
On the Progression of Situation Calculus
Universal Theories with Constants∗

Marcelo Arenas,1,3 Jorge A. Baier,1,3 Juan S. Navarro,1,3 Sebastian Sardina2

1 Pontificia Universidad Católica de Chile
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Abstract

The progression of action theories is an important problem
in knowledge representation. Progression is second-order de-
finable and known to be first-order definable and effectively
computable for restricted classes of theories. Motivated by
the fact that universal theories with constants (UTCs) are ex-
pressive and natural theories whose satisfiability is decidable,
in this paper we provide a thorough study of the progression
of situation calculus UTCs. First, we prove that progression
of a (possibly infinite) UTC is always first-order definable
and results in a UTC. Though first-order definable, we show
that the progression of a UTC may be infeasible, that is, it
may result in an infinite UTC that is not equivalent to any fi-
nite set of first-order sentences. We then show that deciding
whether there is a feasible progression of a UTC is undecid-
able. Moreover, we show that deciding whether a sentence (in
an expressive fragment of first-order logic) is in the progres-
sion of a UTC is CONEXPTIME-complete, and that there ex-
ists a family of UTCs for which the size of every feasible pro-
gression grows exponentially. Finally, we discuss resolution-
based approaches to compute the progression of a UTC. This
comprehensive analysis contributes to a better understanding
of progression in action theories, both in terms of feasibility
and difficulty.

Introduction
Action theories are knowledge representation formalisms
for modeling and reasoning about dynamic systems, an im-
portant aspect of commonsense reasoning. To represent
them, a plethora of action languages have been proposed;
for example, A, B, and C (Gelfond and Lifschitz 1998),
with their English like syntax, the narrative-based Event Cal-
culus (Kowalski and Sergot 1986; Shanahan 1999), state-
centric Fluent Calculus (Thielscher 1999), the extensible
Features and Fluents (Sandewall 1994), and the Situation
Calculus (Pirri and Reiter 1999; Reiter 2001).

At the very least, action languages provide means to spec-
ify actions’ effects and non-effects, thus embracing some

∗We would like to thank the anonymous referees for their help-
ful comments. Arenas, Baier, and Navarro were partially funded
by the Instituto Milenio Fundamentos de los Datos. Navarro
was also partially funded by the CONICYT-PFCHA/Doctorado
Nacional/2018-21182042 scholarship.
Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

type of solution to the frame problem (McCarthy and Hayes
1969; Shanahan 1997). They also provide a means to spec-
ify the “initial knowledge base” describing the state of the
world before anything has occurred.

A fundamental problem in reasoning about action and
change is the progression problem (Lin and Reiter 1994),
that is, the problem of evolving the representation of the
current state as actions occur. The problem has lately be-
come more relevant, as we see KR technologies as mod-
ules of situated intelligent agents and robots that not only
reason, but also act and observe the environment (Ghallab,
Nau, and Traverso 2014). Its solution is also key to enable
other agent technologies, such as planning and high-level
program execution (Reiter 1993; De Giacomo et al. 2009;
Ghallab, Nau, and Traverso 2014). In fact, it is generally
recognized that progression is mandatory to efficiently ad-
dress the important projection task (Vassos and Levesque
2008), namely, the task of determining whether some condi-
tion holds after a given set of actions have been performed.

This paper contributes to the understanding of the pro-
gression problem in action theories by analyzing its feasi-
bility and computational difficulty for a fundamental spe-
cial case of Basic Action Theories (BATs) (Reiter 1991;
Pirri and Reiter 1999). BATs are Situation Calculus axioma-
tizations of a certain shape that can be built following a pre-
scribed methodology for extracting the necessary axioms.
Importantly, the methodology yields a parsimonious and ef-
fective solution to the frame problem within classical logic.
BATs have been studied at depth and been shown to enjoy
a number of good properties, notably, the ability to reduce
the projection task to first-order theorem proving against
the initial state representation. They have also been shown
elaboration tolerant via multiple extensions, such as time
(Pinto 1994), high-level programs (Levesque et al. 1997;
De Giacomo, Lespérance, and Levesque 2000; Sardina et
al. 2004), ramifications (Pinto 1999; McIlraith 2000), con-
currency and natural actions (Reiter 1996), and even proba-
bilistic reasoning (Vassos and Levesque 2008).

Unfortunately, though, the progression of a BATs is not,
in general, first-order definable (Lin and Reiter 1994; 1997;
Vassos and Levesque 2008)—an update after an action may
not yield a (successor) BAT. Thus, understanding first-order
definability and effectiveness of restricted classes of BATs
becomes paramount if we hope situated intelligent agents
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to be equipped with such type of theories, see, e.g., (Lin
and Reiter 1995; Vassos, Lakemeyer, and Levesque 2008;
Liu and Lakemeyer 2009; Vassos and Sardina 2011).

Motivated by the fact that so-called universal theories
with constants (UTCs)—part of the Bernays-Schönfinkel
class (Bernays and Schönfinkel 1928)—are expressive and
natural theories whose satisfiability is decidable, we set to
study the progression of BATs within such class, which we
call UTC-BATs. It turns out that UTC-BATs can express
complex causal laws like “opening the gripper will cause ev-
ery object being held to fall and break.” Importantly, UTC-
BATs remains in the realms of classical logic. Thus, our
work distinguishes from that of Liu and Lakemeyer (2009)
on progression of proper+ theories that rely on standard
names to characterize the universe of discourse.

The results obtained are mixed, but overall demonstrate
how difficult the progression of sufficiently rich theories is.
Concretely, we first prove that progression of a (possibly in-
finite) UTC-BAT is always first-order definable and yields a
UTC-BAT. This is a positive result that eludes the main neg-
ative result of progression in BATs (Vassos and Levesque
2008). However, such progression may be infeasible, in that
it may turn out to be intrinsically infinite (i.e., not equivalent
to any finite version defined in terms of first-order logic).1
Given this, we demonstrate that deciding whether there is a
feasible progression is undecidable. When it comes to com-
putational complexity, we show that deciding whether a sen-
tence (in an expressive fragment of first-order logic) is in
the progression of a UTC-BAT is CONEXPTIME-complete,
and that there exists a family of UTC-BATs for which the
sizes of the progressions grow exponentially. We close by
discussing resolution-based approaches to actually compute
the progression of a UTC-BAT. All in all, our results pro-
vide a comprehensive map of feasibility and complexity for
evolving a natural and expressive case of BATs.

Background
This section presents the background for the rest of the pa-
per. We assume familiarity with first-order (FO) logic.

Universal Formulae with Constants
An FO formula is a ∃∗∀∗-FO formula if it is of the form:

∃x1 · · · ∃xk∀y1 · · · ∀ym φ, (1)

where φ is a quantifier-free formula. The class of ∃∗∀∗-FO
sentences not mentioning function symbols except for con-
stants (which are 0-ary functions) is known as the Bernays-
Schönfinkel class (Bernays and Schönfinkel 1928). The
problem of determining whether a sentence in the Bernays-
Schönfinkel class has a model is NEXPTIME-complete
(Bernays and Schönfinkel 1928; Lewis 1980). As this class
is closed under conjunction, the complexity is the same for
a finite set of sentences in the Bernays-Schönfinkel class.

Membership in NEXPTIME follows from two facts. The
first fact is the finite-domain property: if a formula of the
form (1) in the Bernays-Schönfinkel class is satisfiable, then

1Notice that Vassos and Levesque (2008) showed that even an
infinite set of first-order sentences will not suffice for some BATs.

it has a model whose domain size is at most k + `, where
` is the number of constants occurring in φ. Indeed, let
Ψ = ∃x1 · · · ∃xk∀y1 · · · ∀ymφ and assume Ψ has a model
M whose domain size is greater than k + `. To construct
a model M′ for Ψ of domain size at most k + ` , we as-
sume that µ is an assignment for the variables {x1, . . . , xk}
such that M, µ |= ∀y1 · · · ∀ym φ (by assuming M |= Ψ, we
know µ exists). Now assuming that c1, . . ., c` is the set of
constants occurring in φ, we define M′ with domain D =
{µ(x1), . . . , µ(xk), cM1 , . . . , c

M
` }, such that for each predi-

cate P of arity n and every ~o ∈ Dn, it holds that ~o ∈ PM′
if

and only if ~o ∈ PM. Thus, M′ is the substructure of M in-
duced by D. Then, we have that M′, µ |= ∀y1 · · · ∀ym φ, as
this is a universal formula and M′ is an induced substructure
of M (Hodges 1997), from which we conclude that M′ |= Ψ.
The second fact is that a model with domain size at most
k + ` can be of exponential size, as the arities of the pred-
icates mentioned in φ are not fixed. Hence, by construct-
ing a non-deterministic algorithm that simply guesses such
a model we can conclude that the problem is in NEXPTIME.

A special case of ∃∗∀∗-FO formulae is universal for-
mulae with constants, formulas of the form ∀y1 · · · ∀ym φ,
where φ does not have any quantifiers or function sym-
bols except for constants. A universal theory with con-
stants (UTC) is a set of universal formulae with constants.
If Σ ∪ {ϕ} is a UTC, then the problem of verifying whether
Σ |= ϕ is CONEXPTIME. In particular, the membership in
CONEXPTIME holds since the problem of deciding whether
Σ |= ϕ can be reduced to verifying whether Σ ∪ {¬ϕ} is
unsatisfiable, which in turn can be decided in CONEXPTIME
as Σ ∪ {¬ϕ} is a set of Bernays-Schönfinkel sentences.

The Situation Calculus
The Situation Calculus (Reiter 2001) is a logical language
designed for representing dynamically changing worlds
whose changes are the result of actions. Denoted byLsitcalc it
is a many-sorted second-order language with equality. Sort
situation are finite sequences of actions: the empty sequence
is denoted by the constant S0, and the situation that results
from performing action a in situation s is denoted do(a, s).
Sort object is a catch-all sort for all objects in the world.

In Lsitcalc, fluents describe the dynamic aspects of the
world. A (relational) fluent is a predicate whose last argu-
ment is a situation, and whose truth value can change from
situation to situation. For example, fluent Broken(x, s) can
be used to denote that object x is broken in situation s.

Since actions need not be always executable, predicate
Poss(a, s) is used to state that action a is executable in situ-
ation s. A formula ϕ of Lsitcalc is uniform in situation term
σ (Reiter 2001) if the only situation term mentioned in ϕ
is σ, neither Poss, @, nor equalities between situations are
mentioned, and there is no quantification over situations.

Reiter’s basic action theories (BATs) are well-studied the-
ories inLsitcalc of the formD = DS0

∪Dposs∪Dssa∪Duna∪Σ,
where:

1. DS0
is a set of formulae uniform in S0, stating what holds

true in the initial situation (the initial knowledge base);

2. Dposs is the set of precondition axioms, one per action A,
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of the form Poss(A(~x), s) ≡ ΠA(~x, s), where ΠA(~x, s)
is a formula that is uniform in s, stating when an action is
legally executable in a situation;

3. Dssa is the set of successor state axioms, one per fluent F ,
of the form2 F (~x, do(a, s)) ≡ ΦF (~x, a, s), where ΦF is
a formula uniform in s, characterizing how F evolves in
situation s when action a is performed;

4. Duna is the set of unique names axioms for actions, stating
that actions with different names are different; in addition,
for every action a we write a(~x) = a(~y) ⊃ ~x = ~y.

5. Σ is a set of domain-independent foundational axioms
characterizing the set of possible situations as sequences
of actions from S0.
Notice that non-quantified variables in the previous ax-

ioms are assumed to be universally quantified at the outer-
most level. Throughout the paper, we make the same as-
sumption for each formula with free variables.

Progression of BATs
Progressing a BAT involves updating its the initial knowl-
edgebase after some actions have been performed. More
precisely, given a BAT D and a ground action term α that is
legally executable in S0 (i.e., Poss(α, S0) holds), the task is
to replace DS0

in D with a set of sentences Ddo(α,S0) (the
new initial KB after α’s execution), so that the original the-
ory D and the updated theory (D \ DS0

) ∪ Ddo(α,S0) are
equivalent with respect to how they describe the situation
do(α, S0) as well as all future situations from do(α, S0) (Lin
and Reiter 1997). For legibility, we will use Sα and Dα to
denote do(α, S0) and Ddo(α,S0), respectively.

The notion of progression is defined in terms of legally
executable actions. For the sake of simplicity, and without
loss of generality, we assume from now on that all actions
are possible always, that is, we assume that Poss(A(~x), s) ≡
True ∈ Dposs, for each action A. We also follow the defini-
tion of the so-called strong progression of (Vassos, Lake-
meyer, and Levesque 2008; Vassos and Levesque 2013).
When F1, . . . , Fn are relational fluents, Q1, . . . , Qn are
second-order (non-fluent) predicate variables, and φ is an
FO-formula, we write φ〈~F : ~Q〉 to denote the formula that
results from replacing any fluent atom Fi(t1, . . . , tn, σ) in
φ, where σ is a situation term, with atom Qi(t1, . . . , tn).
Definition 1 (Vassos and Levesque 2013). Let D be a BAT
over fluents F1, . . . , Fn and with DS0

being a finite set of
sentences whose conjunction is denoted by φ0. Let α be a
ground action term and Q1, . . . , Qn be predicate variables.
Then, Pro(D, α) is the following second-order sentence uni-
form in Sα:

∃ ~Q (φ0〈~F : ~Q〉 ∧
n∧
i=1

∀~xi Fi(~xi, Sα) ≡ ΦFi(~xi, α, S0)〈~F : ~Q〉).

2Following Reiter (2001), we use notation ~x to mean different
things depending on the context. F (~x, s) is used as a shorthand for
F (x1, . . . , xn, s), where n + 1 is F ’s arity. Q~xϕ is a shorthand
forQx1 · · · Qxn ϕ, withQ ∈ {∀, ∃}.

We say that a set of formulae Dα uniform in situation
do(α, S0) is a strong progression of D w.r.t. action α iff
Dα ∪ Duna is logically equivalent3 to {Pro(D, α)} ∪ Duna.

In their seminal work, Lin and Reiter (1997) showed that
there are cases in which there does not exist an FO progres-
sion and a second-order one is required. Finding interesting
cases for which FO progressions Dα can be found is an on-
going challenge. In fact, a natural alternative of the notion
of progression amounts to taking a strong enough set that al-
lows the entailment of all FO-sentences uniform in Sα that
are entailed by the original theory:

Definition 2. LetD be a BAT and α a ground action term. A
set Fα of FO-sentences uniform in Sα is a weak progression
ofD w.r.t. α iff for all FO-sentence φ uniform in Sα, it holds
that Fα ∪ Duna |= φ iff D |= φ.

Vassos and Levesque (2008) proved that the weak pro-
gression is not always correct: there is a BAT D and an ac-
tion α such that there is an FO-formula entailed by D but
not by (D \ DS0) ∪ Fα. Note that, by definition of weak
progression, such a formula cannot be uniform in Sα, and
has to refer to future situations from Sα. Nonetheless, weak
progression happens to be enough for a wide set of cases,
including STRIPS and simple projection queries (Lin and
Reiter 1997), and interesting cases of generalized projection
on queries about the future (Vassos and Levesque 2013).

For this reason, several restrictions on the theories have
been proposed so that the updated KB is indeed FO defin-
able. Vassos, Lakemeyer, and Levesque (2008) showed that
progression for local-effect actions is FO definable. Local-
effect actions are those that can only affect objects directly
specified in its arguments. Then, Liu and Lakemeyer (2009)
extended that result to normal actions, which are able to
affect objects not mentioned in their arguments as long as
these are specified by information that exists in the KB in
a particular form. In addition, they showed that progres-
sion of local-effect and normal actions can actually be ef-
ficiently computed for action theories in the proper+ KB
fragment (Lakemeyer and Levesque 2002). In turn, Vassos
and Sardina (2011) studied progression of range-restricted
theories, which are able to handle actions that may not be
local-effect or normal but whose (range of) effects can be
“bounded” at execution time (e.g., a robot “moving for-
ward”). Using classical database evaluation techniques, they
described how to obtain FO and finite progressions that are
correct for the fundamental class of conjunctive queries.

Feasible Progression
As we saw before, weak progression is a restricted form of
progression that is sometimes correct, that is, equivalent to
strong progression. A clear advantage of a weak progres-
sion is that it is a set of FO-sentences and, thus, admits vari-
ous forms of automated reasoning. Additionally, an FO pro-
gression can be used to create a new BAT from the original
one, something not possible when no FO progression exists.

3Whenever we say that two formulae are logically equivalent
we assume that the logical symbol = is always interpreted as the
true identity.
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Nevertheless, as we will see below, there are cases in which
the weak progression, even though provably equivalent to a
strong progression, may not be computable because it might
require an infinite set of FO-sentences Fα. This can hap-
pen even if DS0

is finite (see Corollary 1). This motivates
us to introduce another notion of progression, which we call
feasible, that enforces finiteness.
Definition 3. Let D be a BAT and α a ground action term.
Set Fα is a feasible progression of D w.r.t. α iff (1) Fα is a
strong progression of D w.r.t. α; and (2) Fα is a finite set of
FO-sentences.

When a feasible progression for D w.r.t. α exists, we say
that the progression of D w.r.t. α is feasible; otherwise, we
say its progression is infeasible. The following result estab-
lishes a formal relation among the three notions progression.
Proposition 1. LetD be a BAT and α a ground action term.
If the strong progression ofD w.r.t. α is equivalent to a finite
set ∆ of FO-sentences, then ∆ is a strong, weak, and feasible
progression of D w.r.t. α.

Proof. Let ∆ be a finite set of FO-sentences equivalent to a
strong progression Dα of D w.r.t. α. This set satisfies that
∆∪Duna ≡ Dα ∪Duna. By definition of strong progression,
Dα∪Duna ≡ {Pro(D, α)}∪Duna, so by transitivity of logical
equivalence, ∆∪Duna ≡ {Pro(D, α)}∪Duna, which proves
that ∆ is a strong progression. By hypothesis ∆ is a finite set
of FO-sentences, so it is a feasible progression by definition.
Finally, given an FO-sentence ψ uniform in Sα, it holds that
∆ ∪ Duna |= ψ because ∆ is a strong progression (Vassos
and Levesque 2013; Lin and Reiter 1997). Hence, we have
that ∆ is also a weak progression.

Universal BATs with Constants
Motivated by the fact that universal theories with constants
are expressive and natural theories whose satisfiability is de-
cidable, we analyze the properties regarding progression that
can be obtained when restricting BATs to have this form.

We start off by defining Universal Basic Action Theories
with Constants (UTC-BATs) which are BATs in which the
axioms relevant to progression are in the required form.
Definition 4. A BAT D is a Universal BAT with Con-
stants (UTC-BAT) if for any ground action term α, Duna ∪
DS0
∪Dssa[α, S0] can be simplified to UTCs after replacing

do(α, S0) with Sα.
In the definition above, Dssa[α, S0] is the result of sub-

stituting a by α and s by S0 in every successor state ax-
iom F (~x, do(a, s)) ≡ ΦF (~x, a, s) in Dssa (Lin and Reiter
1997). Moreover, the simplification process involves using
the unique name axioms with the objective of eliminating
action terms that may occur in the formula. To clarify how
this simplification works, let us consider a theory of action
with the following two successor state axioms:

Broken(x, do(a, s)) ≡
(a = dropAll ∧ Holding(x, s)) ∨ Broken(x, s);

(2)

Holding(x, do(a, s)) ≡
a = pick(x) ∨ (Holding(x, s) ∧ a 6= dropAll)

(3)

Note that Dssa[α, S0], for every action term α, can be sim-
plified in such a way that almost all action terms are elimi-
nated, except for do(α, S0). In particular, if α is pick(B),
then Dssa[α, S0] is simplified into:

Broken(x, do(pick(B), S0)) ≡ Broken(x, S0)

Holding(x, do(pick(B), S0)) ≡ (B = x ∨ Holding(x, S0))

A relation between UTC-BATs and other classes of BATs
studied in the literature is sometimes possible to establish.
Context-free BATs (Lin and Reiter 1997), provided that the
situation independent sentences in DS0 are universal formu-
lae with constants, are also UTC-BATs. As a consequence,
classical STRIPS (Fikes and Nilsson 1971) as well as its
open-world version (Lin and Reiter 1997) are cases of UTC-
BATs, since their successor state axioms and initial theories
are further restrictions to those in context-free theories.

On the other hand, UTC-BATs are just different from
local-effect (Vassos, Lakemeyer, and Levesque 2008),
normal-action (Liu and Lakemeyer 2009), and even range-
restricted (Vassos and Sardina 2011) based theories. For ex-
ample, the action of moving from location src to destination
dest whose effect is being at location dest, provided there
is enough fuel to cover the distance, is a local-effect action,
and thus normal and range-restricted, but it cannot be rep-
resented with a universal successor state axioms for fluent
AtLoc(x, s), as it includes a context condition of the form
∃l.FuelLevel(l, s) ∧ MinFuel(src, dest, l) in the right hand
side. In turn, the successor state axioms (2)–(3) would not
yield a local-effect theory, as affected object x is not men-
tioned in the action, or even a normal theory, since drop-
ping all objects affect both Broken as well as the contex-
tual Holding predicate. The above axioms would also not be
range-restricted if there is incomplete information on what
is being held. Nonetheless, the above axioms, even when
the current state has incomplete information about predicate
Holding(x, s) would indeed be UTC axioms. Thus, in gen-
eral, these notions are incomparable against UTC-BATs.

The comparison with proper+ BATs, for which Liu and
Lakemeyer (2009) have provided good progression proper-
ties, is more subtle. Syntactically, proper+ and UTC theo-
ries appear almost identical, as any UTC ∀φ formula could
be rewritten as a set of ∀-clauses formulae by transfor-
mation to CNF, albeit with an exponential growth. Also,
successor state axioms in UTC-BATs are indeed “essen-
tially quantifier-free” (i.e., no quantification on the right-
hand side), thus they can be defined as proper+ KBs (Liu
and Lakemeyer 2009, Proposition 5.11). However, proper+
KB assumes a language with standard names (Levesque and
Lakemeyer 2001), a set of infinitely many different constants
representing all the individuals in the universe of discourse.
This significantly simplifies the semantics (and handling of
quantification), but it either requires second-order axioms
or non-classical semantics, under which, for example, com-
pactness does not apply. In contrast, and in the spirit of Re-
iter (2001)’s work, our restriction of BAT to UTC formu-
lae aims to remain in the classical setting (and understand
its consequences!). The issue of remaining classical is also
relevant in that we will sometimes be interested in infinite
(progressed) theories. Because of all this, we are not able to
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directly import Liu and Lakemeyer (2009)’s positive results
(Theorems 5.12 and 5.13) to UTC-BATs.

Proviso. In what follows, we study the progression of
UTC-BATs. It is important to notice that so far we have
not imposed any restrictions on the cardinality of BATs and
progressions, except for the finiteness constraint imposed in
the case of feasible progressions. In the rest of the paper, we
consider finite UTCs and, in particular, finite UTC-BATs,
unless we explicitly say otherwise.

Defining the Progressing of a UTC-BAT
The first theoretical result that we present establishes that
the strong progression of a UTC-BAT is a (possibly infinite)
UTC, and, thus, always definable in FO.
Theorem 1. Given a UTC-BAT with constants D and a
ground action α, every strong progression of D w.r.t. α is
equivalent to a possibly infinite UTC. Moreover, the same
result holds if DS0

is an infinite UTC.

Proof. (Sketch) Assume that L0 is the language of D and
that F1, . . . , Fn are the fluents occurring inD. Let L1 be L0

augmented with fresh predicate symbols Q1, . . . , Qn such
that the arity of each Qi is equal to the arity of Fi mi-
nus one. Then define a set of FO-formulae ∆ by mimick-
ing the definition of strong progression (see Definition 1),
but without including second-order quantification over pred-
icates Q1, . . . , Qn:

∆ = {φ〈~F : ~Q〉 | ϕ ∈ DS0} ∪ Duna ∪
n⋃
i=1

{∀~xi Fi(~xi, Sα) ≡ ΦFi(~xi, α, S0)〈~F : ~Q〉}.

Given a L0-structure M0, we say that a L1-structure M1 is
an L1-extension of M0, if M0 is an induced substructure of
the restriction of M1 to L0.

By definition, Fα is a (strong) progression of D w.r.t. α
if for every L0-structure M0, M0 |= Fα iff there is a model
M of D such that M0 ∼Sα M. Also, (Kreisel and Krivine
1976, Chapter 3, Theorem 12) implies that for every L0-
structure M0, M0 |= Fα iff it has an L1-extension M1 such
that M1 |= ∆. Then, it is sufficient to prove that the right
parts of the equivalences are equivalent.

Let M0 be an arbitrary L0-structure, and M a model of D
such that M0 ∼S0

M. Let M′0 and M′ be the L1-extensions
of M0 and M which satisfy Q(~t) iff the original structures
satisfy F (~t, Sα). As M |= D, by construction M′ |= ∆, but
M ∼Sα M0, so M′ and M′0 agree on every Qi, which im-
plies that M′0 |= ∆. To prove the opposite direction, assume
that M′0 is a L1-extension of M0 which satisfies ∆. Then,
this model can be transformed, using that D is UTC, to a
model M of D such that M0 ∼Sα M.

Notice that Fα may be an infinite UTC. Besides, this the-
orem is proved without assuming that DS0 is finite, so the
same result holds if DS0 is a infinite UTC.

As stated, UTC-BATs capture theories whose successor
state axioms are not local-effect, normal, or range-restricted,
like those shown in (2)–(3). Thus, an important consequence

of Theorem 1 is that progression is FO definable for a new
syntactic class of expressive and natural BATs.

FO-definability is, of course, desirable, but a relevant
practical question is whether the progression of a UTC-BAT
is feasible. Below, in Corallary 1, we show that this, unfortu-
nately, is not the case, by giving an example of a UTC-BAT
whose FO progression is an infinite UTC. But before that,
we show that the problem of determining whether the pro-
gression of a UTC-BAT is feasible is undecidable.
Theorem 2. The problem of verifying, given a UTC-BAT
D and a ground action α, whether there exists a feasible
progression of D w.r.t. α is undecidable.

Proof. (Sketch) DS0
encodes a theory that describes the ex-

ecution of a Turing machine M on an empty string. In the
encoding, objects are used to represent both time steps and
positions of the tape. To achieve this, we define a fluent
F (x, y, S0) that expresses that y is the successor of x. It is
not hard to define F in terms of a linear order (see the proof
of Corollary 1 for a reference). Furthermore, the encoding
uses fluent Eq(x, S0) to express that at time step x, the state
of the machine is q, and fluent Tc(x, y, S0) to express that
symbol c is in the tape position given by y in time step x.
An analogous predicate H is defined for the position of the
head in a time step. The encoding of the machine is a con-
junction of several formulae, representing different aspects
of the machine. These include the initial configuration, a
formula encoding that the machine can be in at most one
state in every time instance:∧

q∈Q
∀x
(
Eq(x, S0) ⊃

∧
q′∈Q : q′ 6=q

¬Eq′(x, S0)

)
,

and similar formulae for cell contents and head positions. It
also includes the transition function, for example, the transi-
tion given by δ(q, b) = (q′, c,←) is encoded as:

∀x∀y∀w∀z ((Eq(x, S0) ∧H(x, y, S0) ∧ Tb(x, y, S0)∧
F (x,w, S0) ∧ F (z, y, S0)) ⊃

(Eq′(w, S0) ∧H(w, z, S0) ∧ Tc(w, y, S0))),

and a formula indicating that in every time instance x, if the
head is not in a position y andM is in a state q that is not the
final state, then in the following time instance the content of
the cell in position y must be the same:

∀x∀y∀z
∧

b∈{0,1,B,`}

(( ∨
q∈Q : q 6=qf

F (y, z, S0)∧Eq(x, S0)

∧ ¬H(x, y, S0) ∧ Tb(x, y, S0)

)
⊃ Tb(x, z, S0)

)
.

There is a successor state axiom Eq(x, do(a, s)) ≡
Eq(x, s) ∧ a 6= A, for every state q different from the
final state qf , and Eqf (x, do(a, s)) ≡ Eqf (x, s). In ad-
dition successor state axioms are such that fluents L and
F in do(A,S0) are defined exactly as in S0. As a con-
sequence of this definition, after performing action A the
theory intuitively “remembers” the time step at which the
machine accepted, it remembers the extensions of F and
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L, but “forgets” all the other information contained in S0.
Now we establish that M accepts the empty string (an un-
decidable property) if and only if the progression with re-
spect to do(A,S0) is definable with a single first-order logic
formula. Indeed, if the machine accepts the empty string
in n steps, then the progression can be written with a sin-
gle first-order logic formula, simply encoding that fact that
Eqf (x, do(A,S)) holds if x is the n-th time step, but does
not hold if x is a time step occurring before the n-th time
step. If the machine does not accept the empty string, then
the progression must establish that in every time step x that
is finitely reachable from the initial time step it holds that
¬Eq(x, do(A,S0)). But finite reachability is not expressible
by a single first-order logic formula (Hodges 1997).

As a corollary, we obtain that a UTC-BAT may not have
a feasible progression.
Corollary 1. There is a UTC-BAT D and a ground action α
such that no feasible progression of D w.r.t. α exists.

Proof. Though this is a consequence of Theorem 2, here we
provide a simpler counterexample. First, DS0 defines a total
order between the objects of the domain using a predicate L.
As such L(x, y, s) can be understood as saying x is ordered
before y in s. In addition, it defines a fluent F , in terms of
L, as a successor for elements of L.

∀x¬L(x, x, S0),

∀x∀y∀z((L(x, y, S0) ∧ L(y, z, S0))→ L(x, z, S0)),

∀x∀y (L(x, y, S0) ∨ L(y, x, S0) ∨ x = y),

∀x∀y (F (x, y, S0)→ L(x, y, S0)),

∀x∀y∀z (F (x, y, S0)→ ¬(L(x, z, S0) ∧ L(z, y, S0))).

Notice that F does not need to mention all the elements oc-
curring in L. Moreover, Dssa is such that action A empties
predicate L maintaining the contents of F :

L(x, y, do(a, s)) ≡ L(x, y, s) ∧ a 6= A,

F (x, y, do(a, s)) ≡ F (x, y, s).

Observe that since L is a total order, no cycles can exist
through pairs of objects in L in S0. As such, F is the dis-
joint union of some (acyclic) successor relations in S0 (or,
in other words, F in S0 is a graph formed by the disjoint
union of some simple paths). Now assume that DA is an FO
progression or our theory w.r.t. A. Observe that because L
is empty in do(A,S0), the axioms that define F in D would
not benefit from using L, and thus may only refer to predi-
cate F . It is well-known, however, that no FO-sentence can
express the property that a binary predicate is the disjoint
union of some (acyclic) successor relations (Hodges 1997;
Libkin 2004).

Consider now progressing UTC-BATs for which feasible
progressions do exist. A natural question that arises is: can
such a feasible progression be represented by a UTC? Note
that Theorem 1 does not guarantee that the answer is “yes,”
since it only establishes that there exists a strong progres-
sion that is represented by a possibly infinite UTC, but it
does not guarantee that such a UTC is finite when a feasible

progression exists. The following positive result establishes
that whenever a feasible progression exists, then it can be
represented by a UTC.
Theorem 3. Given a UTC-BATD and a ground action term
α, if a feasible progression of D w.r.t. α exists, then such a
progression can be represented as a UTC.

Note that, according to our proviso, UTCs are finite by
default. As such, the UTC guaranteed in Theorem 3 is finite,
as opposed to the UTC obtained in Theorem 1.

Before proving theorem 3, we need the following lemma.
This lemma is proved using properties of the sequent calcu-
lus for first-order logic, that can be found in standard books
on proof theory, such as (Takeuti 1987).
Lemma 1. Let D be a UTC-BAT, and α a ground action
term. If ϕ is uniform in do(α, S0) and D |= ϕ, then there
exists an universal FO-sentence with constants ψ such that
ψ is uniform in do(α, S0), D |= ψ and ψ |= ϕ.

Proof. (Sketch) As D |= ϕ, and ϕ is uniform in Sα, we
have that DS0

∪ Dssa[α, S0] ∪ Duna |= ϕ. Then, the se-
quent Γe,DS0

,Dssa[α, S0],Duna ⇒ ϕ, where Γe contains
the equality axioms is true, hence provable in LK. This se-
quent can be simplified, using Duna and replacing do(α, S0)
with a fresh constant, to obtain a sequent Π⇒ ϕ where Π is
UTC, and doesn’t mention terms of sort action. As LK is not
sorted, this sequent must be further simplified to remove the
situation terms. To do so, we define two predicates F0(~x)
and F1(~x) for each fluent F (~x, s), and rewrite fluents in S0

using F0, and fluents in Sα with F1. This rewriting will be
denoted by E , its inverse by E−1, and the final sequent by T .

By completeness of LK and the midsequent theorem,
there is a deduction of T with midsequent Q : Γ ⇒ ∆,
such that Q is quantifier free, and T is proved from Q only
using structural and quantifier rules. Let π and γ be the con-
junction of Π and Γ respectively, and δ the disjunction of Γ.
Then, by soundness of LK, γ |= δ and E(π) |= E(ϕ), and
by definition of the rules, E(π) |= γ and δ |= E(ϕ). For ex-
ample, in ∃: right, ∆∨F (t) |= ∆∨ ∃xF (x). It is important
to notice that this property is not true for ∃: left, but this rule
is not used because π is UTC.

In every structural or quantifier rule, the predicates used in
the succedent of the upper sequent also appear in the succe-
dent of the lower sequent. This means that every predicate in
δ is used in E(ϕ). But, ϕ is uniform in Sα, so the only pred-
icates mentioned in E(ϕ) are static, or derived from fluents
and subscripted by 1. Then, the same is true for δ, whence
E−1(δ) must be uniform in Sα.

Finally, the universal closure of E−1(δ) satisfies the state-
ment of the lemma.

Proof. (Theorem 3) Let D be a UTC-BAT and α a ground
action term. Assume that the progression of D w.r.t. α is
feasible, and let Fα = {ϕ1, . . . , ϕm} be such a progression.
By definition, each ϕi is entailed by D and uniform in Sα,
so by the previous lemma, there is a corresponding sentence
ϕ∗i such that D |= ϕ∗i and ϕ∗i |= ϕi.

Next we show that F?α = {ϕ?1, . . . , ϕ?m} is a feasible pro-
gression, by proving that Fα and F∗α are logically equiva-
lent. Given that ϕ?i |= ϕi for every i ∈ {1, . . . ,m}, we have
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that F?α |= ϕi and, therefore, F?α |= Fα. To prove the oppo-
site direction, consider an arbitrary ϕ?i . Given that D |= ϕ?i ,
and ϕ?i is uniform in do(α, S0), we conclude that Fα |= ϕ?i ,
which implies that Fα |= F?α.

The Complexity of Progressing UTC-BATs
So far, we have proved that the strong progression of a UTC-
BAT is always FO-definable and representable as a UTC.
Unfortunately, though, such a strong progression may not
be computable, as it can consist of an infinite set of FO-
sentences. It is therefore natural to ask whether one can at
least verify if an FO-sentence is part of such a strong pro-
gression. In the following theorem, we give a positive an-
swer to such question not only for universal FO-sentences
with constants, which may be part of the progression itself,
but also for a more expressive fragment of FO-sentences that
may be implied by the progression. More precisely, a for-
mula ϕ is said to be a ∀∗∃∗-FO formula if ϕ is of the form
∀~x∃~y ψ, where ψ is a quantifier-free FO-formula. Notice
that such formulae include universal FO-formulae with con-
stants as well as existential FO-formulae with constants. In
turn, the latter include some fundamental classes of queries
that could be naturally used to extract information from the
progressed theory, such as conjunctive queries and unions of
conjunctive queries.
Theorem 4. Given a consistent UTC-BAT D, a ground ac-
tion term α and a ∀∗∃∗-FO sentence ϕ that is uniform in
do(α, S0) and that does not mention any other functional
symbol other than do, the problem of verifying whether
ϕ is implied by the strong progression of D w.r.t. α is
CONEXPTIME-complete. Moreover, the problem remains
CONEXPTIME-hard even if the progression of D w.r.t. α is
feasible and ϕ is restricted to be a ground relational atom.

Before providing a sketch of the proof of Theorem 4, it is
important to mention that the consistency requirement forD
is there to show that the complexity of the problem does not
arise from having to check that DS0 is a consistent UTC. In
addition, the restriction to UTC-BATs D and ground action
terms α such that the progression of D w.r.t. α is feasible is
imposed to demonstrate that the complexity of the problem
neither arises from having to check that the progression of
D w.r.t. α is feasible.

Proof of Theorem 4. (Sketch). We first prove membership.
The problem of verifying whether ϕ is implied by the pro-
gression of D w.r.t. α is equivalent to the problem of ver-
ifying whether DS0

∪ Dssa |= ϕ, which in turn is equiva-
lent to checking whether DS0

∪Dssa ∪{¬ϕ} is inconsistent.
Given that ¬ϕ is an ∃∗∀∗-FO sentence and DS0 ∪ Dssa is
a set of universal FO-sentences, the problem of verifying
whether DS0 ∪ Dssa ∪ {¬ϕ} is inconsistent can be reduced
to deciding whether an ∃∗∀∗-FO sentence is inconsistent,
that is, whether an FO-sentence in the Bernays–Schönfinkel
class is inconsistent (recall that no function symbol occurs in
DS0
∪Dssa∪{¬ϕ}). Thus, given that this latter problem is in

CONEXPTIME (Lewis 1980), we conclude the membership
part of the theorem.

To prove the hardness part, we show that for every non-
deterministic Turing machine M that accepts a language in

NEXPTIME, and for every input string w, it is possible to
construct in polynomial time an instance (D,A,ϕ), where
D is a UTC-BAT, A is a ground action term, and ϕ is a
ground relational atom uniform in do(A,S0), such that the
progression of D w.r.t. A implies ϕ if and only if M rejects
w. More precisely, we encode in DS0

the execution of the
Turing machine M with input w. We follow an idea similar
to the proof of Theorem 2, defining a fluent Eq such that
Eq(~x, S0) is satisfied when the machine is in state q at time
step ~x. Different from the proof of Theorem 2, ~x is a tuple
of n variables, each of which can take values in {0, 1}. Note
that with n variables we can represent 2n time steps, and that
we can choose the value of n depending on w and M .

To define the contents of the tape and the position of the
head, we use fluents Ta and H (as in the proof of Theo-
rem 2). Our definitions for Ta and H use in turn fluent N ,
which defines a successor relation between time steps. The
definition of N using a universal formula with constants is
straightforward, given that time steps are tuples of values 0
and 1 of length n, where n depends on M and w. Finally,
Dssa contains a successor state axiom Eqf (~x, do(a, s)) ≡
a = A ∧ ¬Eqf (~x, s), where qf is the accepting state of M .
Furthermore, for every state q that is not qf ,Dssa contains an
axiom Eq(~x, do(a, s)) ≡ Eq(~x, s) ∧ a 6= A. Analogously,
we define the successor state axioms for other fluents such
that their extensions in do(A,S0) are empty.

It only remains to show how FO-sentence ϕ is defined.
Assuming that ~c is the tuple (1, . . . , 1) with n values 1, we
have that ϕ = Eqf (~c, do(A,S0)). It is possible to prove
that the progression of D w.r.t. A is feasible, so satisfying
one of the restriction imposed in the theorem. Besides, ϕ is
a ground relational atom, so satisfying the other restriction
imposed in the theorem. Thus, it only remains to prove that
ϕ is implied by the progression of D w.r.t. A if and only if
M does not accept w.

To see why is this the case, assume thatM does not accept
w. Then in every run of M over w, it holds that the state of
M at time ~c is different from qf . Thus, in every model M of
D, it holds that M |= ¬Eqf (~c, S0), from which we deduce
that M |= Eqf (~c, do(A,S0)) since M |= Dssa. We conclude
then that ϕ is implied by the progression of D w.r.t. A. For
the opposite direction, assume M accepts w. Hence, there
exists a run of M over w such that the state of M is qf at
time ~c. Let M be a model of D encoding such a run, so that
M |= Eqf (~c, S0). Then, M |= ¬Eqf (~c, do(A,S0)) since
M |= Dssa, from which we conclude that ϕ is not implied by
the progression of D w.r.t. A.

When the progression of a UTC-BAT D w.r.t. a ground
action term α is feasible, the next natural question is how
small this progression could be. In fact, such a progres-
sion can be represented by different UTCs, as long as they
are logical equivalent, so we ask whether there is a com-
pact representation of such a progression as a UTC. Even
more, it may be possible that there exists a fixed polynomial
p(x) such that if the progression of a UTC-BAT D w.r.t. a
ground action term α is feasible, then there exists a UTC
Fα such that Fα is a feasible progression of D w.r.t. α and
||Fα|| ≤ p(||D|| + ||α||), where ||Γ|| denotes the size of a
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set of formulae Γ (that is, the length of a string encoding Γ
over an appropriate alphabet). Notice that Theorem 4 per
se does not preclude such a possibility. Nevertheless, in the
following result we show that there exists a family of UTC-
BATsD2,D3,D4, . . . , such that the progression of eachDn
w.r.t. α is feasible but the size of every feasible progression
of Dn w.r.t. α grows exponentially with n. (Recall DnS0

and
Dnssa refer to the initial situation description and the set of
successor state axioms of theory Dn, respectively.)
Theorem 5. There exists a family of UTC-BATs {Dn}n≥2
and a ground action term α such that the progression of Dn
w.r.t. α is feasible, and the size of every representation of
such a progression as a UTC has size Ω(2||D

n
S0
||+||Dnssa||).

Proof. (Sketch.) For n ≥ 2, the UTC-BAT Dn is defined
over a vocabulary consisting of constants a1, . . ., an and
two fluents L and T . Following the proof for Corollary 1,
DnS0

contains axioms expressing that L defines a (strict) lin-
ear order, but in this case between pairs of element of the
domain in S0. For example, the following axioms indicate
that L is irreflexive and transitive:
∀x¬L(x, x, x, x, S0),

∀x1∀x2∀y1∀y2∀z1∀z2 [(L(x1, x2, y1, y2, S0) ∧
L(y1, y2, z1, z2, S0)) ⊃ L(x1, x2, z1, z2, S0)].

In addition, DnS0
contains an axiom stating that L is only

defined for the n constants a1, . . . , an:

∀x1∀x2∀y1∀y2
[
L(x1, x2, y1, y2, S0) ⊃(( n∨
i=1

x1 = ai

)
∧
( n∨
i=1

x2 = ai

)
∧

( n∨
i=1

y1 = ai

)
∧
( n∨
i=1

y2 = ai

))]
.

Fluent T has arity n2+1, it is empty in S0, and it contains in
do(A,S0) all elements in the liner order L for the n2 pairs.
Specifically, Dssa contains the following axioms:
L(~x1, ~x2, do(a, s)) ≡ L(~x1, ~x2, s) ∧ a 6= A

T (~x1, . . . , ~xn2 , do(a, s)) ≡
(
a = A ∧

n2−1∧
i=1

L(~xi, ~xi+1, s)

)
∨ T (~x1, . . . , ~xn2 , s),

where ~xi stands for the two variables x1,i, x2,i.
Finally, DnS0

also expresses that ai is different from aj if
i 6= j. Note that the sizes ofDnS0

andDssa are both quadratic
in n, and so it is the size of Dn. Now the progression of Dn
w.r.t. A can be expressed as a universal FO-sentence with
constants, which is a conjunction of two sentences: the first
one says that L is empty in do(A,S0), and the second one
is a disjunction of formulae expressing that T in do(A,S0)
must contain all n2! permutations of the n2 pairs of con-
stants a1, . . ., an. It is possible to show that a smaller uni-
versal formula with constants would not represent a correct
progression. Finally, the result follows from the fact that n2!

is Ω(2n
2

) and the size of DnS0
∪ Dnssa is quadratic in n.

Resolution-Based Progression of UTC-BATs
We showed that progressing a UTC-BAT always yields a
UTC-BAT (Theorem 1). While this tells us how the pro-
gression of a UTC-BAT looks like, it does not tell us how to
compute it. The goal of this section is to give an answer to
this question by focusing on finite UTC-BATs, since these
are the only ones that we can hope to progress in practice.

Since the progression of a UTC-BAT could be infinite
(Corollary 1), it is not possible in general to compute it. We
show below, though, that a progression of a UTC-BAT w.r.t.
some action term can be enumerated using a resolution-
based procedure. For some input theories, our procedure
terminates. In such a case, as we prove below, its output is
a UTC that is a strong progression. In the rest of the sec-
tion, we exploit first-order resolution (Robinson 1965). We
introduce some background below.

FO Resolution and Its Enumeration
A first-order clause is a set {`1(~t1), `2(~t2), . . . , `n(~tn)},
where, for every i ∈ {1, . . . , n}, ~ti is a sequence of terms,
and `i(~ti) is a first-order literal, that is, either an atomic
formula or the negation of an atomic formula. Intuitively,
a clause C represents the disjunction ∀(C) = ∀~x

∨
`∈C `,

where ~x contains all variables that are free in some ` ∈ C.
Given a literal r, its complement (i.e., the smallest for-
mula equivalent to ¬r) is denoted by r̄ (if r = P (~t), then
r̄ = ¬P (~t); and if r = ¬P (~t), then r̄ = P (~t)). A substitu-
tion is a partial mapping of variables to terms. If r is a literal,
rθ denotes the literal that results from substituting every oc-
currence of x in C by θ(x), for every x that is mapped in
θ. If C is a clause, then Cθ is the clause that results by sub-
stituting every literal in C with θ. Likewise, if C is a set of
clauses Cθ = {Cθ | C ∈ C}. A substitution θ is a unifier of
two literals ` and `′ if `θ = `′θ. A unifier θ is a most general
unifier (MGU) of ` and `′ if for every unifier θ′ of ` and `′
there exists a substitution ρ such that θ′ = θ ◦ ρ, where ◦
denotes the composition of functions.

The resolution of C1 and C2, denoted by Res(C1, C2),
is a set obtained with the following procedure. We start
making Res(C1, C2) equal to ∅. Then, for each `1 ∈ C1

and `2 ∈ C2 such that a unifier ρ for `1 and ¯̀
2 exists,

we add to Res(C1, C2) the clauses of form (C1 ∪ C2)θ r
{`1, `2}θ, where θ is a MGU of `1 and ¯̀

2. Each formula in
Res(C1, C2) is entailed by {C1, C2} (Robinson 1965).

We say that a clause C can be proven by resolution from
C, denoted C ` C, if and only if C ∈ C or there exists two
clauses C1 and C2 which can be each proven by resolution
from C such that C ∈ Res(C1, C2). When C ` C, there
exists at least a proof tree forC, which is a binary tree where
each node is labeled by a clause, the root is labeled byC, and
the leaves are labeled with nodes in C. Finally, if a non-leaf
node is labeled by D and its children are labeled by C1 and
C2, then D ∈ Res(C1, C2). If C ` C, we say that d is the
proof-depth of C if and only if d is the height of a shortest
proof tree for C. To handle languages with equality, it is
necessary to augment the set C with the clausal version of
the axioms of equality, denoted by Eq (these are standard
axioms that we omit to save space).
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Algorithm 1: Enumerating Resolution Algorithm
1 procedure ENUMRESOLUTION(C)
2 for each C ∈ C do PRINT(C)
3 L0 ← C ∪ Eq
4 for d← 0 . . .∞ do
5 Next← ∅
6 foreach C0 ∈ Ld and C1 ∈ ∪di=0Li do
7 S ← Res(C0, C1) r ∪di=1Li
8 foreach C ∈ S do PRINT(C)
9 Next← Next ∪ S

10 if Next = ∅ then return
11 Ld ← Next

For a finite set of first-order clauses C, procedure ENUM-
RESOLUTION, shown in Algorithm 1, will enumerate every
clause C such that C ` C. Intuitively, in the d-th iteration of
the main loop (Lines 4–11), all clauses of proof-depth d are
printed via the procedure PRINT.

Resolution is refutation-complete, that is, if C does not
have a model, the empty clause will be eventually printed
by ENUMRESOLUTION. However, if C |= ∀(C), there is no
guarantee that C appears in the enumeration. However, the
following result establishes that an enumeration of C men-
tions the simplest non-tautological clauses that are entailed
by C. In this result, C ′ subsumes C means that there exists
a substitution θ under which C ′θ ⊆ Cθ.

Theorem 6 (Subsumption theorem (Lee 1967)). Let Σ be
a set of clauses and C a non-tautological clause. Then,
∀(Σ) |= ∀(C) iff Σ ` C ′ and C ′ subsumes C.

Progression via Enumeration
Now we are ready to present a resolution-based progression
method. Recall that from Theorem 1, a strong progression
of a UTC-BATD w.r.t. α can be represented as a (first-order)
UTC theory. An important consequence of this, that we ex-
ploit below, is that a weak progression is also a strong pro-
gression of the theory. This can be proven using the same
argument we used to prove Proposition 1.

So, let us prove that Algorithm 1 can be used to enumerate
a strong progression. First, recall that a weak progression is
a set of FO-sentences uniform in do(α, S0) that entails every
formula uniform in do(α, S0) which in turn is entailed by
the original theory D. As a consequence of Reiter (1991)’s
regression theorem, every formula uniform in do(α, S0) en-
tailed by D is entailed by DS0 ∪ Dssa[α, S0] ∪ Duna, where
Dssa[α, S0] is the set of FO-sentences that results of substi-
tuting a with α and s with S0 in every successor state axiom
F (~x, do(a, s)) ≡ ΦF (~x, a, s) in Dssa. Such an observation
is a key element of the proof of the following theorem.

Theorem 7. LetD be a universal UTC-BAT and α a ground
action term. The FO-sentences corresponding to the clauses
enumerated by ENUMRESOLUTION(DS0

∪ Dssa[α, S0] ∪
Duna) that are uniform in do(α, S0) is an enumeration of
the strong progression of D w.r.t. α.

Proof. Form Theorem 6 and the observations above.

When the enumeration of resolution terminates, we obtain
a feasible progression of the UTC-BAT.
Corollary 2. Let D be a UTC-BAT and α a ground action
term. If the call ENUMRESOLUTION(DS0

∪ Dssa[α, S0] ∪
Duna) terminates, then the set of formulae uniform in
do(α, S0) corresponding to the clauses printed by the al-
gorithm is a strong (and feasible) progression of D w.r.t. α.
Example 1. Consider a theory D with Dssa defined by ax-
ioms (2) and (3), DS0 = {Glass(x) ⊃ (Holding(x, S0) ∨
Broken(x, S0))}, and Duna stating that actions dropAll
and pick are different. Let α = dropAll and Sα =
do(α, S0). Below we show the clauses that correspond to
DS0
∪ Dssa[α, S0] ∪ Duna after simplification with the ax-

ioms in Duna and elimination of subsumed clauses:

¬Glass(x) ∨ Holding(x, S0) ∨ Broken(x, S0) (4)
Broken(x, Sα) ∨ ¬Broken(x, S0) (5)
Broken(x, Sα) ∨ ¬Holding(x, S0) (6)
¬Broken(x, Sα) ∨ Holding(x, S0) ∨ Broken(x, S0) (7)
¬Holding(x, Sα) (8)

By successive resolution, Algorithm 1 prints two formulae
uniform in Sα. Specifically, ¬Glass(x) ∨ Broken(x, Sα), by
resolving (4) with (5) and (6), and ¬Holding(x, Sα). It is
straightforward to verify that the enumeration algorithm ter-
minates, and thus it has computed a feasible progression.

Summary
We studied the problem of progressing the knowledge base
of an agent after an action has been performed under the syn-
tactically (and conceptually) simple fragment of well-known
Basic Action Theories (Reiter 2001): universal formulae
with constants, itself a special case in Bernays-Schönfinkel
class (Bernays and Schönfinkel 1928). We show first that
the progression of a UTC-BAT is always definable in first-
order logic and that it can be always represented by a (pos-
sibly infinite) UTC. We then demonstrated that determining
whether the progression is feasible is, however, an undecid-
able problem. In our analysis, we put an emphasis on com-
putational complexity, showing that deciding whether a for-
mula is entailed by a progression of a UTC-BAT is a com-
putationally difficult problem; indeed, it is CONEXPTIME-
complete. Finally, we showed that the progression of a
UTC-BAT can always be enumerated, and sometimes effec-
tively computed, by resorting to the standard resolution.
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