
The Combined Approach to Query
Answering in Horn-ALCHOIQ

David Carral, Irina Dragoste, Markus Krötzsch
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Abstract

Combined approaches have become a successful technique
for solving conjunctive query (CQ) answering over de-
scription logics (DL) ontologies. Nevertheless, existing ap-
proaches are restricted to tractable DL languages. In this
work, we extend the combined method to the more expres-
sive DL Horn-ALCHOIQ—a language for which CQ an-
swering is EXPTIME-complete—in order to develop an effi-
cient and scalable CQ answering procedure which is worst-
case optimal for Horn-ALCHOIQ and ELHO ontologies.
We implement and study the feasibility of our algorithm, and
compare its performance to the DL reasoner Konclude.

Introduction
Answering conjunctive queries (CQs) over Description Log-
ics (DL) ontologies is an important reasoning task with
many applications in knowledge representation and data
management. Intensive research efforts in recent years have
significantly improved our understanding of this problem,
and led to efficient algorithms and implementations for
many DL languages (Calvanese et al. 2007; Bienvenu et
al. 2016). Query rewriting was an important step towards
widespread practical implementation in legacy databases,
but it is limited to DLs of sub-polynomial data complex-
ity. This limitation was overcome by the so-called combined
approach, which answers CQs in two steps:

1. Materialisation: data is augmented to build a query-
independent interpretation, which may not be a model but
is complete for CQ answering.

2. Filtration: queries are evaluated over this interpretation
and unsound answers are discarded in a filtration step.

This approach has made CQ answering feasible for many
further DLs (Kontchakov et al. 2010; 2011; Lutz et al. 2013;
Stefanoni, Motik, and Horrocks 2013; Feier et al. 2015).

However, for many expressive DL languages, the problem
remains challenging in theory and in practice. All previously
cited works on query rewriting and combined approaches
for DL are restricted to tractable languages. For SROIQ—
the DL underpinning the OWL Web Ontology Language—,
it is unknown if the problem is decidable at all (Rudolph
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and Glimm 2010). Concrete complexity bounds are known
for fragments of this logic, e.g., for Horn-SROIQ (Ortiz,
Rudolph, and Simkus 2010), but these results did not give
rise to practical implementations yet. Indeed, common meth-
ods for showing decidability often lead to algorithms that
always run in worst-case complexity.

We address this limitation by proposing a new com-
bined approach to CQ answering over ontologies of the DL
Horn-ALCHOIQ (Krötzsch, Rudolph, and Hitzler 2013),
for which CQ answering is EXPTIME-complete (Ortiz,
Rudolph, and Simkus 2011). Our procedure generalises pre-
vious works on lightweight, tractable DLs (Kontchakov et
al. 2010; 2011; Lutz et al. 2013; Stefanoni, Motik, and Hor-
rocks 2013; Feier et al. 2015) to this expressive language, but
at the same time exhibits worst-case optimal, pay-as-you-go
behaviour. In particular, our algorithm runs in exponential
time for Horn-ALCHOIQ and in non-deterministic poly-
nomial time for ELHO (Baader, Brandt, and Lutz 2005).

The pay-as-you-go behaviour is embodied in our mate-
rialisation step, which extends ideas on consequence-based
reasoning (Kazakov 2009; Simančı́k, Kazakov, and Hor-
rocks 2011; Bate et al. 2016) to a DL that combines nom-
inals, at-most quantifiers, and inverse roles. The filtration
step then adapts a technique of Feier et al. (2015), which
is comparatively lightweight.

To show practical feasibility, we have implemented the
materialisation step of our approach using a Datalog rea-
soner as a blackbox system. Even without filtration, this suf-
fices to solve standard DL reasoning tasks such as satisfia-
bility and assertion retrieval, and we evaluate performance
on expressive real-world ontologies. For these ontologies,
our implementation requires only moderately sized Datalog
programs, and can often outperform Konclude (Steigmiller,
Liebig, and Glimm 2014)—considered the leading DL rea-
soner (Parsia et al. 2017). We interpret this as an indication
that pay-as-you-go behaviour does indeed occur in practice.
A complete CQ answering implementation based on our ap-
proach therefore seems feasible.

In summary, our main contributions are:

• We present the first combined approach applicable to a
non-tractable DL fragment, generalising combined ap-
proaches by Kontchakov et al. (2010; 2011), Lutz et al.
(2013), Stefanoni et al. (2013), and Feier et al. (2015) to
significantly more expressive logics.
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(1)
dn
i=1 Ci v D

⋂n
i=1 C

I
i ⊆ DI

(2) C v ∃R.D CI ⊆ {δ | ∃γ ∈ DI .〈δ, γ〉 ∈ RI}
(3) ∃R.C v D {δ | ∃γ ∈ CI .〈δ, γ〉 ∈ RI} ⊆ DI

(4) C v 61R.D CI ⊆ {ε | ∀δ, γ ∈ DI .(〈ε, δ〉 ∈ RI

∧ 〈ε, γ〉 ∈ RI)→ δ = γ}
(5) C v {a} CI ⊆ {aI}
(6) R v S RI ⊆ SI

(7) C(a) aI ∈ CI

(8) R(a, b) 〈aI , bI〉 ∈ RI

Figure 1: Syntax (left) and semantics (right) of Horn-
ALCHOIQ axioms in normal form, where C(i), D ∈ C,
R,S ∈ R, and a, b ∈ I

• We show that our approach is worst-case optimal for stan-
dard reasoning and CQ answering for the DLs Horn-
ALCHOIQ and ELHO, in terms of both data and com-
bined complexity.

• We develop an efficient implementation to solve standard
reasoning tasks over Horn-ALCHOIQ ontologies.

• We conduct an empirical evaluation with four data inten-
sive ontologies (two real-world and two benchmarks) that
shows performance gains over the DL reasoner Konclude.

We explain our key results and include proof sketches. A
report with an additional appendix with complete proofs is
available online (Carral, Dragoste, and Krötzsch 2018).

Preliminaries
We consider logical theories based on finite signatures con-
sisting of mutually disjoint sets C of concepts (unary pred-
icates), R of roles (binary predicates), and I of individuals
(constants). We require ⊥,> ∈ C.

Description Logics Additionally, a Horn-ALCHOIQ
signature has inverse roles: there is a bijective and irreflexive
function ·− : R → R with R−− = R for all R ∈ R. With-
out loss of generality (Krötzsch, Rudolph, and Hitzler 2013;
Konev et al. 2016), we define Horn-ALCHOIQ using a
restricted set of normalised axioms over some signature,
which we introduce on the left hand side of Figure 1. Ax-
ioms of the form (7) or (8) are also referred to as class and
role assertions, respectively, or simply assertions.

A (Horn-ALCHOIQ) ontology is a finite set of axioms.
For an ontology O, let v∗O be the minimal transitive, re-
flexive relation defined over roles such that R v∗O S and
R− v∗O S− for all R v S ∈ O.

We define the semantics of ontologies using interpreta-
tions. An interpretation I is a pair 〈∆I , ·I〉 with ∆I a set
of domain elements, and ·I a function mapping individuals
to domain elements, concepts to subsets of ∆I , and roles to
binary relations over ∆I , such that >I = ∆I , ⊥I = ∅, and
(R−)I = (RI)− for all R ∈ R.

An interpretation I satisfies (entails) an axiom α, writ-
ten I |= α, if the corresponding condition in Figure 1 holds.
Interpretation I satisfies (is a model of) an ontologyO, writ-
ten I |= O, if it satisfies all axioms in O. If there is such an
interpretation, we say that O is satisfiable. The ontology O
entails an axiom α, writtenO |= α, if I |= α for all I |= O.

Datalog Consider a countably infinite set V of variables
disjoint from C, R, and I. The set of terms is T = V ∪ I.
Lists of terms t1, . . . , tn are abbreviated as ~t. An atom is a
formula of the form C(t) or R(t, u) with C ∈ C, R ∈ R,
and t, u ∈ T. A (Datalog) rule is a formula of the form

B1 ∧ . . . ∧Bn → H1 ∧ . . . ∧Hm,

with n ≥ 0 body atoms Bi and m ≥ 1 head atoms Hj , and
where each variable in the head must also occur in the body.
A fact is a variable-free atom, i.e., a ground rule with n = 0
and m = 1. A substitution is a partial function σ : V → I.
For a formula ϕ, ϕσ is obtained from ϕ by replacing all free
variables x in the domain of σ with σ(x).

We define the semantics of rules via the chase procedure.

Definition 1. A chase sequence of a rule setR is a maximal
sequence F0, . . . ,Fn of sets of facts, such that F0 = ∅, and
for all i ∈ {1, . . . , n} there is a rule ρ = β → η ∈ R and a
substitution σ with (1) βσ ⊆ F i−1, (2) ησ 6⊆ F i−1, and (3)
F i = F i−1 ∪ ησ. The chase of R, denoted with R∞, is the
final element of any (arbitrarily chosen) chase sequence.

The set R∞ is unique for a rule set R irrespectively of
the chosen chase sequence, and coincides with the least Her-
brand model of R. A set of facts F entails an assertion α,
written F |= α, if α ∈ F . The set R entails an assertion α,
writtenR |= α, ifR∞ |= α.

Conjunctive Queries A conjunctive query (CQ) is a for-
mula of the form ∃~x.β where β (the body) is a conjunction
of atoms. A Boolean CQ (BCQ) is a CQ where all the vari-
ables are existentially quantified. Without loss of generality,
we restrict ourselves to the task of solving BCQ entailment
and consider only queries that do not contain individuals.

A (variable) assignment Z for an interpretation I is a
function Z : V → ∆I . An interpretation I entails a BCQ
q = ∃~x.β, written I |= q, if there is an assignment Z for I
with 〈Z(~y)〉 ∈ P I for all P (~y) ∈ β. An ontology O entails
a BCQ q, written O |= q, if I |= q for all I |= O. Simi-
larly, a set of facts F entails q, written F |= q, if there is a
substitution σ with βσ ⊆ F . A rule set R entails q, written
R |= q, if the chase of R entails q. Note that, in all of the
above cases, our definition of entailment coincides with that
of first-order logic.

Materialisation Phase
We now present the materialisation step of our combined
approach, which leads to a query-independent set of facts
that can be exploited to solve BCQ entailment. Moreover,
we show that this set of facts can be directly used to decide
satisfiability and assertion entailment.
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RTop = {C(x)→ >(x) | C ∈ C} ∪
{R(x, y)→ >(x) ∧ >(y) | R ∈ Ru}

RRole = {R(x, y) ∧ N(y)→ R−(y, x) | R ∈ Ru} ∪
{R(x, y)→ R(x, y) | R ∈ Ru, R ∈ R}

RNm = {N(a),>(a) | a ∈ I}

REq = {x ≈ y → y ≈ x, x ≈ y ∧ y ≈ z → x ≈ z} ∪
{C(x) ∧ x ≈ y → C(y) | C ∈ C+} ∪
{R(x, y) ∧ x ≈ z → R(z, y) | R ∈ Ru} ∪
{R(x, y) ∧ y ≈ z → R(x, z) | R ∈ Ru}

Figure 2: Auxiliary rule setsRTop,REq,RRole, andRNm

We obtain this set of facts as the chase of a rule set RO,
which is defined over an extended signature (for the remain-
der of the paper, letO be a fixed ontology defined over some
signature 〈C,R, I〉). We let Cu = {uni=1Ci | C1, . . . , Cn ∈
C, n ≥ 1}. In the following, C and D are always used to
denote elements of Cu. Likewise, we consider role con-
junctions Ru = {uni=1Ri | R1, . . . , Rn ∈ R, n ≥ 1},
denoted by R and S. We extend the mapping defined by
an interpretation I to concept/role conjunctions, and nom-
inals in the standard way. That is, (uni=1Ci)

I = ∩ni=1C
I
i ,

(uni=1Ri)
I = ∩ni=1R

I
i , and {a}I = {aI} with Ci ∈ C

and Ri ∈ R for all i ∈ {1, . . . , n}, and a ∈ I. Note that,
C ⊆ Cu and R ⊆ Ru by definition. We tacitly identify an
element of Cu and Ru with the corresponding set, and use
expressions such as R ∈ R and C ⊆ D with this intention.
For roles, we further define R− = uR∈RR−.

The signature of the rule set RO is 〈C+,R+, I+〉, where
C+ = C]{N} with N a unary predicate, R+ = Ru ]{≈}
with ≈ a binary predicate, and I+ = I ] {tC | C ∈ Cu}
with new constants of the form tC. We assume tC = tD if
C = D when these are considered as sets.

We use the (finite) chaseR∞O to represent (potentially in-
finite) models I of O, where constants a ∈ I represent the
named elements of the domain ∆I and the constants tC rep-
resent (possibly many) anonymous domain elements in CI .
The special predicate N classifies representatives that behave
like named individuals, i.e., the derivation of N(tC) during
the computation of the chase implies that tC represents the
unique element in CI for any model I. Note that this may
be the case if, e.g., C v {a} ∈ O for some C ∈ C.

The occurrence of fact C(a) during the computation of
the chase indicates that all elements represented by a are in
CI for all I |= O. The occurrence of a fact R(a, b) indicates
that all elements represented by a are connected to some el-
ement represented by the second constant by all of the roles
R ∈ R. It is important to distinguish such joint connections
that exist in the model from incidental co-occurrences that
are an artifact of the re-use of representatives tC. The special
predicate ≈ represents equality, which we model explicitly
only between constants in N. A fact of the form a ≈ b in-
dicates that the classes of elements represented by the con-
stants a and b are indeed the same in all models. The in-

(1)
∧n
i=1 Ci(x)→ D(x)

(2) C(x)→ R(x, tD) ∧D(tD)

(3) For all R ∈ Ru with R ∈ R, and all C ∈ Cu:
(3.1) R(x, y) ∧ C(y)→ D(x)

(3.2) C(x) ∧ R−(x, tC)→ R−(x, tCuD) ∧∧
X∈CuDX(tCuD)

(5) C(x)→ a ≈ x

(6) For S = {T | R v∗O T}:
(6.1) R(x, y)→ S(x, y)

(6.2) R−(x, y)→ S−(x, y)

(7) C(a)

(8) R(a, b)

Figure 3: Rule sets for axiom types (1)–(3) and (5)–(8) of
Figure 1 (see Figure 4 for type (4))

tuitions discussed in the previous paragraphs are formally
introduced by the claims in the proof of Lemma 1.

The set of rules RO is defined as a combination of the
auxiliary rules in Figure 2, and the axiom-specific rules in
Figures 3 and 4, both of which we explain below.

Definition 2. For each axiom α of one of the types intro-
duced in Figure 1, let Rα denote the corresponding rule set
defined in Figures 3 and 4. For an ontology O, the rule set
RO is defined as:

RO =
⋃

α∈O
Rα ∪RTop ∪RRole ∪RNm ∪REq

Since we consider a finite signature, RO is finite, but ex-
ponential (due to the exponentially many roles R ∈ Ru and
constants tC ∈ I+). The rules of Figure 2 axiomatise the
intended semantics of >, role conjunction, N, and ≈. The
first part of RRole expresses the semantics of inverse roles,
which are part of the signature, but do not have a built-in
semantics in Datalog. We only invert roles that connect to
constants in N. The second part ofRRole recovers individual
roles from role conjunctions.RNm comprises basic facts for
the named individuals. Finally, REq are a standard equality
theory, which could be omitted if≈ is defined with a special
semantics, as in some Datalog engines.

In Figures 3 and 4, rules (1), (2), (3.1), (5), (7), and (8) are
basically direct translations of the corresponding DL axioms
into first-order implications. In (6.1) and (6.2), we use a role
conjunction S that represents the upward closure of R in the
role hierarchy. The necessary reflexive transitive closure can
be computed in polynomial time. Note that rules (3.2), (4.2),
and (4.3) are instantiated for any R (and S) that contain R.

Rule (3.2) applies domain axioms along inverse relations
that lead to representative tC by initialising a new individual
tCuD to which any other features (roles in R− and arbitrary
concepts X) are copied. This inverse case is not needed for
individuals in I, since they can be treated with (3.1) after
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(4) For all R,S ∈ Ru with R ∈ R and R ∈ S, and all C,D ∈ Cu:
(4.1) D(y) ∧R−(y, x) ∧ C(x) ∧R(x, z) ∧D(z) ∧ N(z)→ y ≈ z
(4.2) C(x) ∧ R(x, tC) ∧D(tC) ∧ S(x, tD) ∧D(tD)→ (R u S)(x, tCuD) ∧

∧
X∈CuDX(tCuD)

(4.3) D(y) ∧ R−(y, x) ∧ C(x) ∧ S(x, tC) ∧D(tC)→
∧
X∈CX(y) ∧ (R− u S−)(y, x)

(4.4) D(y) ∧R−(y, x) ∧ C(x) ∧ N(x)→ N(y)

Figure 4: Rule sets for axiom type (4) of Figure 1

flipping the direction of the inverse predicate using RRole.
Rules (4) handle functional roles R as follows: (4.1) is simi-
lar to the usual first-order translation of functionality, written
using one inverted occurrence of R and restricted to cases
where the target individual of R is in class N; (4.2) adds
a new anonymous individual that combines the features of
two existing anonymous individuals; (4.3) folds the features
of an anonymous individual back into its grandparent; and
(4.4) propagates the property of being named along roles
that are inverse functional between concepts C and D.
Example 1. Consider the following ontology:

A v ∃R.B (9)
B v ∃V.D (10)
> v 61S.> (11)
V v S (12)

B v ∃S.C (13)
C v {c} (14)
A(a) (15)
V (b, c) (16)

Among other things, these axioms entail D(c). Indeed, we
can derive this fact with the following chase sequence. For
each inference, we give the applied rule before the colon,
with subscripts indicating the ontology axiom it originated
from, and the facts that it was applied to after the colon.

R(a, tB), B(tB) (2)(9) : (15) (17)
V (tB , tD), D(tD) (2)(10) : (17) (18)
S(tB , tC), C(tC) (2)(13) : (17) (19)
(V u S)(tB , tD) (6.1)(12) : (18) (20)

(V u S)(tB , tCuD),
C(tCuD), D(tCuD)

(4.2)(11) : (19), (20) (21)

V (tB , tCuD) RRole : (21) (22)
c ≈ tCuD (5)(14) : (21) (23)
tCuD ≈ c REq : (23) (24)

D(c) REq : (21), (24) (25)

Additional inferences are possible, but one cannot obtain
all inferences that one might expect in DL. For example,
R−(tB , a) is not entailed, since we do not have N(tB). How-
ever, if we add to the ontology an additional axiom

> v 61V −.> (26)

then we can further compute B(b) as follows:

V −(c, b) RRole : (16),RNm (27)

V −(tCuD, b) REq : (27), (23) (28)
tB ≈ b (4.1)(26) : (22), (28),RNm (29)
B(b) REq : (17), (29) (30)

In this case, all expected conclusions can be obtained since
all auxiliary individuals can be inferred to be in N.

The rules of RO entail enough relevant inferences to
be used to decide standard reasoning tasks over Horn-
ALCHOIQ ontologies.
Theorem 1. O is satisfiable iff RO 6|= ∃x.⊥(x). If O is
satisfiable, then it entails an assertion α iffRO |= α.

Theorem 1 follows from Lemmas 1, 3, and 4, shown in
the next section. Before this, we first discuss the complexity
of our approach. The rule set RO is exponential in the size
of O, due to the exponential number of roles R ∈ R+ and
of individuals of the form tC in I+. However, the Datalog
rules in RO contain at most three variables, making their
propositional logic grounding polynomial in the size ofRO.
Since propositional Horn logic entailment can be decided
in polynomial time, this already yields a worst-case optimal
EXPTIME algorithm for Horn-ALCHOIQ.

We can also achieve worst-case optimal reasoning for
simpler DL fragments. A practically relevant case is ELHO,
the fragment Horn-ALCHOIQ that does not contain “at
most” quantifiers or inverse roles:
Definition 3. An ontology O is ELHO if (i) O does not
contain axioms of the form (4) and, (ii) for every roleR ∈ R,
O contains only one of R and R−, but not both.

Without “at most” restrictions, we can omit all rules of
type (4). Without inverses, we can further discard rules (3.2)
and (6.2). The remaining rules of Figure 3 only introduce
facts about constants of the form tC withC a single concept,
and about roles R where R is either a single role or the v∗O
closure of such a role as in (6). Therefore, only polynomially
many signature symbols are required, and we can restrict
the rules in Figure 2 to these symbols as well. The resulting
polynomial set of Datalog rules with at most three variables
can be evaluated in polynomial time.

We can sum up our results as follows. Recall that data
complexity is measured with respect to the number of (nor-
malised) assertions in an ontology, while combined complex-
ity refers to the ontology (and its signature) as a whole.
Theorem 2. The approach of Theorem 1 decides consis-
tency and assertion entailment for Horn-ALCHOIQ in
polynomial time for data complexity, and in exponential time
for combined complexity. When restricting to rules in the
relevant signature for ELHO, the algorithm runs in polyno-
mial time for combined and data complexity.

In practice, the better algorithm for ELHO can be
used as a basis for a pay-as-you-go algorithm for Horn-
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ALCHOIQ, which adds rules on demand during materiali-
sation. In this optimised procedure, we start with only those
rules whose premises use only the signature of the given on-
tology (but whose conclusions may use further symbols).
Whenever a newly derived fact uses additional signature
symbols, rules with premises that also use this symbol are
added. Adding rules during materialisation is not difficult,
and is supported by existing engines (Motik et al. 2015).

Correctness of the Materialisation
We now establish the correctness of our approach, where we
give proof sketches that show some of the most important
cases. The full case analysis is found in the appendix.

The next lemma establishes soundness. This is not an ob-
vious property, since our approach represents potentially in-
finite models with a finite materialisation that re-uses the
same constant symbols as representatives for many domain
elements. This could result in unsound inferences, as indeed
it happens for BCQ entailment, where an additional filtra-
tion step is thus needed. For computing assertions, however,
the method is sound:

Lemma 1. IfRO entails an assertion α, then O |= α.

Proof sketch. For all a ∈ I+, let Ex(a) = {a} if a ∈ I, and
Ex(a) = C if a is of the form tC.

Let F0, . . . ,Fn be some fixed chase sequence of RO.
Then, we show via induction on i ∈ {0, . . . , n} that the fol-
lowing claims hold for any model I of O:

(a) If C(a) ∈ F i with C ∈ C, then Ex(a)I ⊆ CI .
(b) If R(a, b) ∈ F i, then for all δ ∈ Ex(a)I there is some

γ ∈ Ex(b)I with 〈δ, γ〉 ∈ RI .
(c) If a ≈ b ∈ F i, then Ex(a)I = Ex(b)I .
(d) If a ∈ I+ occurs in F i, then Ex(a)I 6= ∅.
(e) If N(a) ∈ F i, then |Ex(a)I | = 1.

The lemma follows from (a) and (b); the rest of the claims
are included to structure our induction argument.

For the base case i = 0, all the claims trivially hold, since
F0 = ∅. For the induction step, consider i ∈ {1, . . . , n},
and assume that all the claims hold for i− 1 (IH). We show
that the claims remain true by distinguishing the following
cases based on the type of the rule ρ = β → η ∈ RO and the
substitution σ such that βσ ⊆ F i−1 and F i = F i−1 ∪ ησ.
Note that each type of rule needs to establish only the claims
whose premise might be affected by its application. In this
proof sketch, we only consider five cases.

Let ρ be of the form (1). Then, {Cj(σ(x)) | 1 ≤ j ≤
m} ⊆ F i−1 and hence, Ex(σ(x))I ⊆ ∩mj=1C

I
j by (IH.a).

Since umj=1Cj v D ∈ O, Ex(σ(x))I ⊆ DI and (a) holds.
Let ρ be of the form (3.2). Then,

C(σ(x)),R−(σ(x), tC) ∈ F i−1 with R ∈ R. By
definition, Ex(tCuD)I = Ex(tC)I ∩ DI . Hence,
Ex(tCuD)I ⊆

⋂
X∈CX

I ∩ DI and (a) holds. By (IH.a)
and (IH.b), for all δ ∈ Ex(σ(x))I ⊆ CI there is some
γ ∈ Ex(tC)I with 〈δ, γ〉 ∈ (R−)I . Since ∃R.C v D ∈ O,
γ ∈ DI and (b) holds. By (IH.d), Ex(σ(x))I 6= ∅ and
hence, Ex(tCuD)I 6= ∅ and (d) holds.

Let ρ be of the form (4.3). Then, D(σ(y)),
R−(σ(y), σ(x)), C(σ(x)),S(σ(x), tC), D(tC) ∈ F i−1
with R ∈ R and R ∈ S. By (IH.a) and (IH.b),
for all δ ∈ Ex(σ(y))I ⊆ DI , (1) there is some
ε ∈ Ex(σ(x))I ⊆ CI with 〈δ, ε〉 ∈ (R−)I , and (2)
there is some γ ∈ Ex(tC)I ⊆ DI with 〈ε, γ〉 ∈ SI . Since
C v 61R.D ∈ O, δ ∈ Ex(tC)I = CI and (a) holds.
Moreover, 〈δ, ε〉 ∈ (R− u S−)I and (b) holds.

Let ρ be of the form (4.4). Then, D(σ(y)),
R−(σ(y), σ(x)), C(σ(x)),N(σ(x)) ∈ F i−1. By (IH.a),
(IH.b), (IH.d), and (IH.e), (1) there is a single ele-
ment ε ∈ Ex(σ(x))I ⊆ CI , (2) 〈ε, δ〉 ∈ RI for all
δ ∈ Ex(σ(y))I ⊆ DI , and (3) Ex(σ(y))I 6= ∅. Since
C v 61R.D ∈ O, |Ex(σ(y))I | = 1 and (e) holds.

Let ρ be of the form R(x, y) ∧ y ≈ z → R(x, z). Then,
R(σ(x), σ(y)), σ(y) ≈ σ(z) ∈ F i−1. By (IH.b) and (IH.c),
for all δ ∈ Ex(σ(x))I there is some γ ∈ Ex(σ(y))I =
Ex(σ(z))I with 〈δ, γ〉 ∈ RI . Hence, (b) holds.

To show completeness, we use the chase of RO to de-
fine a structure UO, which is a universal model of O—i.e.,
a model that can be homomorphically embedded into any
other model of O. We then show that, for any assertion α,
RO 6|= α implies UO 6|= α. In turn, this implies O 6|= α and
our approach is indeed complete for assertion retrieval. We
first define the domain ∆UO by “unravelling”R∞O .
Definition 4. The set ∆ and the function i : ∆ → I+ are
defined recursively:

(i) For all a ∈ I+, we have [a] ∈ ∆ for the equivalence
class [a] = {b | a ≈ b ∈ R∞O } ∪ {a}. Let i([a]) be an
arbitrary but fixed element in [a].

(ii) For all δ ∈ ∆, R ∈ Ru, and C ∈ Cu, we have
δ.dR,C ∈ ∆. Let i(δ.dR,C) = tC.

Note that, for an individual a ∈ I, possibly i([a]) 6= a.
Definition 5. We recursively define the domain ∆UO ⊆ ∆:

1. For all a ∈ I+with N(a) ∈ R∞O , we have [a] ∈ ∆UO.
2. For all δ ∈ ∆UO , we have δ.dR,C ∈ ∆UO if

2.a R(i(δ), tC) ∈ R∞O , and
2.b for all S(i(δ), tD) ∈ R∞O , R ∪ C 6⊂ S ∪ D, and
2.c for all a ∈ I+ with N(a) ∈ R∞O , there is someR ∈ R

withR(i(δ), a) /∈ R∞O , or some C ∈ C with C(tC) ∈
R∞O and C(a) /∈ R∞O , and

2.d δ is of the form γ.dS,D, R− 6⊂ S, or there is some
C ∈ C with C(tC) ∈ R∞O and C(i(γ)) /∈ R∞O .

Conditions (2b-2d) ensure that, in some cases, an element
is not introduced in ∆UO if the corresponding existential re-
striction is already satisfied by another element. These re-
strictions become relevant when showing that axioms of the
form (4) are satisfied by UO.
Definition 6. Let ∆UO be as in Definition 5. The interpreta-
tion function ·UO is defined by setting:

1. For all a ∈ I, we have aUO = [a].
2. For all C ∈ C and δ ∈ ∆UO , we have δ ∈ CUO if
C(i(δ)) ∈ R∞O .

3. For all R ∈ R and δ, γ ∈ ∆UO , we have 〈δ, γ〉 ∈ RUO if
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a : A, C, N

tBuD : B, D

tAuC : A, C

b : A, E, N

tB : B

tA : A

TT T

R

T
RT

T R

[a] : A, C, N

[a].dT,BuD : B, D
T, R−R, T−

[a].dT,BuD.dR,AuC : A, C
R, T−T, R−

[b] : A, E, N

[b].dT,B : B
T, R−R, T−

[b].dT,B.dR,A : A
R, T−T, R−

Figure 5: Representation of R∞O (left, inferences of rules RTop and RRoles not shown) and UO (right), where T = T u R− and
R = R u T−; dotted lines indicate how individuals in UO are represented inR∞O

3.a R(i(δ), i(γ)),N(i(γ)) ∈ R∞O , or
3.b R−(i(γ), i(δ)),N(i(δ)) ∈ R∞O , or
3.c γ is of the form δ.dR,C with R ∈ R, or
3.d δ is of the form γ.dR−,C with R ∈ R.

The relation between the chase of RO and the universal
model UO is illustrated by the following example.

Example 2. Let O be the ontology containing the axioms:

A v ∃T.B B v ∃R.A
∃T−.C v D ∃R−.D v C

T− v R R− v T
A(a) C(a) A(b) E(b)

Figure 5 illustrates the structure ofR∞O (left) and UO (right).
In the chase ofRO, only four constants of the form tC ∈ I+

are reused to “satisfy” all existential restrictions.
As previously discussed, a constant tC intuitively repre-

sents all domain elements in the domain ∆I of some model
I of O which belong to the interpretation of the intersection
of all concepts in C, i.e., all δ ∈ ∆I with δ ∈ ∩C∈CCI .
Its properties are those shared by all individuals that are
members of such concept interpretations in I. The dotted
arrows in Figure 5 link each element γ ∈ ∆UO to its corre-
sponding representative i(γ) in the chase of RO. Note that,
〈γ, δ〉 ∈ (R−)

UO for every 〈δ, γ〉 ∈ RUO . This is not the
case inR∞O , where the directionality of a binary fact carries
meaning (cf. Definitions 5 and 6).

Lemma 2. IfRO 6|= ∃x.⊥(x), then UO is an interpretation.

Proof. The necessary conditions follow from Definition 6.
We have ⊥UO = ∅ due to (2) and the precondition of the
lemma; >UO = ∆UO due to RTop ∪ RNm ⊆ RO and (2);
and (R−)UO = (RUO )− for all R ∈ R due to (3).

We strengthen the previous result and show that, if O is
satisfiable, then UO is a model of O.

Lemma 3. The following are equivalent: (1) O is satisfi-
able, (2)RO 6|= ∃x.⊥(x), and (3) UO |= O.

Proof sketch. (1) ⇒ (2): If RO |= ∃x.⊥(x), then O does
not admit any model by (a) and (d) from Lemma 1.

(2)⇒ (3): By (2) and Lemma 2, UO is an interpretation.
It remains to show that UO satisfies every axiom α ∈ O,
which is done by a lengthy analysis of cases included in the
appendix.

(3)⇒ (1): By the definition of satisfiability.

Lemma 4. Consider an assertion α. IfRO 6|= ∃x.⊥(x) and
RO 6|= α, then O 6|= α.

Proof. UO is a model of O by Lemma 3. By Definition 6,
RO 6|= α implies UO 6|= α and hence, O 6|= α.

Filtration Phase
The Datalog model R∞O cannot be used directly for solving
BCQ entailment over O as this set of facts entails BCQs
which are not entailed byO. As observed in other combined-
approaches (Kontchakov et al. 2010), there are two types of
spurious matches, forks and cycles, exemplified below.

Example 3. Consider the ontology O from Example 2, and
the ‘forked-shaped’ BCQ q = ∃x, y, z.E(x) ∧ T(x, y) ∧
B(y) ∧ T(z, y) ∧ C(z). Although R∞O |= q holds, UO 6|= q
and therefore O 6|= q.

Example 4. For the ontology O′ = {A(a), A v ∃R.A}
and the ‘cyclic’ BCQ q′ = ∃x.R(x, x), we find R∞O′ |= q′

whereas UO′ 6|= q′.

To avoid unsound answers, we adapt a technique by Feier
et al. (2015): first we expandR∞O into the set of facts CO on
which we compute query matches; then we employ a filtra-
tion method to determine which of these matches correspond
to a match in all models. We specify CO as a set of facts over
the signature of RO, where we create several copies of the
form tiR,C with i ∈ {0, 1, 2} and R ∈ Ru for each “anony-
mous” individual tC with N(tC) /∈ R∞O . Moreover, for every
role R ∈ R, we introduce an auxiliary role R. to record the
original order of elements inR∞O .

Definition 7. Let I× be the set of all individuals of the form
tiR,C, such that R ∈ Ru, C ∈ Cu, and i ∈ {0, 1, 2}. Let �
be some reflexive total order on the set of all pairs 〈R,C〉.
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a : A, C, N

c : A, D, N

t0F,C : Ct1F,C : C

t2F,C : C

t0T,B : B t1R,A : A t1T,B : B

t2R,A : At2T,B : Bt0R,A : A

T. T−.

F.F.
F. F.

T.

T.

R. T.
R.

T.R.

T.

Figure 6: Representation of CO

Then, we define CO as the minimal set of facts over indi-
viduals from I+ ∪ I× such that:

• If N(a), R(a, b),N(b) ∈ R∞O , then R.(a, b), R−. (b, a) ∈
CO, where a, b ∈ I+ (can also be of the form tC).

• If N(a),R(a, tC) ∈ R∞O and N(tC) /∈ R∞O , then
{R.(a, t0R,C) | R ∈ R} ⊆ CO.

• If tiR,C is in CO, S(tC, tD) ∈ R∞O and N(tD) /∈ R∞O , then
{S.(tiR,C, t

j
S,D) | S ∈ S} ⊆ CO where

– j = (i+ 1) mod 3 if 〈R,C〉 � 〈S,D〉, and
– j = i otherwise.

• If tiS,C occurs in CO and R(tC, a),N(a) ∈ R∞O , then
R.(t

i
S,C, a), R−. (a, tiS,C) ∈ CO.

• If a ∈ I+ is in CO and C(a) ∈ R∞O , then C(a) ∈ CO.
• If tiR,C is in CO and C(tC) ∈ R∞O , then C(tiR,C) ∈ CO.

• If R.(a, b) ∈ CO, then R(a, b), R−(b, a) ∈ CO.

Example 5. Let O be the following ontology:

A v ∃T.B B v ∃R.A C v ∃F.C
A(a) C(a) A(c) D(c) T(a, c)

Assuming 〈T,B〉 � 〈R,A〉, the set of facts CO is as repre-
sented in Figure 6.

As with R∞O , we cannot directly use the set CO to solve
BCQ entailment over O.

Example 6. Let O be the ontology from Example 5. There
are BCQs, such as q = ∃x, y, z.F (x, y)∧F (y, z)∧F (z, x),
with CO |= q and O 6|= q. Note how q matches a cycle in CO
that may not occur in models of O, such as UO. Also, there
are BCQs containing forks such as ∃x, y, z.C(x)∧T (x, y)∧
T (z, y) ∧D(z), entailed by CO but not by O.

Alas, not all cyclic matches entailed by CO are spurious!
This is easy to see if we consider cycles consisting only of
named individuals: the ontology {R(a, b), S(b, c), V (c, a)},
e.g., entails the BCQ ∃x, y, z.R(x, y) ∧ S(y, z) ∧ V (z, w).
Interestingly, cyclic BCQs might also have correct matches
that involve anonymous individuals.

Example 7. Consider the following ontology O:

A v ∃R.B B v ∃S.C C v {c} V (c, a) A(a)

The cyclic BCQ q = ∃x, y, z.R(x, y)∧S(y, z)∧V (z, x) has
a match in CO where y maps to an anonymous individual.
This match is correct and O |= q.

To filter unsound BCQ answers we introduce the notion
of a valid match.

Definition 8. Consider an ontology O, a BCQ q = ∃~x.β,
and a substitution σ such that βσ ⊆ CO. Then, Gq,σ is the
minimal directed graph (DG) such that,

1. for each x ∈ ~x, there is a vertex v(x) in Gq,σ; and
2. for all x, y ∈ ~x, v(x) → v(y) ∈ Gq,σ if there is some
R ∈ R such that (i) R(x, y) ∈ β or R−(y, x) ∈ β, (ii)
R.(x, y)σ ∈ CO, and (iii) R−. (y, x)σ /∈ CO.

Moreover, Fq,σ is the graph that results from exhaustively
applying the following rule to Gq,σ: if there are some
x, y, z, w ∈ ~x with σ(x) = σ(y), v(z) = v(w), and
{v(x)→ v(z), v(y)→ v(w)} ⊆ Gq,σ; then v(x) = v(y).

The substitution σ is a valid match for O and q if Fq,σ is
a rooted directed forest.

If Fq,σ is a forest, then no node v(x) mapped to an anony-
mous individual can be reached from two different nodes in
Fq,σ, thus preventing spurious answers due to forks in the
query. By requiring Fq,σ to be acyclic, we also prevent un-
sound answers that may be due to cycles in the query be-
ing mapped to cycles of anonymous individuals in CO that
are not instances of the special predicate N. Cyclic struc-
tures over such anonymous individuals may never occur in
the universal model UO of an Horn-ALCHOIQ ontology
O and hence, such queries may not be entailed.
Example 8. Consider the ontologyO and the query q in Ex-
ample 7, and the substitution σ = {x 7→ a, y 7→ t0R,B , z 7→
tC}. We find Fq,σ = Gq,σ = {v(x) → v(y), v(z)}, and
therefore σ is a valid match for O.

Now consider the ontology and queries of Example 6. For
the first query q′1 and substitution σ′1 = {x 7→ t0F,C , y 7→
t1F,C , z 7→ t2F,C}, we get Fq′1,σ′1 = {v(x) → v(y), v(y) →
v(z), v(z) → v(x)}. Therefore, σ′1 is a spurious cyclic
match, and so are all its permutations. For the second query
q′2 and σ′2 = {x 7→ a, y 7→ t0T,B, z 7→ c}, we obtain
Fq′2,σ′2 = {v(x) → v(y), v(z) → v(y)}, which is not a
rooted tree. Hence, the spurious fork σ′2 is filtered out.
Theorem 3. A consistent ontology O entails a BCQ q iff
there is some valid match σ for O and q.

Note that we can check for inconsistency using Theo-
rem 1, in which case all BCQs are entailed.

Our proof of Theorem 3 in the appendix proceeds in sev-
eral steps. For soundness, we first show that we can correctly
read off certain entailments from CO. As in the proof of
Lemma 1, we define a characteristic class expression Ex(a)
for each a of CO: if a ∈ I, then Ex(a) = {a}; else if a = tC
or a = tiR,C, then Ex(a) = C. One can then show simi-
lar semantic correspondences as for Lemma 1. Soundness
is then established by considering a valid match σ on CO,
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and by constructing, for an arbitrary model I of O, a cor-
responding match of the BCQ. Completeness is established
by an inverse construction, turning a BCQ match on UO into
a valid match on CO. In both cases, we proceed inductively
by defining matches for an increasing sequence of queries
q1, . . . , qn where qn = q is the BCQ under consideration.

For assertion entailment, our approach yields a worst-case
optimal algorithm for both Horn-ALCHOIQ and ELHO:

Theorem 4. The approach of Theorem 3 decides BCQ en-
tailment for Horn-ALCHOIQ in exponential time for com-
bined complexity, and in polynomial time for data complex-
ity. When restricting to the relevant signature of ELHO for
materialisation as in Theorem 2, the algorithm runs in non-
deterministic polynomial time for combined complexity.

Proof. We first consider the case of Horn-ALCHOIQ. The
argument for proving Theorem 2—grounding an exponen-
tial rule setRO, and computing its propositional entailments
in linear time—shows that the chase R∞O is of exponential
size (and of polynomial size w.r.t. the number of assertions).
The extension of R∞O to CO is possible in polynomial time
in the size of R∞O . The number of possible matches σ of a
BCQ q on CO is exponential in the size of q and polynomial
in the size of CO. For each σ, we can check in polynomial
time in CO whether it is a valid match. The overall procedure
therefore runs in exponential time in the size ofO and q, and
in polynomial time in the number of assertions in O.

In the case of ELHO, as argued for Theorem 2,R∞O is of
polynomial size and can be computed in polynomial time by
restricting to the signature relevant for ELHO. CO contains
only individuals tiR,C for cases where R(c, tC) ∈ R∞O , so
that their overall number is polynomial in the size of R∞O .
The same therefore holds for the size of CO. A query match
σ can be guessed non-deterministically in polynomial time,
and it is again polynomial to verify that it is valid.

The previous results are worst-case optimal: BCQ entail-
ment over Horn-ALCHOIQ ontologies is EXPTIME-hard
(and P-hard for data complexity) since this is true even for
standard reasoning in this DL (Krötzsch, Rudolph, and Hit-
zler 2013); NP-hardness of BCQ entailment for EL ontolo-
gies follows from the fact that BCQ entailment over a set of
assertions is already NP-hard.

Proof of Concept
We evaluate a prototype implementation of the materiali-
sation phase, which we consider the performance-critical
part of our algorithm. In contrast, our filtration phase uses
a polynomial algorithm, which is computationally similar
to the filtration in other combined approaches that have al-
ready been shown to be efficient in practical cases (Feier et
al. 2015). Since materialisation decides fact entailment for
Horn-ALCHOIQ (Theorem 1), we can meaningfully com-
pare performance against standard DL reasoners.

Our prototype implementation uses the RDFox Datalog
engine (SVN version 2776) for computing the chase (Motik
et al. 2014), and implements the optimised materialisation
where we add new rules on demand during the computa-
tion of the chase, as discussed after Theorem 2. We further
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Figure 7: Times for ABox materialisation in seconds for our
implementation (dark) and Konclude (bright), each over four
ABoxes with increasing numbers of assertions

modify the process by adding facts >(c) and (if applica-
ble) N(c) directly when loading or creating new individu-
als, thus omitting rules RTop and facts RNom. We also omit
REq, since we rely on the built-in equality reasoning support
of RDFox instead (Motik et al. 2015). Some of the consid-
ered ontologies contain (in)equality assertions of the form
a 6≈ b and a ≈ b. To deal with these, we simply rely on the
built-in equality reasoning of RDFox and include an extra
rule x 6≈ x → ⊥(x) to detect inconsistencies entailed by
inequality assertions.

We use our implementation to solve assertion retrieval,
i.e., the reasoning task that consists in computing all class
and role assertions that are entailed by a given ontology.
We compared performance with that of Konclude (v0.6.2), a
leading DL reasoner (Steigmiller, Liebig, and Glimm 2014),
which we used as a command-line client on local input files.

Since query answering is most relevant in data-intensive
applications, we use ontologies with large sets of assertions
(ABoxes). We considered two standard benchmarks, LUBM
(Guo et al. 2007) and UOBM (Ma et al. 2006); and two
real-world ontologies from the bio-domain, Reactome and
Uniprot, which were used in the evaluation of PAGOdA
(Zhou et al. 2015). We have normalised these ontologies
and removed axioms not expressible in Horn-ALCHOIQ,
such as role chains or disjunctions. The resulting ontologies
contained 108 (LUBM), 254 (UOBM), 481 (Reactome), and
317 (Uniprot) terminological axioms, respectively. None of
these ontologies belonged to a known tractable fragment of
Horn-ALCHOIQ. For each ontology, we consider ABoxes
of various sizes, generated by using the size parameter for
the benchmarks (LUBM, UOBM), and by sampling the real-
world ABoxes (Reactome, Uniprot) using the method by
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Zhou et al. (2015). All ontology files and own software used
in the evaluation can be found from an online repository.1

Our test system is a commodity laptop (16GB RAM,
500GB SSD, CPU i7-8550U/4 cores/1.8GHz, Windows 10).
We configured the operating system to allow up to 28GB of
virtual memory. We have measured wall-clock times spent
during reasoning, ignoring the time required for parsing and
loading. Konclude reports detailed times, while for RDFox
we have measured the time from within our prototype.

Figure 7 shows the results. Note the logarithmic scale in
the case of Reactome. Konclude ran out of memory for the
two largest of the Uniprot samples, hence no times are re-
ported there. Detailed measurement results can also be found
in our evaluation repository. For LUBM, we started materi-
alisation with 215 rules and computed the chase. Based on
the results, another six rules were added and the chase was
started again, without any further rules needed this time.
Likewise, UOBM and Reactome required the chase to run
four times, and Uniprot five times. The total number of rules
added for each ontology was 6 (LUBM), 19 (UOBM), 14
(Reactome), and 59 (Uniprot). Considering the exponential
number of rules that might be required in the worst case,
these figures are quite moderate.

The performance results show that our prototype can al-
ready achieve competitive performance. It is about three
times faster than Konclude on LUBM, and about the same
on UOBM. For Reactome, Konclude has an initial perfor-
mance advantage but slows down exponentially as ABoxes
increase. We see a similar picture for Uniprot, with Kon-
clude running out of memory for the larger datasets, while
our prototype continues to scale approximately linearly.

The scalability advantage of RDFox is not unexpected,
since DL reasoners are not optimised for ontologies with a
large number of assertions. Konclude supports DL ontolo-
gies beyond Horn-ALCHOIQ, hence may not take full
advantage of optimisations possible for our case. On the
other hand, Konclude supports only class assertion retrieval,
whereas our implementation also computes the entailed role
assertions. Nevertheless, the tasks solved by the two systems
are similar enough to use Konclude as a meaningful baseline
in a feasibility study. Moreover, there are no dedicated Horn-
ALCHOIQ reasoners, so Konclude still is indicative of the
best possible performance available to practitioners today.

Related Work
Combined approaches have been developed for ELHOr⊥
(Stefanoni, Motik, and Horrocks 2013)—a DL that ex-
tends ELHO with role ranges—, DL-Lite (Kontchakov et
al. 2010), DL-LiteR (Lutz et al. 2013)—DL-Lite with role
hierarchies—, and RSA ontologies (Feier et al. 2015)—
a tractable class of Horn ontologies that extends ELHO
and DL-LiteR (Carral et al. 2014). Our approach solves
BCQ entailment over the more expressive class of Horn-
ALCHOIQ ontologies, though it does not always achieve
the same worst-case complexity on specific fragments. E.g.,
our approach may not run in polynomial time over RSA.

1https://github.com/knowsys/eval-combined-approach-horn-
alchoiq

The translation of DL reasoning problems to Datalog
has also been explored previously, for logics from EL
(Krötzsch 2011) to Horn-SROIQ (Ortiz, Rudolph, and
Simkus 2010). Interestingly, the latter approach by Ortiz et
al. has also been used to establish upper bounds for decid-
ing BCQ entailment in such expressive DLs (Ortiz, Rudolph,
and Simkus 2011), which indirectly also yields a Datalog-
based procedure for Horn-ALCHOIQ. However, Ortiz et
al. use polynomial Datalog programs with predicates of
polynomial arity, while we obtain exponential Datalog pro-
grams with predicates of fixed arity. This allows us to use
subsets of rules to obtain lower complexities for tractable
fragments, and to use existing Datalog engines (which are
not prepared to handle predicates with arities > 100).

Eiter et al. gave a method for rewriting Horn-SHIQ
ontologies and CQs to Datalog with fixed predicate ari-
ties (2012). A crucial difference to many other works in
DL query answering is that the unique name assumption is
made. The approach also differs from ours in that it supports
transitive roles but no nominals.

Our materialisation phase shares some similarities with
consequence-based reasoning procedures (Kazakov 2009;
Simančı́k, Kazakov, and Horrocks 2011; Simančı́k, Motik,
and Horrocks 2014; Bate et al. 2016). Such approaches make
use of “types”—akin to our individuals of the form tC—,
which represent certain combinations of features in arbitrary
models. To the best of our knowledge, no such procedure
supports DLs with nominals, “at most” quantifiers, and in-
verse roles—a combination of constructors that is known to
be difficult to deal with (Rudolph and Glimm 2010). More-
over, consequence-based reasoning remains a method for
standard reasoning, which does not address CQ answering.

Conclusions
To the best of our knowledge, we present the first combined
approach for CQ answering over Horn-ALCHOIQ. We
combine two powerful methods—consequence-based rea-
soning and filtration—both of which were shown to enable
practically feasible implementations on their own. Indeed,
consequence-based reasoning features provable pay-as-you-
go behaviour that leads to faster runtimes on simpler on-
tologies (see Theorem 2), while filtration can take advan-
tage of delegating most work to the query engines of highly
optimised databases, which makes this part rather scalable
in practice (Feier et al. 2015). We have provided empirical
evidence for the practical applicability of our method, even
on a prototypical implementation that uses a Datalog engine
without tight integration. A fully integrated system for DL
reasoning and query answering therefore seems to be feasi-
ble, and indeed would be a promising direction for further
research. In particular, we would like to explore the use of
our rule engine VLog (Urbani, Jacobs, and Krötzsch 2016),
which promises advantages in terms of memory usage.

Acknowledgements This work was partially supported by
the DFG within the Cluster of Excellence “Center for Ad-
vancing Electronics Dresden” (cfaed), CRC 912 (HAEC),
and Emmy Noether grant KR 4381/1-1 (DIAMOND).

347



References
Baader, F.; Brandt, S.; and Lutz, C. 2005. Pushing the EL
envelope. In Proc. 19th Int. Joint Conf. on Artificial Intelli-
gence (IJCAI’05), 364–369. Professional Book Center.
Bate, A.; Motik, B.; Cuenca Grau, B.; Simančı́k, F.; and Hor-
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