
Symbolic Verification of GOLOG Programs with First-Order BDDs

Jens Claßen
Knowledge-Based Systems Group

RWTH Aachen University, Germany
classen@kbsg.rwth-aachen.de

Abstract

GOLOG is an agent language that allows defining behaviours
in terms of programs over actions defined in a Situation Cal-
culus action theory. Often it is vital to verify such a program
against a temporal specification before deployment. So far
work on the verification of GOLOG has been mostly of theo-
retical nature. Here we report on our efforts on implementing
a verification algorithm for GOLOG based on fixpoint com-
putations, a graph representation of program executions, and
a symbolic representation of the state space. We describe the
techniques used in our implementation, in particular a first-
order variant of OBDDs for compactly representing formulas.
We evaluate the approach by experimental analysis.

1 Introduction
The agent language GOLOG (Levesque et al. 1997; De Gi-
acomo, Lespérance, and Levesque 2000) allows to describe
an agent’s behaviour in terms of a program over primitive
actions defined in a Situation Calculus action theory (Mc-
Carthy and Hayes 1969; Reiter 2001). This very expres-
sive, first-order formalism is particularly suited for scenar-
ios where one has to cope with incomplete information and
a possibly unbounded domain of objects. As an example,
consider a robot whose task is to deliver coffee on request:

loop: if ¬Empty(queue)
then πx { selectRequest(x);

pickupCoffee; bringCoffee(x) }
else wait

Here the robot maintains a finite queue of requests to be
served in order of arrival. In each cycle of an infinite loop,
if the queue is not empty, the robot chooses the next pend-
ing request x (action selectRequest(x)), gets a cup of cof-
fee from the machine (pickupCoffee), and brings it to per-
son x (bringCoffee(x)). Otherwise, it waits for a short pe-
riod (wait). Requests are represented by exogenous actions
requestCoffee(x) that may occur at any time during execu-
tion, where x denotes one person (of unboundedly many).

Another example is removing dirty dishes:

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

loop: while (∃x.OnRobot(x)) do
πx:Dish unload(x) endWhile;

πy:Room { goto(y);
while (∃xDirty(x, y)) do

πx:Dish load(x, y) endWhile };
goto(kitchen)

In each iteration of the infinite outer loop, the robot (ini-
tially located in the kitchen) first unloads all dishes it car-
ries, selects a room in the building, moves there, collects
all dirty dishes there, and returns to the kitchen. Here,
Dirty(x, y) reads as “dirty dish x is in room y” and
load(x, y) as “load dish x from room y”, and there are ex-
ogenous newdish(x, y) actions causing a new dirty dish x to
appear in room y. Unlike the previous example, the choice
operators π (“picks”) here only range over finite domains
Dish and Room .

Before deploying any such program onto a robot, one may
want to verify it against some temporal specification, e.g. to
ensure that every coffee request will eventually be served, or
that no dirty dish remains in a room forever. There are es-
sentially two approaches for the formal verification of such
properties of GOLOG programs: First, use existing verifica-
tion methods, particularly from the area of model checking.
As the general verification problem for GOLOG is highly un-
decidable due to the language’s expressivity in terms of first-
order quantification, range of action effects, and program
constructs, this entails finding non-trivial restrictions that al-
low for a finite abstraction of the state space (Zarrieß and
Claßen 2014; Zarrieß and Claßen 2016). A second approach
is to devise GOLOG-specific verification algorithms that
e.g. do similar fixpoint computations as (symbolic) model
checking techniques, but that employ special representa-
tion and reasoning techniques for Situation Calculus theo-
ries and GOLOG programs (Claßen and Lakemeyer 2008;
Claßen 2013). Due to the aforementioned undecidability, in
general such a method is at most sound, but cannot be guar-
anteed to terminate, unless similar restrictions as for the ab-
straction approach are imposed (Claßen et al. 2014).

For the most part, work on GOLOG verification so far has
been purely theoretical. In this paper, after briefly introduc-
ing formal preliminaries (Section 2), we report on our ef-
forts on implementing such verification methods, in particu-
lar the GOLOG-specific fixpoint method. As it turns out, the
largest obstacle is keeping the involved first-order formulas

Proceedings of the Sixteenth International Conference on
Principles of Knowledge Representation and Reasoning (KR 2018)

524

at a manageable size, as they tend to blow up very quickly.
Again taking inspiration from (symbolic) model checking,
we propose to use a first-order variant of ordered binary de-
cision diagrams (OBDDs) for their compact representation,
along with other techniques (Section 3). We evaluate the ap-
proach’s practicality by experimental analysis (Section 4).

2 Preliminaries
We use a modal variant of the Situation Calculus called ES
(Lakemeyer and Levesque 2010). Due to limited space, we
only give a brief overview (see references for details). The
language is a first-order logic with equality and terms com-
ing in two sorts, namely action and object, and where we
make the unique names assumption for all ground terms
(yielding e.g. plate 6= cup and load(x) 6= unload(y)).
Both predicate and function symbols can be fluent, mean-
ing they may change due to the execution of actions
(e.g. OnRobot(x) and queue, also Poss(a) for action ex-
ecutability). There are no situation terms; to refer to future
situations, two modal operators can be used: 2φ says that
φ holds after any sequence of actions, and [t]φ means that
φ holds after executing action t. A formula without 2 and
[·] is called fluent formula. > denotes “true”, and ⊥ means
“false”. We can then represent a dynamic domain as follows:
Definition 1. A basic action theory (BAT) Σ is a set of ax-
ioms consisting of: (1) Σ0, the initial theory, a finite set of
fluent sentences describing the initial state of the world; (2)
Σpre, a precondition axiom, of the form12Poss(a) ≡ π,
where π is a fluent formula with free variable a; (3) Σpost,
a finite set of successor state axioms (SSAs), one for each
fluent relevant to the application domain, encoding actions’
effects. The SSA for a fluent predicate F has the form2

2[a]F (~x) ≡ γF , where γF is a fluent formula with free
variables a and ~x (similar for functions). N

Example 2. For the coffee robot, the initial theory is Σ0 =
{Empty(queue)}, and the precondition Σpre is given by:

2Poss(a) ≡
(a = wait) ∨ (a = pickupCoffee ∧ ¬HoldingCoffee)∨
∃x (a = bringCoffee(x) ∧HoldingCoffee)∨
∃x (a = requestCoffee(x) ∧ x 6= e ∧ LastFree(queue))∨
∃x (a = selectRequest(x) ∧ x 6= e ∧ IsFirst(queue, x))

The SSAs for HoldingCoffee and queue are:

2[a]HoldingCoffee ≡ a = pickupCoffee

∨HoldingCoffee ∧ ¬∃x. a = bringCoffee(x)

2[a]queue = y ≡
∃x (a = requestCoffee(x) ∧ Enqueue(queue, x, y)) ∨
∃x (a = selectRequest(x) ∧Dequeue(queue, x, y)) ∨
queue = y ∧
¬∃x(a = requestCoffee(x) ∨ a = selectRequest(x))

1Free variables are understood as universally quantified from
the outside; 2 has lower syntactic precedence than the logical con-
nectives, i.e. 2Poss(a) ≡ π stands for ∀a.2(Poss(a) ≡ π).

2[t] has higher precedence than the logical connectives. So
2[a]F (~x) ≡ γF abbreviates ∀a, ~x.2(([a]F (~x)) ≡ γF).

A finite queue of size k is here represented by a
term 〈x1, . . . , xk〉, where empty slots are denoted by
the special constant e . The properties Empty(queue),
LastFree(queue), IsFirst(x, queue) as well as the opera-
tions Enqueue(queue, x, y) and Dequeue(queue, x, y) are
then expressed through corresponding formulas, e.g.

Dequeue(qo, x, qn) := ∃x2 . . . xk. qo = 〈x, x2, . . . , xk〉
∧ qn = 〈x2, . . . , xk, e〉 N

Example 3. For the dish robot, the initial theory is Σ0 =
{¬∃x, yDirty(x, y), ¬∃xOnRobot(x)}. For simplicity we
assume every action is possible (Σpre = {2Poss(a) ≡ >}).
The SSAs are (omitting the robot’s location for simplicity):

�[a]Dirty(x, y) ≡ a = newdish(x, y) ∨
Dirty(x, y) ∧ a 6= load(x, y)

�[a]OnRobot(x) ≡ ∃y. a = load(x, y) ∨
OnRobot(x) ∧ a 6= unload(x). N

Next we define complex behaviours over primitive actions:
Definition 4. A program δ is built according to

δ ::= t | ψ? | δ;δ | δ|δ | πxδ | δ∗ | δ||δ,

where t is an action term, ψ? a test for fluent formula ψ,
δ;δ means sequence, δ|δ non-deterministic choice, πxδ non-
deterministic choice of argument, δ∗ non-deterministic iter-
ation, and δ||δ interleaving. We then use ifφ then δ1 else δ2
as abbreviation for [φ?; δ1] | [¬φ?; δ2], whileφdo δ for
[φ?; δ]

∗
;¬φ?, and loop:δ for while > do δ. Similarly, the

finitary pick πx:{c1, . . . , ck} stands for δxc1 | · · · | δ
x
ck

, where
δxc means δ with variable x instantiated by c. N

Exogenous actions can be incorporated by having a loop that
non-deterministically picks and executes one such action

δexo = loop πx:Dish πy:Room newdish(x, y)

run concurrently with the actual control program δ, i.e. in
the verification one analyzes the behaviour of δ || δexo.

We use a transition semantics for programs as defined in
(Claßen and Lakemeyer 2008; Claßen 2013), where as op-
posed to classical CONGOLOG (De Giacomo, Lespérance,
and Levesque 2000), transitions are by physical actions, and
tests are merely conditions under which a transition may be
taken. Again, we leave out the formal details here.
Definition 5. Our temporal language is similar to CTL, but
where in place of propositions we allow for arbitrary fluent
sentences ψ, and disallow nesting of path quantifiers:

ϕ ::= ψ | ¬ϕ | ϕ ∧ ϕ
Ψ ::= ϕ | ¬Ψ | Ψ ∧Ψ | EXϕ | EGϕ | E(ϕ U ϕ)

We write AΦ (Φ holds on all paths) for ¬E¬Φ, FΦ (even-
tually Φ) for > U Φ and GΦ (globally Φ) for ¬F¬Φ. N

Example 6. Some temporal properties for the coffee robot:
Prop1: EXEmpty(queue)

“Can the queue be empty after the first action?”
Prop2: E(Empty(queue) U HoldingCoffee)

“Can the queue remain empty until grabbing coffee?”

525

v0 v1

v2

πy : requestCoffee(y) πy : requestCoffee(y)

πy : requestCoffee(y)

wait/Empty(queue)

πx : selectRequest(x)/
¬Empty(queue)

pickupCoffee

bringCoffee(x)

Figure 1: Characteristic Graph for the Coffee-Serving Robot

Prop3: EG¬∃xOcc(selectRequest(x))
“Is it possible that no request is ever served?”
(Occ(a) means a was the last action that occurred.) N

Example 7. Some temporal properties for the dish robot:

Prop1: EGDirty(cup1, room1)
“Is it possible that cup1 remains dirty in room1?”

Prop2: AF¬Dirty(cup1, room1)
“Will cup1 in room1 eventually be cleaned?”

Prop3: AFDirty(cup1, room1)
“Will cup1 eventually be dirty in room1?”

Prop4: E(¬∃yDirty(cup1, y) U ∃yDirty(cup1, y))
“Is it possible that cup1 becomes dirty somewhere?”

Prop5: AF∃x, yDirty(x, y)
“Will there eventually be a dirty dish somewhere?” N

3 Verification by Fixpoint Computation
The GOLOG-specific verification procedure (Claßen and
Lakemeyer 2008; Claßen 2013) is inspired by classical sym-
bolic model checking (McMillan 1993) in the sense that a
systematic exploration of the state space is made by a fix-
point computation of preimages of state sets, however now
involving first-order reasoning about actions. For this pur-
pose, an ES variant (Lakemeyer and Levesque 2010) of Re-
iter’s (2001) regression operator R is employed, which re-
places occurrences of Poss(t) and fluent atoms in the scope
of a [t] by the right-hand side of the corresponding axiom in
the BAT, for example (with simplifications):

R[Poss(pickupCoffee)] = ¬HoldingCoffee

R[[load(cup)]∃x, yDirty(x, y)] = ∃x, yDirty(x, y)

Furthermore,R distributes over logical connectives.
Another ingredient for the algorithm are characteristic

graphs, which encode reachable subprogram configurations.
For any program δ, the graph Gδ = 〈V,E, v0〉 consists of a
set of vertices V , each of which corresponds to one reach-
able subprogram δ′, and where the initial node v0 corre-
sponds to the overall program δ. Edges E are labeled with
tuples π~x : t/ψ, intuitively denoting that a transition with

v0 v1

newdish(∗, room1)

unload(∗)/
∃x.OnRobot(x)

newdish(∗, room1)

load(∗)/
∃x.Dirty(x, room1)

goto(room1)/
¬∃x.OnRobot(x)

goto(kitchen)/
¬∃x.Dirty(x, room1)

Figure 2: Characteristic Graph for the Dish-Cleaning Robot

action t can be taken after choosing instantiations for the
variables ~x under the condition that fluent formula ψ holds.
Figure 1 shows the graph for the coffee robot program, and
Figure 2 the one for the dish robot domain with one room
(with simplifications: action preconditions are omitted; con-
ditions equal to > are omitted; π is omitted when there are
no variables to be instantiated; “∗” indicates that there is one
such edge instance for every element in the Dish domain).

The algorithm uses a set of labels 〈v, ψ〉, one for each
node v ∈ V , where ψ is a fluent formula. Intuitively, a label
ψ on a node v = δ′ represents all situations where ψ holds
and δ′ remains to be executed. Below is the procedure for
formulas of form EGφ (similar ones exist for EX and EU):

Procedure 1 CHECKEG[δ, φ]

1: L′ := LABEL[Gδ,⊥]; L := LABEL[Gδ, φ];
2: while L 6≡ L′ do
3: { L′ := L; L := L′ AND PRE[Gδ, L′] };
4: return INITLABEL[Gδ, L]

That is to say first the “old” labelling L′ is initialized to label
every node with⊥ and the “current” labelling Lmarks every
vertex with φ. WhileL andL′ are not equivalent (ψ ≡ ψ′ for
every 〈v, ψ〉 ∈ L, 〈v, ψ′〉 ∈ L′), L is conjoined according to

L1 ANDL2 := {〈v, ψ1∧ψ2〉 | 〈v, ψ1〉 ∈ L1, 〈v, ψ2〉 ∈ L2}

with its pre-image

PRE[〈V,E, v0〉, L] := {〈v, PRE[v, L]〉 | v ∈ V }

where PRE[v, L] stands for∨
{R[φ ∧ [t]ψ] | v t/φ−−→ v′ ∈ E, 〈v′, ψ〉 ∈ L}.

Note the use of regression to eliminate the action term t.
Once converged, the procedure returns the label formula at
the initial node v0. The algorithm is sound as follows:
Theorem 8. If CHECKEG[δ, φ] terminates, it returns a flu-
ent formula ψ such that EGφ is valid in δ wrt. Σ iff Σ0 |= ψ.
The major challenge in implementing this method is that re-
gression tends to “blow up” formulas exponentially (atoms
are replaced by larger formulas), which quickly becomes un-
manageable. We again drew inspiration from propositional
model checking, where the introduction of ordered binary
decision diagrams (OBDDs) (Bryant 1986) as a symbolic,

526

implicit representation of the state space caused a huge leap
in the size of problems one could handle (Burch et al. 1992).
An example for an OBDD over variable order A < B is

A

1

B

0

representing A ∨ B ∧ ¬A. OBDDs are often (depending
on the variable order) more compact than other represen-
tations of propositional formulas, support efficient manip-
ulation through Boolean operations, and are unique when
fully reduced. Using appropriate data structures, the OBDDs
of shared subformulas only need to be materialized once in
memory (Brace, Rudell, and Bryant 1990).

Multiple approaches have been proposed for lifting OB-
DDs to the first-order case. While most require the formula
to be in prenex form or quantifier-free (Groote and Tveretina
2003; Wang, Joshi, and Khardon 2007), a variant of the first-
order algebraic decision diagrams introduced by Sanner and
Boutilier (2009) seems best suited for our purposes. The idea
is to “expose the propositional structure of a first-order for-
mula” by pushing quantifiers inside as deep as possible by
repeatedly applying the following rewrite rules:

∃x. φ(x, ·) ∨ ψ(x, ·) ; (∃xφ(x, ·)) ∨ (∃xψ(x, ·))
∀x. φ(x, ·) ∧ ψ(x, ·) ; (∀xφ(x, ·)) ∧ (∀xψ(x, ·))
∃x. φ(x, ·) ∧ ψ(·) ; (∃xφ(x, ·)) ∧ ψ(·)
∀x. φ(x, ·) ∨ ψ(·) ; (∀xφ(x, ·)) ∨ ψ(·)

Furthermore, quantifiers can be eliminated using:

∃x. x = y ∧ φ(x, ·) ; φ(y, ·)
∀x. x 6= y ∨ φ(x, ·) ; φ(y, ·)

For example, the formula

∃x. (P (x) ∨ ∀y. P (x) ∧Q(x) ∧ ¬P (y))

is rewritten to

∃xP (x) ∨
(
∃x(P (x) ∧Q(x)) ∧ ∀y¬P (y)

)
.

The boxes illustrate the propositional structure of the for-
mula. In its OBDD representation, each box is treated as
a propositional atom. If A stands for ∃xP (x) and B for
∃xP (x) ∧Q(x), we obtain the OBDD shown above.

We integrated this solution into our implementation.
While Sanner and Boutilier suggest to apply the rules
“working from the innermost to the outermost quantifiers”,
we found that the opposite worked better for our setting.
Moreover, we apply the method recursively to subformulas
within quantifiers, and simplify using unique names wher-
ever possible. Finally, before reconstructing the FOL for-
mula from an OBDD, we put its propositionalized version
into clausal form, determine its prime implicates, use the
theorem prover to identify subsumption relations within and
between clauses, and simplify accordingly: If e.g. the re-
duced OBDD yields A ∨B, since ∃x(P (x) ∧Q(x)) entails
∃xP (x), we can further simplify it to A.

Q Graph [ms] Prop1 [ms] Prop2 [ms] Prop3 [ms]
1 65 61 358 270
2 65 162 563 1706
3 65 400 704 45250
5 65 797 678 –

10 66 3949 1238 –

Table 1: Evaluation Results for the Coffee Robot Domain

R D Graph [ms] Prop1 [ms] Prop2 [ms] Prop3 [ms] Prop4 [ms] Prop5 [ms]
1 1 23 89 39 92 158 361
1 2 26 98 39 84 171 635
2 1 43 134 50 115 229 635
2 2 89 144 50 119 269 1111
3 1 108 180 58 140 283 911
1 3 40 100 40 85 181 909
2 3 151 145 51 122 261 1451
3 2 243 194 62 158 346 1531
3 3 429 186 62 160 353 2054
5 5 4492 300 92 222 526 5282

10 10 162798 589 214 459 1106 –

Table 2: Evaluation Results for the Dish Robot Domain

4 Experiments
We implemented a GOLOG interpreter in SWI Prolog. In
contrast to many prototypes (Reiter 2001) that use Prolog’s
negation-as-failure mechanism and incorporate the closed-
word assumption, ours operates on full FOL formulas (rep-
resented as Prolog terms). For the FOL reasoning tasks of
deciding label set equivalence and entailment by the initial
theory, we embedded the E theorem prover (Schulz 2013).

Tables 1 and 2 present evaluation results for the coffee
and dish robot domains, respectively. All experiments were
conducted on an Intel R© CoreTM i5-7500U @2.70GHz with
16GB of RAM. Rows correspond to instances with varying
queue sizes (Q) in the coffee domain as well as numbers
of rooms (R) and dishes (D) in the dish domain. Columns
report the time in milliseconds needed to compute the char-
acteristic graph and subsequently verify the properties from
Examples 2 and 3, with a timeout threshold of 300s.

These results constitute a significant improvement in the
sense that our original, naive implementation (without OB-
DDs or other techniques) could not solve even the smallest
instances, as the blow-up due to regression was too severe.
Note that the method however did not fail from exceeding
memory limitations, but rather, once formulas reached a cer-
tain size, the embedded theorem prover would not terminate
(within reasonable time, say 24 hours) when called to decide
their equivalence. It is outside our expertise to identify the
exact reason for this (we regard the prover as black box), but
our observation is that apart from sheer size, quantifier depth
has a strong impact. The same phenomenon occurred with
other theorem provers we tried (Vampire, iProver). Only
once we employ our techniques to rewrite formulas into a
simpler, equivalent form, verification becomes feasible.

Finally, we also experimented with verification by finite
abstraction of the state space (and then using a classical
model checker). However, we found that this method is
far from being competitive since constructing a complete,
bisimilar abstraction is very expensive: For “local-effect”
theories, where actions may only affect objects they explic-
itly mention as argument (e.g. the dish domain), its size can
be up to double-exponential (Zarrieß and Claßen 2014). The
fixpoint method on the other hand only explores states rel-

527

evant to the query property. Moreover, different decidable
fragments require different abstractions, whereas the fix-
point approach works irrespective of which action theory is
used; there, decidable subclasses merely yield termination
guarantees (Claßen et al. 2014).

5 Discussion
The verification of temporal properties of Situation Calcu-
lus theories and GOLOG programs has received increasing
attention in recent years. One other, major line of research
explores bounded action theories (De Giacomo, Lespérance,
and Patrizi 2016; De Giacomo et al. 2016), which have
an infinite object domain, but where the number of ob-
ject tuples in each fluent’s extension will never exceed
a certain bound.3 Similar to (Zarrieß and Claßen 2014;
Zarrieß and Claßen 2016), this allows for a finite abstraction
of the state space.

However, for the most part, work so far has been of a
purely theoretical nature, and the issue of implementing and
practically evaluating these methods has been neglected. A
notable exception is due to Kmiec and Lespérance (2014)
who present a verification system for ATL properties of
Situation Calculus games structures. However, their system
checks state properties by evaluation rather than entailment
(i.e., assumes complete information) and does not detect
convergence automatically. Li and Liu (2015) furthermore
present a fully automated system and employ first-order the-
orem proving, but address the (different) task of proving par-
tial correctness of terminating GOLOG programs.

While the evaluation scenarios presented here may seem
like small toy examples, note that they are somewhat rep-
resentative in size and complexity of tasks performable by
our group’s household robot Caesar (Ferrein et al. 2013;
Hofmann et al. 2016; Gierse et al. 2016). Nonetheless, there
is clearly much work left to do to increase the practicality of
our system. In particular, a more principled approach than
the current ad-hoc combination of techniques we use to com-
pactly represent first-order formulas would be in order.

Acknowledgments. This work was supported by the Ger-
man Research Foundation (DFG), research unit FOR 1513
on Hybrid Reasoning for Intelligent Systems, project A1.

References
Brace, K. S.; Rudell, R. L.; and Bryant, R. E. 1990. Efficient
implementation of a BDD package. In DAC 1990, 40–45. IEEE
Computer Society Press.
Bryant, R. E. 1986. Graph-based algorithms for Boolean function
manipulation. IEEE Transactions on Computers 35(8):677–691.
Burch, J. R.; Clarke, E. M.; McMillan, K. L.; Dill, D. L.; and
Hwang, L. J. 1992. Symbolic model checking: 1020 states and
beyond. Information and Computation 98(2):142–170.
Claßen, J., and Lakemeyer, G. 2008. A logic for non-terminating
Golog programs. In KR 2008, 589–599. AAAI Press.
Claßen, J.; Liebenberg, M.; Lakemeyer, G.; and Zarrieß, B.
2014. Exploring the boundaries of decidable verification of non-
terminating Golog programs. In AAAI 2014, 1012–1019. AAAI
Press.

3Our coffee domain is an instance of a bounded theory.

Claßen, J. 2013. Planning and Verification in the Agent Lan-
guage Golog. Ph.D. Dissertation, Department of Computer Sci-
ence, RWTH Aachen University.
De Giacomo, G.; Lespérance, Y.; Patrizi, F.; and Sardiña, S. 2016.
Verifying ConGolog programs on bounded situation calculus the-
ories. In AAAI 2016, 950–956. AAAI Press.
De Giacomo, G.; Lespérance, Y.; and Levesque, H. J. 2000. Con-
Golog, a concurrent programming language based on the situation
calculus. Artificial Intelligence 121(1–2):109–169.
De Giacomo, G.; Lespérance, Y.; and Patrizi, F. 2016. Bounded
situation calculus action theories. Artificial Intelligence 237:172–
203.
Ferrein, A.; Niemueller, T.; Schiffer, S.; and Lakemeyer, G. 2013.
Lessons learnt from developing the embodied AI platform CAE-
SAR for domestic service robotics. In Papers from the AAAI 2013
Spring Symposium on Designing Intelligent Robots: Reintegrat-
ing AI II, Technical Report SS-13-04. AAAI Press.
Gierse, G.; Niemueller, T.; Claßen, J.; and Lakemeyer, G. 2016.
Interruptible task execution with resumption in Golog. In ECAI
2016, 1265–1273. IOS Press.
Groote, J. F., and Tveretina, O. 2003. Binary decision diagrams
for first order predicate logic. Journal of Logic and Algebraic
Programming 57(1–2):1–22.
Hofmann, T.; Niemueller, T.; Claßen, J.; and Lakemeyer, G. 2016.
Continual planning in Golog. In AAAI 2016, 3346–3353. AAAI
Press.
Kmiec, S., and Lespérance, Y. 2014. Infinite states verifica-
tion in game-theoretic logics: Case studies and implementation.
In EMAS 2014, Revised Selected Papers, volume 1244 of LNAI,
271–290. Springer.
Lakemeyer, G., and Levesque, H. J. 2010. A semantic character-
ization of a useful fragment of the situation calculus with knowl-
edge. Artificial Intelligence 175(1):142–164.
Levesque, H. J.; Reiter, R.; Lespérance, Y.; Lin, F.; and Scherl,
R. B. 1997. GOLOG: A logic programming language for dy-
namic domains. Journal of Logic Programming 31(1–3):59–83.
Li, N., and Liu, Y. 2015. Automatic verification of partial cor-
rectness of Golog programs. In IJCAI 2015, 3113–3119. AAAI
Press.
McCarthy, J., and Hayes, P. 1969. Some philosophical problems
from the standpoint of artificial intelligence. In Machine Intelli-
gence 4. New York: American Elsevier. 463–502.
McMillan, K. L. 1993. Symbolic Model Checking. Kluwer Aca-
demic Publishers.
Reiter, R. 2001. Knowledge in Action: Logical Foundations for
Specifying and Implementing Dynamical Systems. MIT Press.
Sanner, S., and Boutilier, C. 2009. Practical solution techniques
for first-order MDPs. Artificial Intelligence 173(5–6):748–788.
Schulz, S. 2013. System description: E 1.8. In LPAR 2013,
volume 8312 of LNCS, 735–743. Springer.
Wang, C.; Joshi, S.; and Khardon, R. 2007. First order decision
diagrams for relational MDPs. In IJCAI 2007, 1095–1100. AAAI
Press.
Zarrieß, B., and Claßen, J. 2014. Verifying CTL∗ properties of
Golog programs over local-effect actions. In ECAI 2014, 939–
944. IOS Press.
Zarrieß, B., and Claßen, J. 2016. Decidable verification of Golog
programs over non-local effect actions. In AAAI 2016, 1109–
1115. AAAI Press.

528

