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Abstract

Argumentation mining involves identification of an attack re-
lation between natural language sentences. Bayesian infer-
ence characterizing argument-based reasoning addresses this
issue by calculating the posterior distribution over attack re-
lations given acceptability statuses of arguments. This paper
discusses the use of Bayesian model selection where graph-
theoretic properties impose restrictions on the graphic struc-
ture of attack relations.

Introduction
Statistical construction of an explanation or justification is
an important research issue of argumentation mining. This
paper deals with a model selection problem associated with
this issue. Suppose that Alice and Bob are planning to go out
together and discussing where to go.
Alice Let’s go to an opera show this weekend. (a)
Bob I feel like going to a soccer match. (b)
Alice I’m too sick to be outdoors for the soccer match. (c)
Alice I’m tired of watching losing games anymore. (d)

Given the above arguments, people would be able to guess
that they form the argumentative structure shown on the cen-
ter in Figure 1. However, this task is very difficult for ma-
chines even with state-of-the-art statistical natural language
processing.

By contrast, this paper addresses the task by solving the
inverse problem of argument-based reasoning. The inverse
problem means to estimate the posterior distribution over at-
tack relations given agents’ beliefs regarding acceptability
status of arguments. Now suppose that each agent accepts
its own claims at the end of the argument. accA = {a, c, d}
stands for Alice’s belief, accB = {b} stands for Bob’s one,
and acc = (accA,accB) stands for their beliefs. What we
want now is the posterior probability of an attack relation
att given observed acceptability status acc. Bayes’ theorem
allows the calculation as follows.

p(att|acc) ∝ p(acc|att)p(att) (1)

However, we here need to manage a difficult problem caus-
ing poor explainability, predictability and time complexity.
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Figure 1: Path graph (left), tree graph (center) and connected
bipartite graph (right) where each edge represents a symmet-
ric attack relation.

In terms of the explainability and predictability, if all attack
relations are taken into account then reflexive and transitive
attack relations, for instance, become the subject of calcu-
lation. It would be difficult to expect, in general, that such
unrealistic attack relations successfully explain observed ac-
ceptability status, and also predict unobserved acceptabil-
ity status. Moreover, in terms of the time complexity, if all
attack relations are taken into account then the calculation
of expression (1) is analytically intractable in general. This
is because the number of attack relations in consideration
grows exponentially depending on the increase of the num-
ber of arguments. In fact, there are 2n×n attack relations
given n arguments, and thus 65, 536 attack relations exist
even in the case of n = 4. Sampling approaches for ap-
proximate posterior inference cannot fundamentally solve
the problem in this situation because it is time-consuming
to converge.

Method
We thus give the Bayesian network shown in Figure 2,
and propose to use the Bayesian model selection technique,
so-called empirical Bayes. Empirical Bayes methods as-
sume models (i.e., deterministic parameters) defining a set
(i.e., a hypothesis space) of attack relations defined in each
model. They choose the best single model that maximizes
the marginal likelihood. That is, we use the point estimate
with type-II maximum likelihood in accordance with the fol-
lowing expression.

m̂ = argmax
m

p(acc|m)

= argmax
m

∑
att

p(acc|att)p(att|m) (2)
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Figure 2: The Bayesian network for an argument model. m,
φ, args, semAS , semLS are deterministic parameters for a
model, an attack-relation prior, a set of arguments, accept-
ability semantics, and logical semantics, respectively. Att,
Ext and Acc are random variables for attack relations, ex-
tensions and acceptability statuses, respectively.

The models we introduce here are graph-theoretic proper-
ties that impose restrictions on the graph structure of attack
relations. They include from any directed graph, i.e., the
most flexible model, to path graphs, i.e., relatively simple
model. Now we suppose three undirected models: a path-
graph model (i.e., connected line graphs) denoted by m1, a
tree-graph model (i.e., connected graphs without cycles) de-
noted by m2, and a connected-bipartite-graph model (i.e.,
connected graphs without odd cycles), denoted by m3. Fig-
ure 1 shows example graphs of each model.

The model m̂ selected in expression (2) is intuitively a
simple one that successfully explains acceptability status
acc. This intuition is formalized as a trade-off between data
fitness corresponding to p(acc|atti) and model complexity
corresponding to p(atti|m).

For simplicity, we now assume that model complexity is
defined with the number of possible attack relations. Given
4 arguments, there are 12 path graphs, 16 tree graphs and
19 connected bipartite graphs, and thus m1 is the simplest
model and m3 is the most complex model. Although the
simplest model m1 is good in terms of model complexity,
it does not have an attack relation that explains acc. That is,
for example, it makes no sense to think that the left attack re-
lation in Figure 1 causes Alice and Bob’s beliefs acc. Next,
the most flexible model m3 is good in terms of data fitness
because it includes the center (and correct) attack relation in
Figure 1. However, it is not good in terms of model com-
plexity because it includes other redundant attack relations
including the right attack relation in Figure 1. In contrast
to the models, m2 is the best model relatively resolving the
trade-off between model complexity and data fitness.

Correctness
The dataset we partially used is “Claim Stance Dataset (Bar-
Haim et al. 2017)” provided by IBM Debater. 72 claims with
topic ”Violent Games” were collected from this dataset. We
collected acceptability status of each of those claims from
100 anonymous individuals per each claim via an online sur-
vey. We averaged the statuses and then used the first 6 claims
with negative status and 6 claims with positive status. We de-
fined observations acc by those statuses, and used them in

Figure 3: The marginal likelihood of the twelve claims given
the graph-size models. We averaged five runs where each
run sampled distinct attack relations from each model with
a hundred trials.

the argument model.
A model is defined with a graph size, i.e., the number

of edges of a graph. Given twelve claims, we have sixty-
six, i.e., the combination 12C2, models. Figure 3 shows the
marginal likelihood of acc with respect to preferred and
complete semantics. The x-axis shows the number M of
graph edges, i.e., models. Here, we have assumed attack re-
lations sampled from each model with a hundred trials. This
allows us to avoid getting further involved with a complexity
problem. In spite of the fact, it is observed that the empiri-
cal Bayes brings out the sharp peak at M = 7 for complete
semantics and M = 12 for preferred semantics. This im-
plies that the claims favor those models, and that the models
based on graph sizes are reasonable choices to explain the
statuses of the claims.

Conclusions
Focusing on graph-theoretic properties of argumentation
frameworks, this paper introduced empirical Bayes in statis-
tical construction of justification. We empirically discussed
the effect of the use of the model selection technique.
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