise atoms” as follows.
Example 2 Consider again the program Π̂m

coin. Suppose
one of the interpretations Ii in the training data is
{head(i)}. The interpretation is not a stable model of Π̂m

coin.
We obtain Π̂m

noisecoin by modifying Π̂m
coin to allow for the

noisy atom n(k) as follows.
α : {flip(k)}.
w : head(k)← flip(k).

α : head(k)← n(k).

−u : n(k).

Here, u is a positive number that is “sufficiently” larger
than w. {head(i), n(i)} is a stable model of Π̂m

noisecoin, so
that the combined training data I is still a stable model,
and thus a meaningful weight w for Π̂m

noisecoin can still be
learned, given that other “correct” instances Ij (j 6= i)
dominate in the learning process (as for the noisy example,
the corresponding stable model gets a low weight due to the
weight assigned to n(i) but not 0).

Furthermore, with the same value of w, the larger u
becomes, the closer the probability distribution defined by
Π̂m

noisecoin approximates the one defined by Π̂m
coin, so the

value of w learned under Π̂m
noisecoin approximates the value

of w learned under Π̂m
coin where the noisy data is dropped.

4.3 Learning from Incomplete Interpretations
In the previous sections, we assume that the training data
is given as a (complete) interpretation, i.e., for each atom it
specifies whether it is true or false. In this section, we dis-
cuss the general case when the training data is given as a
partial interpretation, which omits to specify some atoms to
be true or false, or more generally when the training data is
in the form of a formula that more than one stable model
may satisfy.

Given a non-ground LPMLN program Π such that SM[Π]
is not empty and given a ground formula O as the training
data, we have

PΠ(O) =

∑
I|=O,I∈SM[Π]WΠ(I)∑

J∈SM[Π]WΠ(J)
.

The partial derivative of lnPΠ(O) w.r.t. wi (6= α) turns
out to be
∂lnPΠ(O)

∂wi
= − E

I|=O,I∈SM[Π]
[ni(I)] + E

J∈SM[Π]
[ni(J)].

It is straightforward to extend Algorithm 2 to reflect the
extension. Computing the approximate value of the first term
− E

I|=O,I∈SM[Π]
[ni(I)] can be done by sampling on Πneg∪O.

5 LPMLN Weight Learning via Translations
to Other Languages

This section considers two fragments of LPMLN, for which
the parameter learning task reduces to the same tasks for
Markov Logic and ProbLog.

5.1 Tight LPMLN Program: Reduction to MLN
Weight Learning

By Theorem 3 in (Lee and Wang 2016), any tight LPMLN

program can be translated into a Markov Logic Network
(MLN) by adding completion formulas (Erdem and Lifs-
chitz 2003) with the weight α. This means that the weight
learning for a tight LPMLN program can be reduced to the
weight learning for an MLN.

Given a tight LPMLN program Π = 〈R,W〉 and one (not
necessarily complete) interpretation E as the training data,
the MLN Comp(Π) is obtained by adding completion for-
mulas with weight α to Π.

The following theorem tells us that the weight assignment
that maximizes the probability of the training data under
LPMLN programs is identical to the weight assignment that
maximizes the probability of the same training data under an
MLN Comp(Π).

Theorem 4 Let L be the Markov Logic Network Comp(Π)
and let E be a ground formula (as the training data). When
SM[Π] is not empty,

argmax
w

PΠ̂(w)(E) = argmax
w

PL̂(w)(E).

(L̂ is a parameterized MLN obtained from L.)

Thus we may learn the weights of a tight LPMLN program
using the existing implementations of Markov Logic, such
as ALCHEMY and TUFFY.

5.2 Coherent LPMLN Program: Reduction to
Parameter Learning in ProbLog

For another special class of LPMLN programs, weight learn-
ing can be reduced to weight learning in ProbLog (Fierens
et al. 2013).

We say an LPMLN program Π is simple if all soft rules in
Π are of the form

w : A

where A is an atom, and no atoms occurring in the soft rules
occur in the head of a hard rule.

We say a simple LPMLN program Π is k-coherent (k > 0)
if, for any truth assignment to atoms that occur in Πsoft,
there are exactly k probabilistic stable models of Π that sat-
isfies the truth assignment. We also apply the notion of k-
coherency when Π is parameterized.

Without loss of generality, we assume that no atom oc-
curs more than once in Πsoft. (If one atom A occurs in mul-
tiple rules w1 : A, . . . , wn : A, these rules can be combined
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into w1 + · · · + wn : A.) A k-coherent LPMLN program Π
can thus be identified with the tuple 〈PF,Πhard,w〉, where
PF = (pf1, . . . , pfm) is a list of (possibly non-ground)
atoms that occur as soft rules in Π, Πhard is a set of hard
rules in Π, and w = (w1, . . . , wm) is the list of soft rule’s
weights, where wi is the weight of pfi.

A ProbLog program can be viewed as a tuple 〈PF,R,pr〉
where PF is a list of atoms called probabilistic facts, R is a
set of rules such that no atom that occurs in PF occurs in the
head of any rule in R, and pr is a list (p1, . . . , p|PF |), where
each pi is the probability of probabilistic atom pfi ∈ PF . A
parameterized ProbLog program is similarly defined, where
pr is a list of parameters to be learned.

Given a list of probabilities pr = (p1, . . . , pn), we con-
struct a list of weights wpr = (w1, . . . , wn) as follows:

wi = ln(
pi

1− pi
) (5)

for i ∈ {1, . . . n}.
The following theorem asserts that weight learning on a

1-coherent LPMLN program can be done by weight learning
on its corresponding ProbLog program.

Theorem 5 For any 1-coherent parameterized LPMLN pro-
gram 〈PF, P,w〉 and any interpretation T (as the training
data), we have

w = argmax
w

P〈PF,P,w〉(T )

if and only if
w = wpr and pr = argmax

pr
P〈PF,P,pr〉(T ).

According to the theorem, to learn the weights of a 1-
coherent LPMLN program, we can simply construct the
corresponding ProbLog program, perform ProbLog weight
learning, and then turn the learned probabilities into LPMLN

weights according to (5).
In (Lee and Wang 2018), k-coherent programs are shown

to be useful for describing dynamic domains. Intuitively,
each probabilistic choice leads to the same number of histo-
ries. For such a k-coherent LPMLN program, weight learn-
ing given a complete interpretation as the training data can
be done by simply counting true and false ground instances
of soft atomic facts in the given interpretation.

For an interpretation I and ci ∈ PF , let mi(I) and ni(I)
be the numbers of ground instances of ci that is true in I and
false in I , respectively.

Theorem 6 For any k-coherent parameterized LPMLN pro-
gram 〈PF,Πhard,w〉, and any (complete) interpretation I
(as the training data), we have

argmax
w

P〈PF,Πhard,w〉(I;w) =
(
ln
m1(I)

n1(I)
, . . . , ln

m|PF |(I)

n|PF |(I)

)
.

6 Implementation and Examples
We implemented Algorithm 2 and its extensions described
above using CLINGO, LPMLN2ASP, and a near-uniform an-
swer set sampler XORRO . The implementation LPMLN-
LEARN is available at https://github.com/ywng485/lpmln-
learning together with a manual and some examples.

In this section, we show how the implementation allows
for learning weights in LPMLN from the data enabling learn-
ing parameters in knowledge-rich domains.

For all the experiments in this section, δ is set to be 0.001.
λ is fixed to 0.1 and 50 samples are generated for each call
of MC-ASP. The parameters for XORRO are manually tuned
to achieve the best performance for each specific example.

6.1 Learning Certainty Degrees of Hypotheses
The LPMLN weight learning algorithm can be used to learn
the certainty degree of a hypothesis from the data. For exam-
ple, consider a person A carrying a certain virus contacting
a group of people. The virus spreads among them as people
contact each other. We use the following ASP facts to spec-
ify that A carries the virus and how people contacted each
other:

carries_virus("A").
contact("A", "B"). contact("B", "C"). ...

Consider two hypotheses that a person carrying the virus
may cause him to have a certain disease, and the virus may
spread by contact. The hypotheses can be represented in the
input language of LPMLN-LEARN by the following rules,
where w(1) and w(2) are parameters to be learned:

@w(1) has_disease(X) :- carries_virus(X).
@w(2) carries_virus(Y) :- contact(X, Y),

carries_virus(X).

The parameterized LPMLN program consists of these two
rules and the facts about contact relation. The training data
specifies whether each person carries the virus and has the
disease, for example:

:- not carries_virus("E"). :- carries_virus("H").
...
:- not has_disease("A"). :- has_disease("H").

The learned weights tell us how certain the data support
the hypotheses. Note that the program models the transitive
closure of the carries_virus relation, which is not prop-
erly done if the program is viewed as an MLN.7 Learning un-
der the MLN semantics results in weights that associate un-
reasonably high probabilities to people carrying virus even
if they were not contacted by people with virus.

For example, consider the following graph

where A is the person who initially carries the virus, triangle-
shaped nodes represent people who carry virus in the ev-
idence, and the edges denote the contact relation. The
cluster consisting of E, F, and G has no contact with the clus-
ter consisting of A, B, C, and D. The following table shows

7That is, identifying the rule H ← B with a formula in first-
order logic B → H .
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Figure 1: Example Communication Network

the probability of each person carrying the virus, which is
derived from the weights learned in accordance with Markov
Logic and LPMLN, respectively. We use ALCHEMY for the
weight learning in Markov Logic.

Person MLN LPMLN carries virus
(ground truth)

B 0.823968 0.6226904833 Y
C 0.813969 0.6226904833 Y
D 0.818968 0.6226904833 N
E 0.688981 0 N
F 0.680982 0 N
G 0.680982 0 N

As can be seen from the table, under MLN, each of E, F, G
has a high probability of carrying the virus, which is unintu-
itive.

6.2 Learning Probabilistic Graphs from
Reachability

Consider an (unstable) communication network such as the
one in Figure 1, where each node represents a signal station
that sends and receives signals. A station may fail, making
it impossible for signals to go through the station. The fol-
lowing LPMLN rules define the connectivity between two
stations X and Y in session T.

connected(X,Y,T) :- edge(X,Y), not fail(X,T),
not fail(Y,T).

connected(X,Y,T) :- connected(X,Z,T), connected(Z,Y,T).

A specific network can be defined by specifying edge rela-
tions, such as edge(1,2). Suppose we have data showing
the connectivity between stations in several sessions. Based
on the data, we could make decisions such as which path
is most reliable to send a signal between the two stations.
Under the LPMLN framework, this can be done by learning
the weights representing the failure rate of each station. For
the network in Figure 1, we write the following rules whose
weights w(i) are to be learned:

@w(1) fail(1, T). ... @w(10) fail(10, T).

Here T is the auxiliary argument to allow learning
from multiple training examples, as described in Sec-
tion 4.1. The training example contains constraints either
:- not connected(X,Y) for known connected stations
X and Y or :- connected(X,Y) for known disconnected
stations X and Y. Since the training data is incomplete in
specifying the connectivity between the stations, we use the

Figure 2: Convergence Behavior of Failure Rate Learning

extension of Algorithm 2 described in Section 4.3. The fail-
ure rates of the stations can be obtained from the learned
weights as ew(i)

e0+ew(i)
.

We execute learning on graphs with 10, 12, . . . , 18, 20
nodes, where the graph with 10 nodes is shown in Figure 1.
We add 1, 2, . . . , 5 layers of 2 nodes between Node 1 and
Node 2, 4 to obtain the other graphs, where there is an edge
between every node in one layer and every node in the pre-
vious and next layer. Figure 2 shows the convergence be-
havior over time in terms of the sum of the absolute values
of gradients of all weights. Running time is mostly spent by
the uniform sampler for answer sets. The experiments are
performed on a machine with 4 Intel(R) Core(TM) i5-2400
CPU with OS Ubuntu 14.04.5 LTS and 8 GB memory.

Figure 2 shows that convergence takes longer as the num-
ber of nodes increases, which is not surprising. Note that the
current implementation is not very efficient. Even for graphs
with 10 − 20 nodes, it takes 1500 − 2000 seconds to ob-
tain a reasonable convergence. The computation bottleneck
lies in the uniform sampler used in Step 2(c) of Algorithm 1
whereas creating Πneg and turning LPMLN programs into
ASP programs are done instantly. The uniform sampler that
we use, XORRO, follows Algorithm 2 in (Gomes, Sabhar-
wal, and Selman 2007). It uses a fixed number of random
XOR constraints to prune out a subset of stable models, and
randomly select one remaining stable model to return. The
process of solving for all stable models after applying XOR
constraints can be very time-consuming.

In this example, it is essential that the samples are gen-
erated by an ASP solver because information about node
failing needs to be correctly derived from the connectivity,
which involves reasoning about the transitive closure.

As Theorem 5 indicates, this weight learning task can al-
ternatively be done through ProbLog weight learning. We
use PROBLOG,8 an implementation of ProbLog. The perfor-
mance of PROBLOG on weight learning depends on the tight-
ness of the input program. We observed that for many tight
programs, PROBLOG appears to have better scalability than
our prototype LPMLN-LEARN. However, PROBLOG system
does not show a consistent performance on non-tight pro-
grams, such as the encoding of the network example above,

8https://dtai.cs.kuleuven.be/problog/
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possibly due to the fact that it has to convert the input pro-
gram into weighted Boolean formulas, which is expensive
for non-tight programs.9 We can identify many graph in-
stances of the network failure example where our prototype
system outperforms PROBLOG, as the density of the graph
gets higher. For example, consider the graph in Figure 1.
With the nodes fixed, as we add more edges to make the
graph denser, we eventually hit a point when PROBLOG does
not return a result within a reasonable time limit. Below is
the statistics of several instances.

# Edges LPMLN-LEARN PROBLOG PROBLOG
(with modified program)

10 351.237s 2.565s 0.846s
14 476.656s 2.854s 0.833s
15 740.656s > 20 min 0.957s
20 484.348s > 20 min 76.143s
40 304.407s > 20 min 26.642s

The input files to PROBLOG consist of two parts: edge lists
and the part that defines the node failure rates and connectiv-
ity. The latter is different for the second column and the third
column in the table. For the second column it is the same as
the input to LPMLN-LEARN:

t(_)::fail(1). ... t(_)::fail(10).

connected(X, Y):- edge(X, Y), not fail(X), not fail(Y).
connected(X, Y):- connected(X, Z), connected(Z, Y).

For the third column, we rewrite the rules to make the
Boolean formula conversion easier for PROBLOG. The input
program is:10

t(_)::fail(1). ... t(_)::fail(10).

aux(X, Y) :- edge(X, Y), not fail(X), not fail(Y).
connected(X, Y) :- aux(X, Y).
connected(X, Y) :- connected(X, Z), aux(Z, Y).

Although all graph instances have some cycles in the
graph, the difference between the instance with 14 edges and
15 edges is the addition of one cycle. Even with the slight
change in the graph, the performance of PROBLOG becomes
significantly slower.

6.3 Learning Parameters for Abductive
Reasoning about Actions

One of the successful applications of answer set program-
ming is modeling dynamic domains. LPMLN can be used
for extending the modeling to allow uncertainty. A high-
level action language pBC+ is defined as a shorthand nota-
tion for LPMLN (Lee and Wang 2018). The language allows
for probabilistic diagnoses in action domains: given the ac-
tion description and the histories where an abnormal behav-
ior occurs, how to find the reason for the failure? There, the

9The difference appears to be analogous to the different ap-
proaches to handling non-tight programs by answer set solvers,
e.g., the translation-based approach such as ASSAT and CMODELS
and the native approach such as CLINGO.

10This was suggested by Angelika Kimmig (personal communi-
cation)

probabilities are specified by the user. This can be enhanced
by learning the probability of the failure from the example
histories using LPMLN-LEARN.11 In this section, we show
how LPMLN weight learning can be used for learning pa-
rameters for abductive reasoning in action domains. Due to
the self-containment of the paper, instead of showing pBC+
descriptions, we show its counterpart in LPMLN.

Consider the robot domain described in (Iwan 2002): a
robot located in a building with 2 rooms r1 and r2 and a
book that can be picked up. The robot can move to rooms,
pick up the book, and put down the book. Sometimes ac-
tions may fail: the robot may fail to enter the room, may
fail to pick up the book, and may drop the book when it has
the book. The domain can be modeled using answer set pro-
grams, e.g., (Lifschitz and Turner 1999). We illustrate how
such a description can be enhanced to allow abnormalities,
and how the LPMLN weight learning method can learn the
probabilities of the abnormalities given a set of actions and
their effects.

We introduce the predicate Ab(i) to represent that
some abnormality occurred at step i, and the predicate
Ab(AbnormalityName, i) to represent that a specific ab-
normality AbnormalityName occurred at step i. The oc-
currences of specific abnormalities are controlled by proba-
bilistic fact atoms and their preconditions. For example,

w1 : Pf 1(i)

α : Ab(EnterFailed, i)← Pf 1(i), Ab(i).

defines that the abnormality EnterFailed occurs with proba-
bility ew1

ew1+1 (controlled by the weighted atomic fact Pf 1(i),
which is introduced to represent the probability of the occur-
rence of EnterFailed) at time step i if there is some abnor-
mality at time step i. Similarly we have

w2 : Pf 2(i)

α : Ab(DropBook, i)← Pf 2(i), Ab(i).

w3 : Pf 3(i)

α : Ab(PickupFailed, i)← Pf 3(i), Ab(i).

When we describe the effect of actions, we need to specify
“no abnormality” as part of the precondition of the effect:
The location of the robot changes to room r if it goes to
room r unless abnormality EnterFailed occurs:
α : LocRobot(r, i+ 1)← Goto(r, i), not Ab(EnterFailed, i).

The location of the book is the same as the location of the
robot if the robot has the book:
α : LocBook(r, i)← LocRobot(r, i),HasBook(T, i).

The robot has the book if it is at the same location as
the book and it picks up the book, unless abnormality
PickupFailed occurs:
α : HasBook(TRUE, i+ 1)← PickupBook(TRUE, i),

LocRobot(r, i), LocBook(r, i), not Ab(PickupFailed, i).

11ProbLog could not be used in place of LPMLN here because it
has the requirement that every total choice leads to exactly one well
founded model, and consequently does not support choice rules,
which has been used in the formalization of the robot example in
this section.
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The robot loses the book if it puts down the book:

α : HasBook(FALSE, i+ 1)← PutdownBook(TRUE, i).

The robot loses the book if abnormality DropBook occurs:

α : HasBook(FALSE, i+ 1)← Ab(DropBook, i).

The commonsense law of inertia for each fluent is specified
by the following hard rules:

α : {LocRobot(r, i+ 1)} ← LocRobot(r, i), astep(i).
α : {LocBook(r, i+ 1)} ← LocBook(r, i), astep(i).

α : {HasBook(b, i+ 1)} ← HasBook(b, i), astep(i).

For the lack of space, we skip the rules specifying the
uniqueness and existence of fluents and actions, rules spec-
ifying that no two actions can occur at the same timestep,
and rules specifying that the initial state and actions are ex-
ogenous.

We add the hard rule

α : Ab(i)← astep(i)

to enable abnormalities for each timestep i.
To use multiple action histories as the training data, we

use the method from Section 4.1 and introduce an extra ar-
gument to every predicate, that represents the action history
ID.

We then provide a list of 12 transitions as the training
data. For example, the first transition (ID =1) tells us that
the robot performed goto action to room r2, which failed.

:- not loc_robot("r1",0,1). :- not loc_book("r2",0,1).
:- not hasBook("f",0,1). :- not goto("r2",0,1).
:- not loc_robot("r1",1,1).

Among the training data, enter failed occurred 1
time out of 4 attempts, pickup failed occurred 2 times
out of 4 attempts, and drop book occurred 1 time out of
4 attempts. The transitions are partially observed data in the
sense that they specify only some of the fluents and actions;
other facts about fluents, actions and abnormalities have to
be inferred.

Note that this program is (|A| + 1)-coherent, where |A|
is the number of actions (i.e., Goto, PickupBook and
DropBook) and 1 is for no actions. We execute gradient
ascent learning with 50 learning iterations and 50 sampling
iterations for each learning iteration. The weights learned
are

Rule 1: -1.084 Rule 2: -1.064 Rule 3: -0.068

The probability of each abnormality can be computed from
the weights as follows:

P (enter failed) =
exp(−1.084)

exp(−1.084) + 1
≈ 0.253

P (drop book) =
exp(−1.064)

exp(−1.064) + 1
≈ 0.257

P (pickup failed) =
exp(−0.068)

exp(−0.068) + 1
≈ 0.483

The learned weights of pf atoms indicate the probability
of the action failure when some abnormal situation ab(I,
ID) happens. This allows us to perform probabilistic diag-
nostic reasoning in which parameters are learned from the
histories of actions. For example, suppose the robot and the
book were initially at r1. The robot executed the following
actions to deliver the book from r1 to r2: pick up the book;
go to r2; put down the book. However, after the execution, it
observes that the book is not at r2. What was the problem?

Executing system LPMLN2ASP on this encoding tells us
that the most probable reason is that the robot fails at pick-
ing up the book. However, if we add that the robot itself is
also not at r2, then LPMLN2ASP computes the most prob-
able stable model to be the one that has the robot failed at
entering r2.

7 Conclusion
The work presented relates answer set programming to
learning from data, which has been under-explored, with
some exceptions like (Law, Russo, and Broda 2014; Nickles
2016). Via LPMLN, learning methods developed for Markov
Logic can be adapted to find the weights of rules under
the stable model semantics, utilizing answer set solvers for
performing MCMC sampling. Rooted in the stable model
semantics, LPMLN learning is useful for learning parame-
ters for programs modeling knowledge-rich domains. Unlike
MC-SAT for Markov Logic, MC-ASP allows us to infer the
missing part of the data guided by the stable model seman-
tics. Overall, the work paves a way for a knowledge repre-
sentation formalism to embrace machine learning methods.

The current LPMLN learning implementation is a proto-
type with the computational bottleneck in the uniform sam-
pler, which is used as a blackbox. Unlike the work in ma-
chine learning, sampling has not been much considered in
the context of answer set programming, and even the exist-
ing sampler we adopted was not designed for iterative calls
as required by the MCMC sampling method. This is where
we believe a significant performance increase can be gained.
Using the idea such as constrained sampling (Meel et al.
2016) may enhance the solution quality and the scalability
of the implementation, which is left for future work.

PrASP (Nickles and Mileo 2014) is related to LPMLN in
the sense that it is also a probabilistic extension of ASP.
Weight learning in PrASP is very similar to weight learn-
ing in LPMLN: a variation of gradient ascent is used to up-
date the weights so that the weights converge to a value that
maximizes the probability of the training data. In PrASP set-
ting, it is a problem that the gradient of the probability of
the training data cannot be expressed in a closed form, and
is thus hard to compute. The way how PrASP solves this
problem is to approximate the gradient by taking the differ-
ence between the probability of training data with current
weight and with current weight slightly incremented. The
probability of training data, given fixed weights, is computed
with inference algorithms, which typically involve sampling
methods.

In this paper, we only considered LPMLN weight learning
with the basic gradient ascent method. There are several ad-
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vanced weight learning techniques and sophisticated prob-
lem settings used for MLN weight learning that can possibly
be adapted to LPMLN. For example, (Lowd and Domingos
2007) discussed some enhancement to the basic gradient as-
cent, (Khot et al. 2011) proposed a method for learning the
structure and the weights simultaneously, and (Mittal and
Singh 2016) discussed how to automatically identify clus-
ters of ground instances of a rule and learn different weight
for each of these clusters.
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