
Computing Logic Programs with Ordered
Disjunction Using asprin

Joohyung Lee, Zhun Yang
School of Computing, Informatics and Decision Systems Engineering

Arizona State University, Tempe, AZ, USA
{joolee, zyang90}@asu.edu

Abstract
Logic Programs with Ordered Disjunction (LPOD) is an ex-
tension of standard answer set programs to handle preference
using the high-level construct of ordered disjunction whereas
asprin is a recently proposed, general, flexible, and exten-
sible framework that provides low-level constructs for repre-
senting preference in answer set programming. We present an
encoding of LPOD in the language of asprin and the imple-
mentation of LPOD called LPOD2ASPRIN based on the en-
coding. Unlike the known method that applies only to a frag-
ment of LPOD, our translation is general, direct, and simpler.
It also leads to more efficient computation of LPOD using
asprin .

1 Introduction
Logic Programs with Ordered Disjunction (LPOD) (Brewka
2002) is an extension of standard answer set programs to
handle preference using the high-level construct of ordered
disjunction. asprin (Brewka et al. 2015b) is a recently pro-
posed, general, flexible, and extensible framework for ex-
pressing and computing preferences in answer set program-
ming, and, as such, the preference specification in the lan-
guage of asprin is in a lower level than LPOD. Representing
high-level preference constructs in the language of asprin
could be verbose, and end-users may find it complicated
to use. To alleviate the problem, asprin provides a library
that implements several preference types, such as subset,
less(weight), and ASO. However, LPOD preference
types are not one of them.

In (Brewka, Niemelä, and Syrjänen 2004), LPOD is im-
plemented using SMODELS by interleaving the execution
of two ASP programs—a generator which produces candi-
date answer sets and a tester which checks whether a given
candidate answer set is most preferred or produces a more
preferred candidate answer set otherwise. In principle, the
encodings in (Brewka, Niemelä, and Syrjänen 2004) can
be used with asprin to implement LPOD. However, this
method introduces a large number of translation rules and
auxiliary atoms since it does not utilize the main component
of asprin , preference statements.

In fact, it is known that using preference statements, some
fragment of LPOD can be represented in the language of

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

asprin via the translation into Answer Set Optimization
(ASO). Brewka, Niemelä, and Truszczynski (2003) show
how to turn LPOD under Pareto-preference into ASO pro-
grams, and Brewka et al. (2015a) show that ASO programs
can be represented in asprin . By combining the two results,
the fragment of LPOD can be represented in asprin . It is
also mentioned that LPOD under inclusion-preference can
be turned into “ranked” ASO (Brewka et al. 2015a) but the
representation appears quite complicated. Furthermore, it is
not known how the results apply to the other LPOD prefer-
ence criteria.

This paper presents a more direct and simpler transla-
tion from LPOD into the language of asprin , handling all
four preference criteria from (Brewka 2005) in a uniform
way. Based on the translation, we implemented the system
LPOD2ASPRIN, which translates LPOD programs into the
input language of asprin and internally invokes the asprin
system. Our experiments show that the system is more scal-
able than the other methods of computing LPOD.

2 Review of LPOD and asprin

2.1 Review: LPOD
A (propositional) LPOD Π is Πreg ∪Πod, where its regular
part Πreg consists of usual ASP rules Head ← Body, and
its ordered disjunction part Πod consists of LPOD rules of
the form

C1 × · · · × Cn ← Body (1)

in which Ci are atoms, n is at least 2, and Body is a conjunc-
tion of atoms possibly preceded by not. Rule (1) says “when
Body is true, if possible then C1; if C1 is not possible then
C2; . . . ; if all of C1, . . . , Cn−1 are not possible then Cn.”

Candidate answer sets are defined via the notion of split
programs in (Brewka 2002). Based on the notion of a satis-
faction degree of a rule by a candidate answer set, Brewka
(2005) defined preferred answer sets under four prefer-
ence criteria: cardinality-preferred (c), inclusion-preferred
(i), Pareto-preferred (p), penalty-sum-preferred (ps) answer
sets. We refer the reader to that paper for the details.

A set X of atoms is an s-preferred (s ∈ {c, i, p, ps}) an-
swer set of an LPOD Π if X is a candidate answer set of Π
and there is no candidate answer set X ′ of Π such that X ′ is
preferred to X w.r.t. preference criterion s.

Proceedings of the Sixteenth International Conference on
Principles of Knowledge Representation and Reasoning (KR 2018)

57

2.2 Review: asprin

Figure 1: asprin Framework

asprin computes the most preferred answer sets of an
ASP program P according to a preference specification F̂s
by repeated calls to CLINGO as in Figure 1. First, an arbitrary
answer set of P is generated as X ′. Second, asprin tries to
find an answer set X of P that is better than (i.e., preferred
to)X ′ by running CLINGO on P ∪Fs∪Ets∪H ′X′∪RA∪C,
each of which is defined below. If CLINGO finds an answer
set, which encodes the answer set X of P that is “better”
than X ′, asprin replaces X ′ by X , and repeats the second
step until CLINGO finds no answer sets, at which point X ′ is
determined to be a most preferred answer set.

1. P is the base program, which consists of usual ASP rules.
The answer sets of P are the “candidate answer sets” to
apply a preference criterion.

2. F̂s is the preference specification consisting of a single
optimization directive of the form

#optimize(s) (2)

and a single1 preference statement of the form

#preference(s, t){e1; . . . ; en} (3)

where n ≥ 0, and s is the identifier name of a preference
relation, and t is the type of the preference relation. Each
ei is a preference element of the form

φ1 > · · · > φm

where m ≥ 1 and each φi is a literal (an atom possibly
preceded by not).2 Intuitively, each index 1, . . . ,m gives
the rank of the corresponding literal. The preference state-
ment (3) declares a preference relation named s. Each
preference element in {e1, . . . , en} gives a ranking of a
set of literals while preference type t determines in which
case one candidate answer set is better than another based
on the ranking. The optimization directive (2) specifies
which preference relation asprin uses for optimization.
1asprin in fact allows multiple preference statements in the in-

put but for simplicity of the presentation we assume a single pref-
erence statement.

2In general, asprin allows for a more general syntax of pref-
erence elements. For the purpose of this paper, it is sufficient to
consider this simple fragment.

3. Fs is obtained from the preference specification F̂s by
turning the optimization directive (2) into an ASP fact

optimize(s)

and turning the preference statement (3) into an ASP fact

preference(s, t)

along with

preference(s, i, j, for(tφj), ())

for each j-th literal φj in the i-th preference element ei
in (3). The term tφj is defined as a if the literal φj is an
atom a, and is neg(a) if the literal φj is “not a”. 3

4. Ets is the preference encoding for ts, where ts is the type
of the preference relation named s. It defines a reserved
predicate better(s), which is true iff there exists a candi-
date answer set X that is preferred to X ′ according to
preference type ts and the facts in Fs. In Section 3.3,
we show four preference encodings Elpod(c), Elpod(i),
Elpod(p), and Elpod(ps) for each of the four preference
types (i.e., criteria) for LPOD.

5. H ′X′ is the set of ASP facts

{holds′(a) | a ∈ X ′}

which reifies the atoms in X ′ in the form of holds′(·).4

6. RA is the set of ASP rules

{holds(a)← a | a is an atom in P}

which reifies the atoms in any candidate answer set X in
the form of holds(·).

7. C is a set of (domain-independent) ASP rules as follows.

⊥ ← not better(S), optimize(S). (4)
holds(neg(A))← not holds(A),

preference(, , , for(neg(A)),). (5)

holds′(neg(A))← not holds′(A),

preference(, , , for(neg(A)),). (6)

Rule (4) instructs the asprin system to find an answer
set X that is better than X ′ according to the preference
relation S. Rule (5) is about X , which is reified in the
form of holds(·): for the literal of the form “not A” in the
preference statement (3), it says holds(neg(A)) is true if
holds(A) is false in the reified X (i.e., X 6|= A). Simi-
larly, rule (6) is about X ′, which is reified in the form of
holds′(·).

Given a program P and a preference specification F̂s, we
say an answer set X of P is a preferred answer set of P
w.r.t. F̂s if P ∪ Fs ∪ Et ∪ H ′X ∪ RA ∪ C has no answer
set, where t is the type of the preference relation s declared
in F̂s.

3The last term is empty because we consider φj as a non-
weighted formula.

4Note that this is based on the definition of H ′
X , which is the

set of ASP facts {holds′(a) | a ∈ X}.

58

3 Representing LPOD in asprin
Let Π be an LPOD where Πod consists of m propositional
rules as follows.

1 : C1
1 × · · · × C

n1
1 ← Body1
. . . (7)

m : C1
m × · · · × Cnm

m ← Bodym

where 1, . . . ,m are rule indices; ni ≥ 2 for 1 ≤ i ≤ m.
In the following subsections, we present the component

programs of asprin that encode LPOD Π, namely, P , F̂s,
Ets . The other components, Fs, H ′X , RA and C are gener-
ated as described in Section 2.2.

3.1 Base Program P

For the LPOD program Π = Πreg ∪ Πod, the base program
P contains all rules in Πreg and, for each LPOD rule

C1
i × · · · × C

ni
i ← Bodyi

in Πod, P contains

bodyi ← Bodyi (8)

{C1
i } ← bodyi (9)
. . .

{Cni−1
i } ← bodyi, not C1

i , . . . , not Cni−2
i (10)

Cni
i ← bodyi, not C1

i , . . . , not Cni−1
i (11)

Rule (8) defines the case when the body of rule i is true.
Rules (9)–(10) say that if the body of rule i is true and each
Cji is false (j ∈ {1, . . . , k − 1}), then Cki is possibly true.
Rule (11) says that if the body of rule i is true andCji is false
for all j ∈ {1, . . . , ni − 1}, then Cni

i must be true.
The above method of generating candidate answer sets us-

ing choice rules is from (Cabalar 2011). It is not difficult to
check that the answer sets of this program P are the candi-
date answer sets of LPOD Π (ignoring bodyi atoms).

Proposition 1 For any LPOD Π and any set X of atoms
in Π, X is a candidate answer set of Π iff X ∪ {bodyi |
X satisfies the body of rule i in Πod} is an answer set of P .

Example 1 Consider the following LPOD Π about picking
a hotel near the Grand Canyon. hotel(1) is a 2-star hotel
but is close to the Grand Canyon, hotel(2) is a 3-star hotel
and the distance is medium, and hotel(3) is a 4-star hotel
but is too far.
close×med× far × tooFar.
star4× star3× star2.
1{hotel(X) : X = 1..3}1.
← hotel(1), not close.
← hotel(1), not star2.

← hotel(2), not med.
← hotel(2), not star3.
← hotel(3), not tooFar.
← hotel(3), not star4.

The P -component of asprin obtained from this LPOD Π is
the following.

body_1.
{close} :- body_1.
{med} :- body_1, not close.
{far} :- body_1, not close, not med.
tooFar :- body_1, not close, not med, not far.

body_2.
{star4} :- body_2.
{star3} :- body_2, not star4.
star2 :- body_2, not star4, not star3.

1{hotel(X): X=1..3}1.
:- hotel(1), not close. :- hotel(1), not star2.
:- hotel(2), not med. :- hotel(2), not star3.
:- hotel(3), not tooFar. :- hotel(3), not star4.

The answer sets of the P -component are

{hotel(1), close, star2, body1, body2}
{hotel(2), med, star3, body1, body2}
{hotel(3), tooFar, star4, body1, body2}

which are exactly the unions of the candidate answer sets of
Π and {body1, body2}.

3.2 Preference Specification F̂s

F̂s contains an optimization directive

#optimize(s)

and a preference statement

#preference(s, lpod(s)) {
not body1 > C1

1 > · · · > Cn1
1 ;

. . . (12)

not bodym > C1
m > · · · > Cnm

m }

where s ∈ {c, i, p, ps} denotes one of the four preference
criteria for LPOD, and each line of (12) is associated with
each LPOD rule to specify satisfaction degrees. Intuitively,
to check the satisfaction degree of an LPOD rule i, we check
the truth value of the literals in the order specified in the i-
th preference element. We first check whether not bodyi is
true. If not bodyi is true, i.e., the body of rule i is false, the
satisfaction degree is 1 and we do not have to check further;
and if it is not the case, check whether C1

i is true, and so on.

Example 1 (Continued) For LPOD Π which contains
LPOD rules

close×med× far × tooFar
star4× star3× star2

to find its cardinality-preferred answer sets, we set the pref-
erence criterion s to c, and let F̂s be the following.

#optimize(c).

#preference(c, lpod(c)) {
not body_1 >> close >> med >> far >> tooFar ;
not body_2 >> star4 >> star3 >> star2

}.

asprin internally turns F̂s into Fs as follows.

59

optimize(c).

preference(c, lpod(c)).

preference(c, 1, 1, for(neg(body_1)), ()).
preference(c, 1, 2, for(close), ()).
preference(c, 1, 3, for(med), ()).
preference(c, 1, 4, for(far), ()).
preference(c, 1, 5, for(tooFar), ()).

preference(c, 2, 1, for(neg(body_2)), ()).
preference(c, 2, 2, for(star4), ()).
preference(c, 2, 3, for(star3), ()).
preference(c, 2, 4, for(star2), ()).

The facts optimize(c) and preference(c, lpod(c)) as-
sert that we optimize according to the preference state-
ment c of type lpod(c) (inclusion preference). The fact
preference(c, 2, 1, for(neg(body 2)), ()) asserts that the
first literal of the second preference element of the prefer-
ence statement c is “not body 2”.

3.3 Preference Encoding Ets

The aim ofEts is to find an answer setX (reified in the form
of holds(·)) that is better than (i.e., preferred to) the current
answer set X ′ (reified in the form of holds′(·)) with respect
to the preference type ts.

We introduce the preference encodings Ets for each ts ∈
{lpod(c), lpod(i), lpod(p), lpod(ps)}. Each Ets contains
the common rules Deg as defined below.

Degree The aim of Deg is to find the satisfaction degree
to which each LPOD rule R is satisfied by X or X ′.
Deg consists of the following two rules.

degree(R,D)← optimize(S), preference(S, lpod()),

preference(S,R, I, ,), D = #max{1; I − 1},
I = #min{J : holds(A), preference(S,R, J, for(A),)}.

(13)

degree′(R,D)← optimize(S), preference(S, lpod()),

preference(S,R, I, ,), D = #max{1; I − 1},
I = #min{J : holds′(A), preference(S,R, J, for(A),)}.

(14)

Rule (13) records the degree D to which rule R is satisfied
by X (X is reified in the form of holds(·)). It asserts that
if we want to optimize according to preference relation S
whose type is one of the four lpod(·) types, then we need
to calculate the satisfaction degree D for each rule R: D is
the maximum value of 1 and I − 1 where I is the index of
the first literal in the preference element R that is true in
X . Rule (14) is similar to rule (13) except that it finds the
satisfaction degree D of rule R for X ′.

Cardinality-Preferred Elpod(c) containsDeg and the fol-
lowing two rules:

worse2degree(S,D)← optimize(S), preference(S, lpod(c)),

degree
′
(, D),

#sum{ 1, R : degree(R,D);

− 1, R : degree
′
(R,D) } < 0. (15)

better(S)← optimize(S), preference(S, lpod(c)),

degree(, D),

#sum{ 1, R : degree(R,D);

− 1, R : degree
′
(R,D) } > 0,

not worse2degree(S, J) : J = 1..D − 1. (16)

Rule (15) defines the case when X is worse than, i.e., less
preferred to, X ′ at degree D: X satisfies less LPOD rules
to degree D than X ′. In this case, there must be at least
one LPOD rule that is satisfied to degree D by X ′, which
is guaranteed by degree′(, D). Rule (16) says that X is
better than X ′ according to the preference type lpod(c) if
there exists a degree D such that X is preferred to X ′ at
degree D (i.e., X satisfies more rules to degree D than X ′)
and X is not worse than X ′ at all lower degrees. Note that
“not worse2degree(S, J) : J = 1..D − 1” is a condi-
tional literal, and is equivalent to the conjunction of literals
“not worse2degree(S, J)” for all J ∈ {1, . . . , D − 1}.
Inclusion-Preferred Elpod(i) containsDeg and two rules:
prf2degree(S,D)← optimize(S), preference(S, lpod(i)),

degree(, D),

#count{J : degree(J,D), not degree′(J,D)} > 0,

degree(J,D) : degree′(J,D). (17)
better(S)← preference(S, lpod(i)),

prf2degree(S,D),

degree(R, J) : degree′(R, J), J < D. (18)

Rule (17) defines the case when X is preferred to X ′ at
degree D: (i) X satisfies at least one rule to degree D; (ii)
there is a rule J that is satisfied by X , but not by X ′, to
degree D; and (iii) all rules J that are satisfied by X ′ to de-
gree D are also satisfied by X to the same degree. Rule (18)
says that X is better than X ′ according to preference type
lpod(i) if there exists a degree D such that X is preferred
to X ′ at degree D, and any rule R that is satisfied by X ′ to
a lower degree than D should also be satisfied by X to the
same degree.

Pareto-Preferred Elpod(p) contains Deg and two rules:
equ(S)← optimize(S), preference(S, lpod(p)),

D1 = D2 : degree(R,D1), degree′(R,D2). (19)
better(S)← optimize(S), preference(S, lpod(p)),

not equ(S),

D1 ≤ D2 : degree(R,D1), degree′(R,D2). (20)

Rule (19) defines that X and X ′ are “equivalent” if they
satisfy each LPOD rule to the same degree. Rule (20) says
thatX is better thanX ′ according to preference type lpod(p)
if X is not “equivalent” to X ′, and X satisfies each LPOD
rule R to a degree that is the same or lower than the degree
to which X ′ satisfies R.

60

Figure 2: LPOD2ASPRIN System Overview

Penalty-Sum-Preferred Elpod(ps) contains Deg and one
rule:

better(S)← optimize(S), preference(S, lpod(ps)),

#sum{D,R : degree(R,D);

−D,R : degree′(R,D)} < 0.v (21)

Rule (21) says that X is better than X ′ according to pref-
erence type lpod(ps) if the sum of the degrees to which the
LPOD rules are satisfied by X is lower than the sum of the
degrees to which the LPOD rules are satisfied by X ′.

Theorem 1 For any LPOD Π, X is an s-preferred answer
set (s ∈ {c, i, p, ps}) of Π in the sense of LPOD iff X ∪
{bodyi | X satisfies the body of rule i in Πod} is a preferred
answer set of P w.r.t. F̂s in the sense of asprin , where P and
F̂s are obtained from Π as above.

4 LPOD2ASPRIN System
We implement system LPOD2ASPRIN as in Figure 2. The
system first translates an LPOD program Π into a base pro-
gram P and a preference specification F̂s in the language
of asprin as described in Sections 3.1 and 3.2, which are
fed into the asprin system along with other component pro-
grams. We put the encodings Elpod(c), Elpod(i), Elpod(p),
and Elpod(ps) in the asprin library. The encodings are ex-
actly the same as those in Section 3.3 except that we elimi-
nate the use of #min and #max by replacing rule (13) (and
rule (14) accordingly) with
degree(R,1) :- preference(S, lpod(_)),

preference(S,R,1,for(A),_), holds(A).
degree(R,D-1) :- preference(S, lpod(_)),

preference(S,R,D,for(A),_), holds(A), D>1,
not holds(B): preference(S,R,J,for(B),_), 0<J, J<D.

The reason for this change is because our experiments
show significant speed-up with the alternative encoding.

Finally, an s-preferred answer set of Π is obtained from
the output of asprin by removing the auxiliary atoms bodyi.

The LPOD2ASPRIN system homepage is

http : //reasoning.eas.asu.edu/lpod2asprin/

which contains the source code, the tutorial, examples and
some experimental results.

5 Related Work and Conclusion
We already mentioned the method of (Brewka et al. 2015a)
works under the Pareto preference. However, the reduction

under inclusion preference requires a translation from LPOD
to “ranked” ASO programs, which further requires a more
complex reduction to asprin . Besides, the reductions from
LPOD to ASO programs under cardinality and penalty-sum
preferences were not shown. In comparison, our method re-
duces LPOD directly to asprin , which yields a simpler and
uniform method that applies to all preference criteria for
LPOD.

Asuncion et al. (2014) present a first-order semantics of
logic programs with ordered disjunction by a translation into
second-order logic.

Lee and Yang (2018) show a reduction from LPOD to an-
swer set programs, where the semantics of each preference
type is also represented by standard ASP rules. Their reduc-
tion is one-pass: the preferred answer sets are computed by
calling an answer set solver one time by generating all candi-
date answer sets and then applying preference criteria unlike
the multiple calls to CLINGO in asprin .

asprin has a library of built-in preference types, but
LPOD preference is not one of them. Our preference en-
codings may be included in the asprin library to benefit the
end-users.

Acknowledgments: We are grateful to the anonymous ref-
erees for their useful comments. This work was partially
supported by the National Science Foundation under Grants
IIS-1526301 and IIS-1815337.

References
Asuncion, V.; Zhang, Y.; and Zhang, H. 2014. Logic pro-
grams with ordered disjunction: first-order semantics and
expressiveness. In Proceedings of the Fourteenth Interna-
tional Conference on Principles of Knowledge Representa-
tion and Reasoning, 2–11. AAAI Press.
Brewka, G.; Delgrande, J.; Romero, J.; and Schaub, T.
2015a. Implementing preferences with asprin. In Inter-
national Conference on Logic Programming and Nonmono-
tonic Reasoning, 158–172. Springer.
Brewka, G.; Delgrande, J. P.; Romero, J.; and Schaub, T.
2015b. asprin: Customizing answer set preferences without
a headache. In AAAI, 1467–1474.
Brewka, G.; Niemelä, I.; and Syrjänen, T. 2004. Logic pro-
grams with ordered disjunction. Computational Intelligence
20(2):335–357.
Brewka, G.; Niemelä, I.; and Truszczynski, M. 2003. An-
swer set optimization. In IJCAI, volume 3, 867–872.
Brewka, G. 2002. Logic programming with ordered disjunc-
tion. In AAAI/IAAI, 100–105.
Brewka, G. 2005. Preferences in answer set programming.
In CAEPIA, volume 4177, 1–10. Springer.
Cabalar, P. 2011. A logical characterisation of ordered dis-
junction. AI Communications 24(2):165–175.
Lee, J., and Yang, Z. 2018. Translating LPOD and CR-
Prolog2 into standard answer set programs. Theory and
Practice of Logic Programming (TPLP), 18(3-4), 589-606.
doi:10.1017/S1471068418000315.

61

