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Abstract

Despite the great theoretical advancements in the area of Be-
lief Revision, there has been limited success in terms of im-
plementations. One of the hurdles in implementing revision
operators is that their specification (let alone their computa-
tion), requires substantial resources. On the other hand, im-
plementing a specific revision operator, like Dalal’s opera-
tor, would be of limited use. In a recent paper we generalised
Dalal’s construction defining a whole family of concrete revi-
sion operators, called Parametrised Difference revision oper-
ators or PD operators for short. This family is wide enough
to cover a whole range of different applications, and at the
same time it is easy to represent. In this paper we characterise
axiomatically the family of PD operators, study its computa-
tional complexity, and discuss its benefits for belief revision
implementations.

Introduction
The AGM framework (Alchourron et al. 1985), is the dom-
inant paradigm for the study of belief revision. It has been
studied extensively and lies on solid theoretical foundations
(see (Peppas 2008) for a survey). Yet despite the success of
its theoretical models, little has been done in terms of imple-
mentations of AGM belief revision operators. This is not to
say that important attempts have not been made; see for ex-
ample (Chou and Winslett 1991), (Williams and Sims 2000),
(Beierle and Kern-Isberner 2008). None of them however
has had the great impact on real-world applications that one
would except from a successful implementation of belief re-
vision.

There are at least two major obstacles to a successful im-
plementation of an AGM belief revision system, that can
work beyond toy example. The first is the high computa-
tional complexity of the belief revision process (Eiter and
Gottlob 1992); we will have more to say about this later in
the paper.

The second is the large amount of information that, in
principle, the user needs to provide to the system. Recall
that the AGM postulates for revision specify, not one, but
an entire class of revision functions. Hence, before a belief
revision system can answer any queries about the result of
revising a theory K by a sentence ϕ, denoted K ˚ ϕ, the user
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needs to specify the particular revision function ˚ she is in-
terested in. There are many ways that this can be done, but in
principle, they are all equivalent to specifying a family of to-
tal preorders over possible worlds; i.e., one total preorder for
each theory of the object language L ((Katsuno and Mendel-
zon 1991)). For a propositional language with n variables,
there exist 22n

theories; clearly an enormous number. Even
if one focuses only on a single theory K, one still needs to
specify a preorder ď over the 2n possible worlds.

Of course there are shortcuts. For example one can re-
quest only a partial specification of a preorder over worlds,
and fill in the remaining information automatically using
some (intuitive) default rule. In this case it is important that
the side-effects of the completion process are well under-
stood, and that the formal properties of the resulting revision
functions are thoroughly investigated. The other option is to
avoid the requirement for preorder specification altogether,
by choosing to implement only one concrete revision op-
erator. The problem of course is that such a system would
be rather limited in scope. Moreover, as far as concrete “off-
the-shelve” AGM revision operators go, there are not all that
many to choose from. Out of the few well known proposals,
like (Borgida 1985), (Winslett 1988), (Satoh 1988), (Weber
1986), it is only Dalal’s operator, (Dalal 1988), that satisfies
all the AGM postulates for revision.

In (Peppas and Williams 2016) we introduced an entire
class of concrete revision operators, all of which satisfy
the full set of AGM postulates for revision; they are called
Parametrised Difference revision operators, or PD opera-
tors for short. PD operators are essentially generalisations
of Dalal’s operator. Most importantly, each PD operator can
be fully specified from a preorder over the n propositional
variables of the object language L. In other words, a single
preorder over the n propositional variables, suffices to gen-
erate the preorders over possible worlds associated with all
22n

theories of L. This is a double exponential drop on the in-
formation required from the user. Moreover in (Peppas and
Williams 2016), PD operators were shown to be expressive
enough to cover a wide range of belief revision scenarios,
including ones on iterated revision (Peppas 2014).

In this paper we investigate the formal properties of PD
operators. No such investigation was carried out in (Peppas
and Williams 2016) as the focus in that paper was on kinetic
consistency and relevance; PD operators were essentially a
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by-product of that study. In particular, PD operators were
defined only constructively, and were introduced mainly as
a means to validate the postulates for kinetic consistency and
relevance.

Herein we provide an axiomatic characterisation of the
class of PD operators. Moreover we study the computational
complexity of PD operators and show that, although more
expressive than Dalal’s operator, they lie at the same level
of the polynomial hierarchy. Perhaps more importantly for
practical applications, when confined to Horn knowledge
bases, and the size of the queries are bounded by a constant,
the complexity of PD operators drops to linear time with re-
spect to the size of the knowledge base.

The rest of the paper is structured as follows. The next
section introduces some notation and terminology, followed
by a section covering the necessary background on AGM
belief revision and PD operators. Then, new axioms charac-
terising PD operators are formulated, accompanied by corre-
sponding representation results. The next section discusses
the representational cost of AGM revision, and compares the
effectiveness of PD operators with previous approaches in
dealing with this problem. This is followed by a section that
contains our study on the computational complexity of PD
operators. In the last section we provide some concluding
remarks.

Preliminaries
In this article we shall be working with a propositional
language L built over finitely many propositional variables.
The finite, nonempty set of all propositional variables (also
called atoms) is denoted by P. A literal is a variable in P or
the negation of a variable. If l is a literal containing the vari-
able α, then by l we denote the literal  α if l “ α, and the
literal α otherwise. The letters x, y, p, q, and z (possibly with
subscripts and/or superscripts) will always represent literals.
The letters A, B, C, D, and E (possible with subscripts and/or
superscripts) will always represent sets of literals. For a set
of literals A, we define A to be the set A “ tq : q P Au. We
will sometimes abuse notation and treat a set of literals A as
a sentence, namely the conjunction of all its literals, leaving
it to the context to resolve any ambiguity; thus for example,
in “A Ď B”, A is a set of literals whereas in “ A”, A is a
sentence.

The set of all interpretations over P is denotedM. Inter-
pretations will also be called possible worlds and are iden-
tified with the set of literals they satisfy. Like with any set
of literals, a possible world r may sometimes be treated as a
sentence (as for example in the expression “r _ r1q”. Possi-
ble worlds, or simply worlds, will be denoted with the letters
w, r, u, possibly with subscripts and/or superscripts.

Arbitrary sentences of L will be denoted by the Greek let-
ters ϕ, ψ (possibly with subscripts and/or superscripts). For
a set of sentences Γ of L, by CnpΓq we denote the set of all
logical consequences of Γ, i.e., CnpΓq “ tϕ P L: Γ |ù ϕu.
A theory K of L is any set of sentences of L closed under
|ù, i.e., K = CnpKq. We shall use the letters K, H, and T
to denote theories of L. The set of all consistent theories is
denoted by K . A theory K is complete iff for all sentences

ϕ P L, ϕ P K or  ϕ P K.
For a set of sentences Γ of L, rΓs denotes the set of all

possible worlds that satisfy Γ. Often we shall use the nota-
tion rϕs for a sentence ϕ P L, as an abbreviation of rtϕus. For
a theory K and a set of sentences Γ of L, we shall denote by
K`Γ the closure under |ù of KYΓ, i.e., K`Γ “ CnpKYΓq.
For a sentence ϕ P L we shall often write K`ϕ as an abbre-
viation of K ` tϕu.1

The AGM Framework
In the AGM framework, belief revision is modelled as a
function ˚ mapping a theory K and a sentence ϕ, to a the-
ory K ˚ ϕ, representing the result of revising K by ϕ. Al-
chourrón, Gärdenfors and Makinson have introduced a set
of eight postulates, numbered (K ˚ 1) - (K ˚ 8), that ought
to be satisfied by any rational revision function. These pos-
tulates are now known as the AGM postulates for revision,
and the functions that satisfy these postulates are known as
AGM revision functions (or simply revision functions).2

It turns out that any AGM revision function can be con-
structed with the use of a set of total preorders over possible
worlds; one total preorder ďK for each theory K. Recall that
a total preorder ďK overM is any binary relation inM that
is reflexive and transitive, and such that for all w,w1 P M,
w ďK w1 or w1 ďK w. As usual, ăK denotes the strict part
of ďK . Moreover, we shall write w «K w1 iff w ďK w1 and
w1 ďK w.

A total preorder ďK is said to be faithful to K iff for all
w,w1 P rMs, (i) if w P rKs then w ďK w1, and, (ii) if w P rKs
and w1 R rKs then w ăK w1.

Given a faithful preorder ďK for each theory K, one can
construct a revision function ˚ by means of the following
condition, (Katsuno and Mendelzon 1991):3

(ď˚) rK ˚ ϕs “ minprϕs,ďKq.

In the above definition, minpS ,ďKq is the set of minimal
elements of the set S with respect to ďK ; i.e., minpS ,ďKq =
tw P S : for all w1 P S , if w1 ďK w, then w ďK w1u. Hence
according to (ď˚), K ˚ ϕ is defined as the theory satisfied
precisely by the ďK-minimal worlds in rϕs.

Katsuno and Mendelzon have shown that the functions
induced from faithful preorders via (ď˚) are exactly those
satisfying the AGM postulates for revision.

For ease of presentation, in the rest of the paper we shall
focus only on revision of consistent theories by consistent
sentences. Hence from now on, unless explicitly stated oth-
erwise, we assume that the initial belief set K is a consistent
theory, and that the epistemic input ϕ is a consistent sen-
tence.

1In this paper we essentially follow the notation and terminol-
ogy that is typically used in the Belief Revision literature; some
parts of it are also borrowed from (Peppas and Williams 2016).

2Due to space limitations the AGM postulates have been omit-
ted. See (Gärdenfors 1988) or (Peppas 2008) for details.

3We note that in fact Katsuno and Mendelzon assign faithful
preorders to sentences rather than to theories. However this differ-
ence is inconsequential under the assumptions of this paper.
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Parametrised Difference Operators
(Dalal 1988) provides a very natural way of defining the pre-
order ďK associated to a theory K. We note that ďK is meant
to encode the comparative plausibility of possible worlds:
the closer a world is to the beginning of the preorder the
more plausible it is. Dalal defines plausibility in terms of a
notion of difference between worlds.

In particular, for any two worlds w, r PM, the difference
between w and r, denoted Diffpw, rq, is defined to be the set
of propositional variables over which the two worlds dis-
agree; i.e., Diffpw, rq = tq P P: w |ù q and r |ù quY tq P P:
r |ù q and w |ù qu. The preorder ĎK that Dalal assigns to a
consistent theory K is defined as follows: for all r, r1 P M,
r ĎK r1 iff there is a w P rKs such that for all w1 P rKs,
|Diffpw, rq| ď |Diffpw1, r1q|. Dalal’s operator, which we de-
note ˝, is defined as the revision function induced from
tĎKuKPK .

An example of Dalal’s preorder for a language L built
from only three variables a, b, c, assigned to the theory K
= Cnpta, b, cuq, is given below:

abc abc
abc ĂK abc ĂK abc ĂK abc

abc abc

In the above example, the plausibility of a world r is deter-
mined by the number of propositional variables over which
r differs from the initial world abc. As noted in (Peppas and
Williams 2016), “a silent assumption in Dalal’s approach
is that all variables have the same epistemic value; hence
for example, a change in the variable a is assumed to be as
plausible (or implausible) as a change in variable b.” This is
clearly a severe restriction that limits considerably the range
of applicability of Dalal’s operator. Hence, a generalisation
of Dalal’s approach was considered in (Peppas and Williams
2016), where propositional variables are allowed to have dif-
ferent epistemic values.

Suppose for example that for a certain application, the
atoms a and b have greater epistemic value than the atom
c, and consequently a change in a or b is less plausible than
a change in c. This can be encoded by a total preorder Ĳ
over the variables a, b, c as follows: cŸ a, cŸ b, a Ĳ b, and
b Ĳ a.4 Given Ĳ we can refine Dalal’s preoder to take into
account the difference in epistemic value between a, b, and
c:

abc ĂĲK abc ĂĲK
abc
abc

ĂĲK
abc
abc

ĂĲK abc ĂĲK abc

In the example above the ranking of possible worlds takes
place in two stages. The first stage is identical to Dalal’s
ranking: each world r is ranked according to the number
of switches in propositional variables that are necessary to
turn the initial world abc into r. At the second stage the
ranking is further refined to take into account the different
epistemic value of the propositional variables that have been

4As usual Ÿ denotes the strict part of Ĳ; moreover the obvious
relationships a Ĳ a, b Ĳ b, and c Ĳ c have been omitted for the
sake of readability.

switched. In particular, for any two worlds r, r1 that require
the same number of switches from abc (i.e., |Diffpabc, rq| “
|Diffpabc, r1q|), r is more plausible than r1 iff Diffpabc, rq lex-
icographically precedes Diffpabc, r1qwith respect toĲ. Thus
for example, abc ĂĲK abc because cŸa (despite the fact that
both worlds are one switch away from abc).

The example above illustrates the basic idea in generalis-
ing Dalal’s approach. The formal definition of PD preorders,
presented in (Peppas and Williams 2016), is given below.

LetĲ be any total preorder over P (the set of propositional
variables). For a set S Ď P and a variable q P P, by S q we
denote the set S q “ tp P S : p Ĳ qu. The definition of
Ĳ can now be extended to sets of propositional variables. In
particular, for any two sets S , S 1 Ď P, S Ĳ S 1 iff one of the
following three conditions holds:

(a) |S | ă |S 1|.

(b) |S | “ |S 1|, and for all q P P, |S q| “ |S 1q|.

(c) |S | “ |S 1|, and for some q P P, |S q| ą |S 1q|, and for
all pŸ q, |S p| “ |S 1p|

In the above definition, condition (b) states that S and
S 1 are lexicographically indistinguishable with respect toĲ,
whereas (c) states that S lexicographically precedes S 1 (wrt
Ĳ). It is not hard to verify that (the extended) Ĳ is a total
preorder over 2P.

The intended reading of Ĳ, defined over sets of variables,
is the same as before: S Ĳ S 1 means that S 1 as a whole is at
least as important than S (as a whole). Therefore, if we had
to choose between changing all variables in S or changing
all variables in S 1, we will pick the former.

Based on this reading, the PD preorder ĎĲK over M, in-
duced from Ĳ at a theory K, is defined as follows: r ĎĲK r1
iff there is a w P rKs such that for all w1 P rKs, Diffpw, rq Ĳ
Diffpw1, r1q.

From the results in (Peppas and Williams 2016), it follows
immediately that ĎĲK is a total preorder which moreover is
faithful to K.

Notice that according to this definition, a single preorder
Ĳ over P suffices to determine the preorders assigned to all
consistent theories K. Hence a preorder Ĳ generates a fam-
ily of PD preorders tĎĲK uKPK which in turn define a revi-
sion function ˚. A revision function so constructed is called
a Parametrised Difference revision operator or a PD opera-
tor for short.

To illustrate the use of PD operators in encoding belief re-
vision scenarios, consider the following example from (Pep-
pas and Williams 2016):5 a circuit consists of two adders
and one multiplier. The variables a1, a2, and m represent the
facts that “adder1 is working”, “adder2 is working”, and “the
multiplier is working” respectively. Initially we believe that
the circuit is working properly. Moreover we know that mul-
tipliers are less reliable that adders. Hence, if we observe
that there is a malfunction in the circuit, it is plausible to as-
sume that the multiplier (rather than one of the adders) is not
working properly.

5Which in turn is modified version of an earlier example in
(Darwiche and Pearl 1997).
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This scenario can easily be encoded with a PD operator. In
particular, consider the PD operator ˚ induced from the fol-
lowing preorder Ĳ on the propositional variables a1, a2,m:
m Ÿ a1, m Ÿ a2, a1 Ĳ a2, and a2 Ĳ a1 (in addition, Ĳ
includes all pairs that follow from reflexivity and transitiv-
ity). It is not hard to verify that with this preorder, the re-
vision of Cnpta1, a2,muq by  a1 _  a2 _  m leads us to
Cnpta1, a2, muq as desired.6

There are more indicative examples in (Peppas and
Williams 2016), including some on iterated revision, that
can be readily encoded with PD operators. These examples
suggest that PD operators have a wide range of applicability,
which combined with their low representational cost, make
PD operators an important class of AGM revision functions.

It should be noted that the idea of generalising Dalal’s no-
tion of distance between worlds, by differentiating between
atoms has been used in the Belief Merging literature for quite
some time. In particular, preorders on a weighted Hamming
distance are quite similar to PD preorders. A weighted Ham-
ming distance assigns a numerical value (i.e., a weight) to
each variable of the language. The distance between two
possible worlds is then defined as the sum of the weights
of all variables over which the two worlds differ (see for ex-
ample, (Konieczny et al. 2004)). These numerical weights
assigned to variables can be thought of as the quantitative
analog of the preorderĲ over variables used in the construc-
tion of a PD preorder. There is a major difference however
between preorders induced from weighted Hamming dis-
tances and PD preorders: with the former it is possible for
three worlds w, r, r1, to be such that r1 is closer to w than r,
even though r differs from w in fewer variables than r1 (i.e.,
|Diffpw, rq| ă |Diffpw, r1q|q;7 this can never be the case with
PD preorders.8

Axioms for PD Operators
PD operators were only defined constructively in (Peppas
and Williams 2016). In this section we introduce eight new
axioms which together with the original AGM postulates,
characterise precisely the family of PD operators.

We note from the outset that our new axioms are not
on a par with the AGM postulates. In fact the two have a
totally different purpose. AGM postulates encode general
principles of rational belief change. Our new axioms on the
other hand, are simply formal properties that characterise a
certain class of AGM revision functions (namely those in-
duced from PD preorders), thus providing insight to their
behaviour.

Formulating the new axioms was not trivial. The task is
complicated by the fact that a PD operator ˚ is constructed

6On the other hand, Dalal spreads the blame equally to
all three components of the circuit; i.e., the Dalal-revision of
Cnpta1, a2,muq by a1_ a2_ m yields the theory Cnpa1a2m_
a1a2m_ a1a2mq.

7This can happen for example if one of the variables in
Diffpw, rq has a weight that is greater than the sum of all weights in
Diffpw, r1q.

8We thank the anonymous reviewer for pointing out previous
work on weighted Hamming distances and the similarity of their
induced preorders to PD preorders.

from a preorder Ĳ over P in two stages; first Ĳ induces
tĎĲK uKPK , which in turn induces ˚. Thus, metaphorically
speaking, ˚ is two steps away from its generator Ĳ. That
makes it harder to devise constraints on ˚ that would project
correctly, at a two-steps distance, to Ĳ.

For the sake of readability we shall introduce the new ax-
ioms in four stages. At each stage we provide representation
results that highlight the role of the new axioms in the over-
all characterisation of PD operators.

We recall that throughout this paper, x, y, p, q, z denote lit-
erals, A, B,C,D, E denote nonempty consistent sets of lit-
erals, ϕ, ψ denote consistent sentences, and K,H,T denote
consistent theories. Moreover, we shall often use concatena-
tion as an abbreviation for conjunction; thus for example AB
is an abbreviation of A ^ B, and Ap is an abbreviation of
A^ p.

For nonempty sets of literals A, B, we define A �K B iff
A, B Ď K and  pAq R K ˚ pA _ Bq. Intuitively, A �K B
holds whenever, starting from the belief set K (which con-
tains both A and B), it is at least as costly to change (the
values of) all literals in B than it is to change all literals in
A. We define A ăK B as A �K B and B �K A (or equiva-
lently, A, B Ď K and  B P K ˚ pA_ Bq). Finally, for literals
p, q, we define p �K q and p ăK q to be an abbreviations of
tpu �K tqu, and tpu ăK tqu respectively.

The Special Case of Consistent Complete Theories
Let us start by assuming that the initial belief set K is a con-
sistent complete theory. This assumption will allow us to ar-
rive quickly at preliminary representation results that will be
instrumental in establishing the general results of the next
subsection. Most proofs of the results reported in this paper
are omitted due to space limitations; however all missing
proofs can be found at the web page of the first author.

Our first axiom says that if one needs to reverse all literals
in A or all literals in B, then revision never picks the larger
set; in other words, the more literals one needs to reverse
during revision, the more costly it is:

(D1) If A �K B, then |A| ď |B|.

(D1) alone suffices to characterise an interesting super-
class of PD operators. In particular, consider the following
constraint on a faithful preorder ďK assigned to K:9

(H) If |DiffpK, rq| ă |DiffpK, r1q|, then r ăK r1.

We shall call a preorder ďK over M satisfying (H), a
Hamming preorder.10

Theorem 1 Let K be a consistent complete theory, ˚ an
AGM revision function and ďK the faithful preorder that ˚
assigns to K. Then ďK is a Hamming preorder iff ˚ satisfies
(D1) at K.

9Recall that in this subsection, K is assumed to be a consistent
complete theory.

10We note that Hamming preorders are similar, but not quite the
same as the preorders induced from weighted Hamming distances
discussed earlier.
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All PD preorders are Hamming preorders, but not the
other way around. Let us take a closer look at the difference
between the two.

Given the initial world K, all remaining worlds can be par-
titioned according to the number of atoms in which they dif-
fer from K. In both PD and Hamming preorders, the worlds
that differ from K in one atom, precede those that differ from
K in two atoms, which precede those that differ from K in
three atoms, etc. On the other hand, the relative order of the
worlds that belong to the same partition is quite different in
Hamming and PD preorders: in Hamming preorders the or-
dering with a partition is arbitrary, whereas in PD preorders
it is highly regulated. More precisely, in a PD preorder, the
way that the worlds in the first partition are ordered, fully
determines the ordering of the worlds in all subsequent par-
titions. In other words, if two PD preorders, faithful to K,
agree on the ordering of worlds that differ from K on one
atom, then the two preorders are identical. This observation
has been the basis for formulating the extra axioms required
for PD revisions:

(D2) If A �K B, p �K q, and q R B, then Ap �K Bq.

Axiom (D2) essentially says that if switching the literals
in A is at least as easy as switching the literals in B, and
switching p is at least as easy as switching q, then switching
A and p together is at least as easy as switching B and q
together (provided that q is not already in B).

(D3) If A �K B, p ăK q, and q R B, then Ap ăK Bq.

Axiom (D3) is essentially the strict version of (D2). Like
in (D2), we assume that reversing A is at least as easy as re-
versing B, but this time we assume that reversing p is strictly
easier than reversing q. In this case, says (D2), reversing A
and p together is strictly easier than reversing B and q to-
gether (provided that q R B).

(D4) If A ăK B, p P K, q R B, and for all z P B, z �K q,
then Ap ăK Bq.

Axiom (D4) is based on a similar intuition as (D2) and
(D4), but deals with a different case. Suppose that revers-
ing A is strictly easier than reversing B. Moreover assume
that reversing the literal q is at least as hard as reversing any
literal z in B. Then, says (D4), for any literal p P K, chang-
ing A and p together is strictly easier than changing B and q
together (provided that q is not already in B).

Theorem 2 Let K be a consistent complete theory, ˚ an
AGM revision function and ďK the faithful preorder that ˚
assigns to K. If ďK is a PD preorder then ˚ satisfies (D1) -
(D4) at K.

Proof. Assume that ďK is a PD preorder. Then there exists
a preorder Ĳ over P, such that the preorder ĎĲK generated
from Ĳ, is identical to ďK .

To proceed with the proof we first need to introduce some
more notation. For any variable q P P, by qK we denote q
itself if q P K, and the literal  q otherwise. Clearly, since
K is complete, qK P K for all q P P. For a set of variables
A Ď P, by AK we denote the set AK “ tqK : q P Au.

Next we show that for all p, q P P, p Ĳ q iff pK R

K ˚ ppK _ qKq. Consider any p, q P P such that p Ĳ q and

suppose towards contradiction that pK P K ˚ ppK _ qKq.
From the latter we derive that there is a qK-world, call
it r, such that r ĂĲK r1 for all r1 P rpKs. Define r2
to be the world that agrees with K on all literals except
q. Then clearly, DiffpK, r2q “ tqu Ď DiffpK, rq. Hence
DiffpK, r2q Ĳ DiffpK, rq and consequently, r2 ĎĲK r. Next
define u to be the world that agrees with K on all literals
except p. Thus DiffpK, uq “ tpu. Given that u |ù pK , we
derive that r ĂĲK u, and consequently, r2 ĂĲK u. Therefore
DiffpK, r2q ŸDiffpK, uq, which leads us to qŸ p contradict-
ing our initial assumption p Ĳ q. Hence we have shown that
if p Ĳ q then p R K ˚ ppK _ qKq.

For the converse, suppose that p, q P P are such that
pK R K ˚ ppK _ qKq. Then there is a pK-world, call it
r, such that r ĎĲK r1 for all r1 P rqKs. Let r2 be the
the world that agrees with K on all literals except p. Then
DiffpK, r2q “ tpu Ď DiffpK, rq. Consequently, r2 ĎĲK r. De-
fine u to be the world that agrees with K on all literals except
q. Thus DiffpK, uq “ tqu. Given that u |ù qK , we derive that
r ĎĲK u, and consequently, r2 ĎĲK u. This again entails that
p Ĳ q as desired. Hence we have shown that for all p, q P P,
p Ĳ q iff p R K ˚ ppK _ qKq.

We can now proceed to show the validity of the postulates
(D1) - (D4).

For (D1), let A, B Ď P be such that AK R K ˚pAK_BKq.
We will show that |A| ď |B|. Assume on the contrary that
|B| ă |A|. Call r the world that differs from K only over
the variable in B. Then clearly, DiffpK, rq “ tBu. More-
over, for any AK-world r1, A Ď DiffpK, r1q. Therefore, from
|B| ă |A we derive that for any AK-world r1, |DiffpK, rq| ă
|DiffpK, r1q|, and consequently, DiffpK, rq ŸDiffpK, r1q. This
again entails r ĂĲK r1, for all r1 P rAKs, and consequently,
 AK P K ˚ pAK _ BKq. Contradiction.

For (D2), consider any p, q P P and A, B Ď P such that
q R B. Assume that AK R K˚pAK_BKq and pK R K˚ppK_

qKq. We will show that AK pK R K ˚pAK pK_BKqKq. From
pK R K ˚ ppK _ qKq it follows that p Ĳ q. Moreover from
 AK R K ˚ pAK _ BKq we derive that there is a AK-world,
call it r, such that r ĎĲK r1, for all r1 P rAKsYrBKs. Define r2
to be the world that differs from K only over the variables in
A. Clearly then, since r P rAKs, we derive that DiffpK, r2q “
tAu Ď DiffpK, rq. Consequently, r2 ĎĲK r. Next define u
to be the world that differs from K only over the variables
in B. Then, DiffpK, uq “ B and u |ù BK . Hence, r ĎĲK u,
and consequently r2 ĎĲK u. This again entails that A Ĳ B.
From this, p Ĳ q, and q R B, it is not hard to derive that
AYtpu Ĳ BYtqu. Next define w to be the world that differ
from K only over the variables in AYtpu. Clearly then, w |ù
AK pK and DiffpK,wq “ AY tpu. Moreover observe that for
any BKqK-world w1, B Y tqu Ď DiffpK,w1q and therefore
B Y tqu Ĳ DiffpK,w1q. Since A Y tpu Ĳ B Y tqu we then
derive that w ĎĲK w1 for all w1 P rBKqKs. This again entails
 AK pK R K ˚ pAK pK _ BKqKq as desired.

For (D3), consider any p, q P P and A, B Ď P such that
q R B. Assume that  AK R K ˚ pAK _ BKq and qK P K ˚
ppK_qKq. We will show that BKqK P K˚pAK pK_BKqKq.
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Firstly observe that from qK P K ˚ ppK _ qKq we derive that
pŸ q. Moreover from  AK R K ˚ pAK _ BKq we derive that
there is a AK-world, call it r, such that r ĎĲK r1, for all r1 P
rAKs Y rBKs. Define r2 to be the world that differs from K
only over the variables in A. Clearly then, since r P rAKs, it
follows that DiffpK, r2q “ tAu Ď DiffpK, rq. Consequently,
r2 ĎĲK r. Next define u to be the world that differs from
K only over the variables in B. Then, DiffpK, uq “ B and
u P rBKs. Hence, r ĎĲK u, and consequently r2 ĎĲK u. This
again entails that A Ĳ B, which in turn, when combined with
pŸ q, and q R B, leads to AYtpuŸ BYtqu. Next define w
to be the world that differ from K only over the variables in
AYtpu. Clearly then, w P rAK pKs and DiffpK,wq “ AYtpu.
Moreover observe that for any BKqK-world w1, B Y tqu Ď
DiffpK,w1q and therefore BY tqu Ĳ DiffpK,w1q. Since A Y
tpu Ÿ B Y tqu we then derive that w ĂĲK w1 for all w1 P
rBKqKs. This again entails BKqK P K ˚ pAK pK _ BKqKq as
desired.

Finally for (D4), consider any p, q P P and A, B Ď P such
that q R B. Assume that  BK P K ˚ pAK _ BKq and for all
z P B, zK R K ˚ pzK _ qKq. We will show that  BKqK P

K ˚ pAK pK _ BKqKq. First observe that from zK R K ˚ pzK _

qKq for all z P B, we derive that z Ĳ q for all z P B. In
other words, q is Ĳ-maximal in B Y tqu. Moreover from
 BK P K ˚ pAK _ BKq we derive that there is a AK-world,
call it r, such that r ĂĲK r1, for all r1 P rBKs. Define r2 to
be the world that differs from K only over the variables in
A. Clearly then, since r P rAKs, it follows that DiffpK, r2q “
tAu Ď DiffpK, rq. Consequently, r2 ĎĲK r. Next define u to
be the world that differs from K only over the variables in
B. Then, DiffpK, uq “ B and u P rBKs. Hence, r ĂĲK u, and
consequently r2 ĂĲK u. This again entails that A Ÿ B. Then
because q isĲ-maximal in BYtqu, it is not hard to verify that
AYtpuŸBYtqu, for any variable p P P. Define w to be the
world that differ from K only over the variables in AY tpu.
Clearly, w P rAK pKs and DiffpK,wq “ A Y tpu. Moreover
observe that for any BKqK-world w1, BY tqu Ď DiffpK,w1q
and therefore BYtqu Ĳ DiffpK,w1q. Since AYtpuŸBYtqu
we then derive that w ĂĲK w1 for all w1 P rBKqKs. This again
entails  BKqK P K ˚ pAK pK _ BKqKq. l

The converse of Theorem 2 is also true:
Theorem 3 Let K be a consistent complete theory, ˚ an
AGM revision function and ďK the faithful preorder that ˚
assigns to K. If ˚ satisfies (D1) - (D4) at K then ďK is a PD
preorder.

According to Theorem 3, if the revision function ˚ satis-
fies (D1) - (D4) at K, then there exists a preorder Ĳ over P,
such that ĎĲK is identical to the preorder that ˚ assigns to K.
Clearly, if ˚ also satisfies (D1) - (D4) at some other theory
H, then Theorem 3 entails that the preorder that ˚ assigns to
H can also be induced from some preorder Ĳ1 over atoms.
Notice however, that Ĳ and Ĳ1 are not necessarily the same.
To ensure this we need the axiom (D5) below:
(D5) If p �K q, x P tp, pu, y P tq, qu and x, y P H, then

x �H y.

Axiom (D5) says that if for a given theory K it is at least as
easy to reverse p than it is to reverse q, then this relationship
is preserved for any other theory H and any other two literals
x, y that share the same atoms with p and q respectively; for
example if p �K q and  p, q P H, then  p �H q.

It can be shown that the addition of (D5) to (D1) - (D4)
suffices to characterise the AGM revision functions that as-
sign PD preorders to every consistent complete theory, all of
which are generated from the same preorder Ĳ over P.

The General Case
Having characterised PD revision for the special case of con-
sistent complete theories, we now turn to the general case
where the initial belief set K is an arbitrary consistent the-
ory.

The intuition behind the next axiom originates from the
strong connection that exists in PD operators, between the
revision of K by ϕ, and the revision of ϕ by K (which in turn
is due to the fact that Diff is symmetric; i.e., Diffpw, rq “
Diffpr,wq). Clearly there is a slight abuse of notation here
that needs to be explained before we proceed any further.
Since we are working with a propositional language built
from finitely many propositional variables, for any theory K
there exists a sentence ψ such that K “ Cnpψq. Thus ϕ ˚
K is just an abbreviation for Cnpϕq ˚ ψ; likewise, w ˚ ϕ is
an abbreviation for Cnpwq ˚ ϕ. With these clarifications we
introduce our next axiom:

(D6) K ˚ ϕ =
Ş

wPrϕ˚Ks w ˚ ϕ.

It is worth noting (without proof due to space limitations)
that a consequence of (D6) is the following intuitive prop-
erty:11

(KC) If  ϕ R K ˚ pϕ _ ψq and  ϕ R H ˚ pϕ _ ψq, then
 ϕ R pK X Hq ˚ pϕ_ ψq.

Condition (KC) is quite easy to understand. It says that
if bringing about ϕ is at least as easy as bringing about ψ,
regardless of whether one starts at K or at H, then this is
also true when one starts at their intersection K X H.

Like (KC), the next axiom associates the revision policies
at two different theories K and H, with revisions at their in-
tersection. However it deals with a more complex case. Sup-
pose that ϕ is easier to bring about than ψ when starting at
K, but it is the other way around when starting at H. What
should happen when one starts at KXH? Axiom (D7) deals
with this case. Yet instead of arbitrary sentence ϕ, ψ, (D7)
refers only to sets of literals (ϕ is replaced by AB and ψ by
CD):

(D7) If A �K E, B Ď K, pABq R K ˚ pAB_CDq, C,D Ď
H, and LC “ LE then pABq R pKXHq˚pAB_CDq.

Let us consider the intuition behind (D7). Assume that
the antecedent of (D7) is true. Then, starting from K, it is
at least as easy to bring about AB as it is to bring about

11The name of this condition comes from the fact that it is a
stronger version of the first axiom for kinetic consistency reported
in (Peppas and Williams 2016).
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CD.12 If this is also the case when starting from H, then
(KC) tells that the same is true when starting from K X H;
i.e., pABq R pKXHq˚pAB_CDq. What happens though if,
starting from H, it is easier to reach CD than to reach AB. In
that case, presumably that the rational thing to do is to com-
pare the cost of the K-to-AB transition with the cost of the
H-to-CD transition, and pick the outcome with the lowest
transition cost. To do so, we will first map the H-to-CD tran-
sition to a transition starting from K that has the same cost.
In particular, observe that since C,D Ď H, the cost of the
H-to-CD transition is the cost of reversing the literals in C.
Define E to be the literals in K that share the same variables
with C (LE “ LC). Then the cost of the H-to-CD transition
is the same as the cost of reversing E at K.13 If that cost hap-
pens to be at least as large as the cost of reversing A at K,
then the H-to-CD transition costs at least as much as the K-
to-AB transition. Hence, says (D7), the transition to AB is at
least as good as the transition to CD, when the starting point
can be either K or H: i.e.,  pABq R pK X Hq ˚ pAB_CDq.

The last axiom is essentially the strict version of (D7):

(D8) If A ăK E, B Ď K, pCDq P K ˚pAB_CDq, C,D Ď
H, and LC “ LE then pCDq P pKXHq˚pAB_CDq.

Observe that all axioms, including (D1) - (D5) originally
introduced for complete theories, can be applied to any con-
sistent theory. Theorem 4 below shows that in fact they are
all satisfied by PD operators:

Theorem 4 Let ˚ be an AGM revision function. If ˚ is a PD
operator then it satisfies (D1) - (D8).

The converse of Theorem 4 is also true:

Theorem 5 Let ˚ be an AGM revision function. If ˚ satisfies
(D1) - (D8) then ˚ is a PD operator.

Implementations and Representational Cost
An implementation of AGM belief revision would presum-
ably answer queries of the form “does ψ hold after the revi-
sion by ϕ?”. These queries will be assessed against a back-
ground knowledge base B14 and a revision policy associ-
ated with B. Revision policies can be modelled in different
ways, however they are typically encoded as preorders ď

either over possible worlds (faithful preorders), or over sen-
tences (epistemic entrenchments), or sets of sentences (re-
mainders). The problem is that the size of these preorders is,
in general, exponential to the number of atoms in the object
language. This high representational cost is one of the main
obstacles in the development of real-world belief revision
applications.

12This follows from  pABq R K ˚ pAB_CDq.
13The silent assumption here is that the cost of changing a vari-

able from positive to negative is the same as changing it from neg-
ative to positive. Hence, two sets of literals defined over the same
variables, have exactly the same reversal cost. This property is a
central feature of PD operators.

14A knowledge base B is a finite set of sentences representing
the initial belief set K; i.e., K “ CnpBq.

PD operators provide a very efficient solution to this prob-
lem: a single preorder Ĳ over the atoms of the object lan-
guage L (hence linear in size to the number of atoms) suf-
fices to determine the revision policy of every theory (or
knowledge base) of L.

Observe that an added benefit of having a single preorder
Ĳ generating the revision policy for all theories, is that we
thus also solve the problem of iterated revision with no extra
representational cost: the revision policy at K ˚ ϕ is fully
determined by Ĳ, in the same way it is determined for any
other theory.

Previous work on computational approaches to AGM re-
vision, called belief base revision schemes in (Nebel 1998)),
are primarily syntax-based. We briefly review two of the
most influential such approaches and compare them to PD
operators.15

The first one is based on the notion of ensconcement in-
troduced in (Williams 1994).

Formally, an ensconcement ď related to a belief base B is
defined as a preorder over the elements of B that satisfies the
following two constraints for all ϕ P B:16

(i) If |ù ϕ, then tψ P B : ϕ ă ψu |ù ϕ.

(ii) |ù ϕ iff ψ ď ϕ for all ψ P B.

Intuitively, an ensconcement can be thought of as a suc-
cinct representation of an epistemic entrenchment. Indeed,
it was shown in (Williams 1994) that any ensconcement ď
over B can be extended to an epistemic entrenchment related
to CnpBq. Moreover it is possible to answer queries about the
revision of CnpBq, working directly with the ensconcement
ď, rather than the induced epistemic entrenchment. This ad-
dresses the problem of the representational cost, since the
size of an ensconcement is linear to the size of the knowl-
edge base B.

A second influential belief base revision scheme, called
linear belief base revision, was introduced in (Nebel 1994).
This approach partitions a knowledge base B into priority
classes B1, . . . , Bn. To revise B by a sentence ϕ, one removes
an entire priority class Bi if (one or more of) its sentences are
responsible for a contradiction with ϕ, and none of the lower
priority classes can be blamed for the contradiction. It was
shown in (Nebel 1994) that this procedure induces revision
functions that satisfy all the AGM postulates for revision.
Moreover, this approach also deals with the problem of the
representational cost since any partition of B is linear to the
size of B.

Comparing ensconcement-based revision and linear be-
lief base revision with PD operators, one can immediately
identify two advantages for the latter. Firstly the size of a
knowledge base is typically much larger than the number of
atoms, and therefore PD revision has (in principle) a lower
representational cost. Secondly, and more importantly, PD
revision has an embedded solution to the iterated revision

15See (Rott 2009) for more approaches that are likewise based
on prioritised (belief) bases.

16The symbol ď that we use herein for ensconcement will be
used in the next section to compare numbers; any ambiguity with
this slight abuse of notation is resolved by the context.
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problem (at no extra representational cost). This is miss-
ing from both ensconcement-based revision and linear belief
base revision: in both cases, new preorders need to be pro-
vided explicitly after each revision step (clearly a prohibitive
requirement for real-world applications).

On the other hand, the formal results in (Nebel 1994),
(Williams 1994) seem to suggest that ensconcement-based
revision and linear belief base revision have a greater range
of applicability than PD operators. In particular, it has been
shown that both these approaches can encode any AGM re-
vision function. In contrast, PD operators is a proper sub-
class of AGM revision functions (namely the subclass satis-
fying (D1) - (D8)). However a careful reading of the results
in (Nebel 1994), (Williams 1994) reveals a somewhat differ-
ent picture.

It is true that any AGM revision function can be generated
from prioritised knowledge bases with the method described
by Nebel. But only if the belief base B is allowed to vary ac-
cording to the desired revision policy. More precisely, given
a knowledge base B, and an AGM revision function ˚, it
could well be the case that no prioritisation of B produces
the same results as ˚ at CnpBq. All that the results in (Nebel
1994) tell us is that, in that case there exists some other be-
lief base B1, that is logically equivalent to B, for which such
a prioritisation can be found.

Yet, we argue, that a knowledge base B ought to be in-
dependent from the revision policy employed. Adding to B
(logically) redundant sentences, just to address the technical
requirements of a certain revision representation method, is
not in our view an elegant way to increase the range of ap-
plicability.

The results in (Williams 1994) also require a varying
knowledge base, and therefore the same comments apply.

Complexity of PD Operators
We now turn to the computational complexity of PD opera-
tors. First we need to turn the computation of a PD operator
into a decision problem.

We define a PD revision instance (or PDR instance for
short) to be a tuple xP,R,K, ϕ, ψy where,

- P is a nonempty set of propositional variables.

- R is a function from P ÞÑ r1..|P|s, represented as a set of
ordered pair pp, iq where p P P and 1 ď i ď |P|.

- K is a consistent set of clauses over the variables in P.

- ϕ is a consistent set of clauses over the variables in P.

- ψ is a consistent set of clauses over the variables in P.

A PDR instance Q “ xP,R,K, ϕ, ψy represents a specific
belief revision scenario. In particular, P represents the set of
propositional variables over which beliefs are expressed, K
represents the (base of) the current belief set, ϕ is the sen-
tence by which K is revised, and ψ is the sentence we wish
to test at the revised state (see below). The function R is
used to represent a preorder Ĳ over the variables in P; in
particular, for any p, q P P, p Ĳ q iff Rppq ď Rpqq. Clearly
Ĳ generates PD preorders, which in turn define a PD revi-
sion operator ˚. The decision problem associated with the

PDR instance Q, which we call the PD revision problem, is
whether CnpKq ˚ ϕ |ù ψ.

Observe that if Rppq “ 1 for all p P P, then ˚ reduces to
Dalal’s operator ˝. In (Eiter and Gottlob 1992), it was shown
that deciding if CnpKq ˝ ϕ |ù ψ is PNPrOplog nqs-complete
(see their Theorem 6.9).17 Hence we immediately derive the
following result.

Theorem 6 The PD revision problem is PNPrOplog nqs-hard.

An upper bound to the computational complexity of the
PD revision problem is given by the following theorem:

Theorem 7 The PD revision problem belongs to
PNPrOp

?
n log nqs.

Proof. Let Q “ xP,R,K, ϕ, ψy be a PDR instance and let
˚ be the PD revision function associated with Q. We prove
membership in the class PNPrOp

?
n log nqs by outlining an al-

gorithm that decides CnpKq ˚ϕ |ù ψ with Op
?

n log nq calls
to an NP oracle, where n “ |P|.

The algorithm has three phases. In the first phase we com-
pute the smallest number k in the set t|Diffpw, rq|: w P rKs
and r P rϕsu. Observe that k ď n. Hence we can use binary
search to determine k in log n steps, where at each step the
question of whether k ď j (i.e., whether there exist w P rKs
and r P rϕs such that |Diffpw, rq| ď j), is decided with a call
to the NP oracle.18

Before proceeding with the second phase of the algorithm
we need some further notation and terminology.

Let P1, P2, . . . Pm be the equivalence classes induced from
Ĳ (alias R); i.e., the Pi’s are nonempty, pairwise disjoint sets,
such that their union equals P, and moreover, for any p, q P
P, p Ĳ q iff p P Pi, q P P j and i ď j. Clearly, P1, . . . Pm,
can be computed in deterministic polynomial time.

For a set of propositional variables S Ď P, define the pro-
file of S to be the tuple x j1, . . . , jmy, where j1 “ |S X P1|,
. . ., jm “ |S X Pm|; that is, the profile of S is the num-
ber of elements that S shares with each equivalence class
P1, . . . , Pm. A crucial observation, is that all Ĳ-minimal el-
ements in tDiffpw, rq: w P rKs and r P rϕsu, have the same
the same profile. We call this profile, the minimal profile wrt
K and ϕ and we shall denote it by xy1, . . . , ymy. At the second
phase our algorithm computes the numbers y1, . . . , ym.

Define x1 “ |P1|, . . ., xm “ |Pm|. Hence, xi ą 0 and
řm

i“1 xi “ n. Moreover, 0 ď yi ď xi, for all 1 ď i ď m; also
it is not hard to see that

řm
i“1 yi “ k.

The second phase of the algorithm starts with the com-
putation of y1. Observe that y1 is the maximal size of
Diffpw, rq X P1 under the constraints that w P rKs, r P rϕs
and |Diffpw, rq| “ k. Hence y1 can be computed with bi-
nary search in log x1 steps, where at each step the question

17We recall that a decision problem Π belongs to the class PNP

if it can be solved in polynomial time by a deterministic Turing
machine M with an NP oracle. If in addition M can solve any in-
stance of Π of length n, with no more than gpnq calls to its NP
oracle, we say that Π belongs to PNPrgpnqs – see the review in (Eiter
and Gottlob 1992) for more details. For an excellent text on NP-
completeness refer to (Garey and Johnson 1979).

18This first phase is identical to the first phase of the algorithm
described in proof of Theorem 6.9 in (Eiter and Gottlob 1992).
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whether y1 ě j (i.e., whether there exist w P rKs and r P rϕs
such that |Diffpw, rq| “ k and |Diffpw, rq X P1| ě j), is de-
cided with a call to the NP oracle.

Now the rest of the yi’s can be computed based on
the following observation: yi`1 is the maximal size of
Diffpw, rqXP j`1, under the constraints that w P rKs, r P rϕs,
|Diffpw, rq| “ k, and |Diffpw, rq X P j| “ y j for all 1 ď j ď i.
Hence yi`1 can be computed with binary search in log xi`1
steps, where at each step the question whether yi`1 ě j is
decided with a call to the NP oracle.

The whole minimal profile xy1, . . . , ymy can then be com-
puted in polynomial time with log x1 ` . . . ` log xm calls
to an NP oracle. Given that

řm
i“1 xi “ n, from the in-

equality of arithmetic and geometric means we derive that
log x1 ` . . . ` log xm ď

1
2

?
n log n. Hence in the first two

phases our algorithm makes at most Op
?

n log nq calls to
the NP oracle.

The third phase involves only one extra call to the oracle.
In particular, the algorithm tests, with the aid of the NP ora-
cle, whether there are worlds w P rKs and r P rϕs such that
Diffpw, rq has profile xy1, . . . , ymy and moreover r |ù  ψ.
If the answer is positive, the algorithm returns “no” to the
original question “K ˚ ϕ |ù ψ?2; otherwise it returns “yes”.
l

Theorems 6, 7 show that the PD revision problem belongs
to the second level of the polynomial hierarchy. This is the
same level where (the computation of) Dalal’s operator be-
longs. Hence the added expressivity of PD operators doesn’t
have any drastic effects in time complexity.

We conclude this section by considering the restriction of
the PD revision problem to Horn logic.

In particular, let Q “ xP,R,K, ϕ, ψy be a PDR instance
such that all clauses in K, ϕ and ψ are Horn clauses. More-
over assume that the length of ϕ, denoted ||ϕ||, is bounded
by a constant k; i.e., ||ϕ|| ď k. We shall call such a PDR
instance, a bounded Horn PDR instance and the associated
decision problem the bounded Horn PDR problem. We note
that by bounding ||ϕ||, Diffpw, rq contains at most k vari-
ables, for all w P rKs and all worlds r that are ĎĲK -minimal
in rϕs.19 Hence the following result can be obtained:

Theorem 8 Let xP,R,K, ϕ, ψy be a bounded Horn PDR in-
stance and let ˚ be the revising function induced by it at K.
Deciding if CnpKq˚ϕ |ù ψ can be computed in Op||K||¨||ψ||q
time.

In the theorem above ||K|| denotes the length of the
knowledge base K and ||ψ|| denotes the length of ψ. Notice
that is if ||ψ|| is also bounded by a constant, then deciding if
CnpKq ˚ ϕ |ù ψ can be done in time linear to the length of
the knowledge base K.

Conclusion
PD operators is an important family of concrete AGM re-
vision operators, essentially a generalisation of Dalal’s op-
erator, introduced in (Peppas and Williams 2016). The im-
portance of PD operators is due to their low representational
cost (any PD operator can be constructed from a preorder

19This follows from an observation in (Eiter and Gottlob 1992).

over atoms) and their ability to cover a wide range of belief
revision scenarios.

In this paper we have provided an axiomatic characteri-
sation of PD operators. Moreover we have studied the com-
putational complexity of PD operators showing that they lie
at the same level of the polynomial hierarchy as Dalal’s op-
erator (despite the extra expressivity). In the special case of
a Horn knowledge base the computation of bounded Horn
queries, can be performed in linear time to the size of the
knowledge base.

Observe that the preorder Ĳ over atoms that defines a PD
operator is not effected by new evidence. An interesting di-
rection for future work would be to consider the possibility
of changing Ĳ depending on the new information that is re-
ceived. This ought to be done with no or very little additional
representational and computational cost, for otherwise the
benefits of using PD operators would be cancelled.
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