

Flexible Approach

for Computer-Assisted Reading and Analysis of Texts

Ismaïl Biskri, Mohamed Hassani

Université du Québec à Trois-Rivières
{ismail.biskri ; mohamed.hassani}@uqtr.ca

Abstract

A Computer-Assisted Reading and Analysis of Texts
(CARAT) process is a complex task that should be, always,
under the control of the user according to his subjectivity, his
knowledge, his interests, etc. It is, then, important to design
flexible platforms to support the implementation of CARAT
tools, their management, their adaptation to new needs and
the experiments. Even, in the last years, several platforms for
digging textual data have emerged, they lack flexibility and
sound formal foundations. We propose, in this paper, a
formal model with strong logical foundations, based on typed
applicative systems.

Introduction

Features extraction, data normalization, classifiers,

interpretation tools, etc. have an impact on the result of any

complex process in the domain of the Computer Assisted

Reading and Analysing of Texts (CARAT). Different

combinations of features, data normalization classifiers and

interpretation tools are possible and should be explored in

order to improve or customize CARAT processes.

 There is a real need for ongoing interaction between users

and CARAT, due to the dynamic nature of texts, their

environment and the different objectives of their reading and

analysis. These processes, being subject to multiple

adjustments, must demonstrate sufficient flexibility. The

achievement of relevant results is highly dependent on the

ability of the CARAT process to be readily adapted to the

intended objectives of analysis, being previously planned or

not. CARAT processes flexibility can be seen as the ability

to deal with foreseen and unforeseen cases by adapting parts

of a processing chain. In other words, flexibility is as much

about what should stay the same in a processing chain as

what should be allowed to change (Shonenberg et al. 2008).

Let us recall that in technical terms, a processing chain is a

Copyright © 2019, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved.

specific combination of computational operations; each

output of one computational operation can be the input of

one or many other computational operations. In what

follows, computational operations will be called modules.

To ensure flexibility, it is important that:

 The processing chain design should allow various
execution alternatives that may arise within the
processing chain model. The user can select the most
appropriate execution path, by selecting one or more
modules from a set of available modules or by changing
the order in which modules should run. That is what we
call the discovery process.

 When the processing chain is a part of a collaborative
work, or known to need to be adjusted at a later stage, its
design could be underspecified.

 During the processing chain execution, a new
understanding of the goal of the reading and analysis can
arise. It may require adding a new module to the
processing chain, removing a module from the processing
chain, or simply replacing one module with another.

 A specific sequence of modules can be used in several
processing chains. It can be considered as a complex
module composed of some basic modules.

In the literature about CARAT many projects aim to allow

the creation of complex processing chains. ALADIN

(Seffah and Meunier 1995), D2K/T2K (Downie et al. 2005),

RapidMiner (Mierswa et al. 2006), Knime (Warr 2007) and

WEKA (Witten, Frank and Hall 2011) use processing

chains for language and data engineering, Gate

(Cunningham et al. 2002) use it for linguistic analysis and

Pipeline-Pilot in the field of industry (Dassault-Systems /

BIOVA). The processing chains are widely used, but the

solutions previously mentioned suffer from several

limitations shown in (Biskri et al. 2015). With the constraint

of flexibility, the main question is: How to ensure a

systematic syntactic validation of the processing chains? We

The Thirty-Second International Florida
Artificial Intelligence Research Society Conference (FLAIRS-32)

436

propose a formal model based on typed applicative systems,

in which the validation of the construction of a processing

chain is performed by a logical calculation on types in the

general framework of Typed Applicative Systems (Biskri

and Desclés 1997 ; Shaumyan 1998).

Typed Applicative Systems and Combinatory

Logic

Typed Applicative Systems (TAS) postulate a general

model in which a construction operation applies an operator

to an operand to give a result. The applicative expressions

are structured by the simple juxtaposition of two arguments,

an operator followed by its operand. If X is an operator and

Y its operand then X Y represents the application of X to Y.

The set of applicative expressions is recursively constructed

by the following rules:

 Basic operators and basic operands are applicative
expressions

 If X and Y are applicative expressions then X Y is an
applicative expression.

To prove that an application expression is well-formed, TAS

assign to each operator and to each operand an applicative

type to express how it works. The set of applicative types is

recursively defined as follows:

 Basic types are types.
 If and are types, F is a type.

F is the type of an operator whose operand is of type

and the result of its application to its operand is of type .

One operator X with a type Fis noted [X : F

 In the scientific literature, there are several typed

applicative systems, including Church's lambda-calculus

and combinatory logic. Most functional languages like LISP

use lambda-calculus as a basis for their modeling. Although

used in some functional languages like Haskell,

combinatory logic (Curry and Feys 1958 ; Hindley and

Seldin 2008) is, particularly, used in approaches of

syntactic, semantic and even cognitive analysis of natural

languages (Desclés, Guibert and Sauzay 2016). From an

extensional point of view, these two systems are considered

equivalent. Nevertheless, they are not from an intentional

point of view. Unlike lambda-calculus, combinatory logic

does not use variables. It uses abstract operators called

combinators in order to compose or to transform operators

to get more complex operators. Combinators are

independent of a restrictive interpretation to a specific use.

Combinator’s action is expressed by a unique rule called β-

reduction rule; which defines the equivalence between the

logical expression without combinator and the one with

combinator. In our paper, we will show only five elementary

combinators B, C, S, W, I (for other combinators, the reader

might have a look on (Desclés, Guibert and Sauzay 2016)).

Combinator β-Reduction

Composition B B x y z ↔ x (y z)

Permutation C C x z y ↔ x y z

Distributive

composition S

S x y u ↔ x u (y u)

Duplication W W x y ↔ x y y

Identity I I x ↔ x

 The composition combinator B combines two operators x

and y and constructs the complex operator B x y that acts on

an operand z, z being the operand of y and the result of the

application of y to z being the operand of x. The permutation

combinator C uses an operator x in order to build the

complex operator C x that acts on the same two operands as

x but in reverse order. The distributive composition

combinator S distributes an operand u to two operators x and

y. The result (y u) becomes the operand of the complex

operator x u. The duplication combinator W takes an

operator x that acts on the same operand y twice and

constructs the complex operator W x that acts on this

operand only once. The combinatory I expresses the notion

of identity.

 With elementary combinators, we could construct

complex ones, such as "C B W S x y z u v". Its global action

is determined by the successive application of its elementary

combinators (firstly C, secondly B, then W and finally S).

C B W S x y z u v

B S W x y z u v

S (W x) y z u v

(W x) z (y z) u v

W x z (y z) u v

x z (y z) u v

 The obtained expression is the normal form, which,

according to Church & Rosser theorem, is unique.

 Two other forms of complex combinators exist : the

power and the distance of a combinator. Let χ be a

combinator.

 The power of a combinator, noted by χn, represents the

number n of times its action must be applied. It is recursively

defined by: χ0 = I ; χ¹ = χ ; χn = B χ χn-1

In other terms, if χ = C, then:

χ0 = I

χ¹ = C

χ2 = C2 = B C C

χ3 = C3 = B C C2 = B C (B C C)

etc.

 The distance of a combinator, noted by χn, represents the

number n of steps its action is postponed. It is recursively

defined by: χ0 = χ ; χn = B χn-1.

In other terms, if χ = C, then:

χ0 = C

χ1 = C1 = B C0 = B C

χ2
 = C2 = B C1 = B (B C)

χ3
 = C3 = B C2 = B (B (B C))

etc.

437

Formal Model

In our model, operations contained in programs are

translated into applicative terms represented by typed

modules. This translation allows a more formal definition of

an operation in terms of its internal structure and relation

with other operations. Also, this translation allows for a

better specification of the processing chain design. A

processing chain must be syntactically correct. Thus, given

a set of typed modules, what are the allowable arrangements

that lead to coherent processing chains?

Figure 1. Module schematisation

Figure 2. A module with n inputs

 To do that, we must, first, assign to each module an

applicative type. For example the type Fxy is assigned the

module M1 in (Fig. 1) since its input is of type x and its

output is of type y. We note the module M1 of type Fxy by

[M1 : Fxy]. As a general notation, [M1 : Fx1...Fxny] is a

module M1 with n inputs of the respective types x1, x2, …,

xn, and an output of type y (Fig. 2).

 A processing chain is the representation of the order of

application of several modules on their inputs. To be valid,

the type of an input must be the same as the output linked to

it (Fig. 3).

Figure 3. Valid chain of two modules in series

Figure 4. Processing chain as a new module

 A processing chain can be seen as a module itself as it has

inputs and output (Fig. 4). Our model allows the reduction

of a processing chain to this unique module representation.

The combinatory logic keeps the execution order and the

rules take type in account to check the syntactic correctness.

To reduce a chain, we only need the modules list, their type,

and their execution order.

 Let us show the rules of the model:

APPLICATIVE

RULE

[X : x] + [M1 : Fxy]

[Y : y]

COMPOSITION

RULE

[M1 : Fxy] + [M2 : Fyz]

---------------------------------B

[B M2 M1 : Fxz]

EXTENDED

COMPOSITION

RULE

[M1 : Fx1...Fxny] + [M2 : Fyz]

------------------------------------ Bn
[Bn M2 M1 : Fx1...Fxnz]

DISTRIBUTIVE

COMPOSITION

RULE

[M1 : Fxy] + [M2 : FxFyz]
----------------------------------S

[S M2 M1 : Fxz]

PERMUTATION

RULE

[M1 : FxFyz]

----------------------C

[C M1 : FyFxz]

EXTENDED

PERMUTATION

RULE

[M1 : Fx1...Fxny]

------------------------------------- Cn
[Cp-1(Cp(…(Cm-2M1))) : Fx1...Fxp-1

FxmFxp...Fxm-1Fxm+1...Fxny]

DUPLICATION

RULE

[M1 : FxFxy]

---------------------W

[W M1 : Fxy]

EXTENDED

DUPLICATION

RULE

[M1 : (Fx)ny]

-------------------- Wn

[Wn-1M1 : Fxy]

 Extended rules are provided so they can be applied to any

number of inputs whereas the others can be applied only to

modules with one input. The composition rule is used when

two modules are in series (as in Fig. 3). Since M1 is of type

Fxy and M2 if type Fyz, the application of the composition

rule returns the complex module B M2 M1 of type Fxz . If

M1 has n inputs, the power of the B combinator will be n.

We use the extended composition rule as in the (Fig. 5). The

module [M1 : Fx1Fx2Fx3…Fxny] applies on n inputs of

different types and yields an output of type y. The module

[M2 : Fyz] applies on an input of type y to yield an output

of type z. This chain is expressed by the expression: [M1 :

Fx1Fx2Fx3…Fxny] + [M2 : Fyz]. The composition rule can

be applied and returns the complex module [Bn M2 M1 :

FxFxy]. If the type of M1 output and M2 input were not the

same, we could not have applied the composition rule.

 The inputs number of a module can be more than one. The

duplication rule (respectively the extended duplication rule)

transforms a module with two (respectively n) identical

inputs to a module with only one input. This rule can be

Input x y output
M1

y

x1

x2

x3

…

xn

M1

x y y z

 M2 M1

z1

z2

M1
M3

M2

M4

y
t x

438

applied only if the analysis of the processing chain gives the

same value to each input (Fig. 6).

Figure 5. Application of the extended composition rule

 The permutation rule allows changing the order of inputs.

It takes the input at position m and moves it to the position

p, with p<m. It's used to reorganize input to make as much

as possible the other rules applicable. Let M be a module

with four inputs of types x, y, z and x and an output of type

t : [M : FxFyFzFxt]. Let X be the value given to the first and

fourth inputs (Fig. 7-a). If the fourth was in second position,

we could apply the duplication rule to M. So, we want to

move the fourth input to second position. The extended

permutation rule returns the complex module [C1 (C2 M) :

FxFxFyFzt] (Fig. 7-b). On this new module, the duplication

rule can be applied to get a complex module [W (C1 (C2 M))

: FxFyFzt] (Fig 7-c).

Figure 6. Application of the extended duplication rule

(a) (b) (c)

Figure 7. Inputs reorganisation

Implementation

Even if our work is currently at the theoretical stage, a first

prototype of the model was implemented. The rules are

implemented in a F# library and a testing software in C#

language. An open-source library called GraphX is used for

graphics visualization.

 Two strategies of analysis are considered. The first is

from right-to-left (somehow a bottom up analysis). This

strategy applies, only, when the whole processing chain is

constructed. The second one is from left-to-right (somehow

a top down analysis).

 The prototype has been tested on 60 different processing

chains containing 15 syntactically incorrect chains and 45

correct chains. We wanted to ensure that our approach does

not allow undergeneration or overgeneration. The results are

shown in table 1. We are, currently, working on the

implementation of modules with effective functionalities in

the domain of classification. We will present the results of

this work in our next publications.

 REDUCED
NOT

REDUCED

VALID

CHAIN
45 0

INVALID

CHAIN
0 15

Table 1. Results of reduction

 Let us give the analysis of the complex processing chain

(Fig. 8) which is a combination of seven modules.

 M1 of type Fyz
 M2 of type Fuy
 M3 of type FzFyt
 M4 of type Fyx
 M5 of type Fxu
 M6 of type FuFxy
 M7 of type Fzu
 X, Y, Z are the inputs of the processing chain with

respectively the types x, y and z. T of type t is the output.

Bn M2 M1

y y z

x1

x2

x3

…

xn

M1
M2

y

x

x

x

…

x

M

x y
Wn-1 M1

t

x

y

z

x

M

t

x

x

y

z

C1 (C2 M)
t

x

y

z

W (C1 (C2 M))

439

 To reduce this chain, we will use the left to right strategy.

We start by composing M5 and M6, since M6 is of FuFxy

and M5 is of type Fxu. The composition rule gives a new

complex module [B M6 M5 : FxFxy] (Fig. 9). In order to

compose this constructed module with the module [M4 :

Fyx], we need, first, to reorder its inputs by applying the

permutation rule. We get a new module [C (B M6 M5) :

FxFxy] (Fig. 10). We can, now, compose this new module

with [M4 : Fyx] and get the module [(B (C (B M6 M5)) M4)

: FyFxy] (Fig. 11). Since [M1 : Fyz] takes the output of [(B

(C (B M6 M5)) M4) : FyFxy] and [(B (C (B M6 M5)) M4)

: FyFxy] has two inputs, we apply the extended composition

rule to get the complex modules [(B2 M1 (B (C (B M6 M5))

M4)) : FyFxz] (Fig. 12).

u

 y z

 x

 y

 u

Figure 8. The complex processing chain to be analyzed

Figure 9. Reduction step 1

Figure 10. Reduction step 2

 The next step allows the composition of [M2 : Fuy] and

[M7 : Fzu]. We get the complex module [B M2 M7 : Fzy]

(Fig. 13). The extended composition rule is applied to [M3 :

FzFyt] and [(B2 M1 (B (C (B M6 M5)) M4)) : FyFxz]. It

returns the module [(B2 M3 (B2 M1 (B (C (B M6 M5))

M4))) : FyFxFyt] (Fig. 14). We use the extended

permutation rule to reorder the inputs and get the new

module [(C (C2
 (B2 M3 (B2 M1 (B (C (B M6 M5)) M4))))))

: FyFxFyt] (Fig. 15). Finally, we can apply the composition

rule that returns the module [(B (C (C2
 (B2 M3 (B2 M1 (B

(C (B M6 M5)) M4))))) (B M2 M7)) : FzFyFxt] (Fig. 16).

As we have only one module, and no other rule can be

applied, the processing chain is reduced.

Figure 11. Reduction step 3

Figure 12. Reduction step 4

Figure 13. Reduction step 5

Figure 14. Reduction step 6

X

Y

Z

M3

M2

M1 M6

M4

M5

M7

T

T

X

Y

Z

Z

M7

(B (C (B M6 M5)) M4)

M3

M2

M1

M7

B M6 M5

M3

M2

M1

M4

Y

X

M7

C (B M6 M5)

M3

M2

M1

M4

Y

Z

X

Y

M7

(B2 M1 (B (C (B M6 M5)) M4))

M3

M2

X

Z

Y

(B2 M1 (B (C (B M6 M5)) M4))

M3

B M2 M7

X

Z

Y

(B2 M3 (B2 M1 (B (C (B M6 M5)) M4)))

B M2 M7

X

Z

440

Figure 15. Reduction step 7

Figure 16. Reduction step 8

 As it has been completely reduced, the processing chain

is considered as syntactically correct. Its combinatory

expression is: B (C (C2
 (B2 M3 (B2 M1 (B (C (B M6 M5))

M4))))) (B M2 M7). Using combinatory logic reductions,

we can get the normal form of this expression.

 B (C (C2
 (B2 M3 (B2 M1 (B (C (B M6 M5)) M4))))) (B

M2 M7) Z Y X
 C (C2

 (B2 M3 (B2 M1 (B (C (B M6 M5)) M4)))) ((B M2
M7) Z) Y X

 C2
 (B2 M3 (B2 M1 (B (C (B M6 M5)) M4))) Y ((B M2

M7) Z) X
 B2 M3 (B2 M1 (B (C (B M6 M5)) M4)) Y X ((B M2 M7)

Z)
 M3 ((B2 M1 (B (C (B M6 M5) M4)) Y X) ((B M2 M7)

Z)
 M3 (M1 ((B (C (B M6 M5)) M4) Y X)) ((B M2 M7) Z)
 M3 (M1 ((C (B M6 M5)) (M4 Y) X)) ((B M2 M7) Z)
 M3 (M1 ((B M6 M5) X (M4 Y))) ((B M2 M7) Z)
 M3 (M1 (M6 (M5 X) (M4 Y))) ((B M2 M7) Z)
 M3 (M1 (M6 (M5 X) (M4 Y))) (M2 (M7 Z))

The obtained normal form expresses the order of application

of modules on their inputs (Z, Y and X).

 It could be possible to use an analysis strategy from right-

to-left and the processing chain in Fig. 8 would be reduced

to the combinatory expression (B (B (C (C2 (B (C (B (B2 (B

M3 M1) M6) M5)) M4))) M2) M7) Z Y X. According to

Church-Rosser's theorem this combinatory expression is

equivalent to the one obtained in (Fig. 16) since their

reduction yields the same normal form.

Conclusion

Several sectors of activity, be they industrial, economic,

scientific, cultural, “social networking”, etc., are generating

more and more textual data than ever before. To know how

to use this data, users need flexible, adaptable, consistent

and easy-to use tools and platforms that can help to make

advanced analytics they need accessible, data processing,

data integration, application integration, machine learning,

etc. Scientists and even industrialists, like Dassault-Systems

and BIOVA for example, have understood the importance

of this major issue and what we call collaborative intelligent

science, in which the user must stay in center of its

experience.

 With the theoretical model we propose, it would be

possible to meet these needs.

References

Biskri, I. and Desclés, J.P. 1997. Applicative and Combinatory
Categorial Grammar (from syntax to functional semantics). In
Recent Advances in Natural Language Processing. John
Benjamins Publishing Company.
Biskri, I.; Anastacio, M.; Joly, A.; and Amar Bensaber, B. 2015. A
Typed Applicative System for a Language and Text Processing
Engineering”. The International Journal of Innovation in Digital
Ecosystems. Elsevier.
Cunningham, H.; Maynard, D.; Bontcheva, K.; and Tablan, V.
2002. GATE: A Framework and Graphical Development
Environment for Robust NLP Tools and Applications. In
Proceedings of the 2002 Association for Computational
Linguistics. Philadelphia.
Curry, B. H. and Feys, R. 1958. Combinatory logic, Vol. I,
North.Holland.
Desclés, J.P.; Guibert, G.; and Sauzay, B. 2016. Logique
combinatoire et -calcul : des logiques d’opérateurs. Cépaduès.
Downie, J. S.; Unsworth, J.; Yu, B.; Tcheng, D.; Rockwell, G.; and
Ramsay, S. J. 2005. A revolutionary approach to humanities
computing: tools development and the D2K datamining
framework. In Proceedings of the 17th Joint International
Conference of ACH/ALLC.
Hindley, J. R.; and Seldin, J. P. 2008. Lambda.calculus and
Combinators, an Introduction. Cambridge University Press.
Mierswa, I.; Wurst, M.; Klinkemberg, R.; Scholz, M.; and Euler,
T. 2006. YALE: Rapid Prototyping for Complex Data Mining
Tasks. In Proceedings of the 12th International Conference on
Knowledge Discovery and Data Mining.
Seffah, A.; and Meunier, J.G. 1995. ALADIN : Un atelier orienté
objet pour l'analyse et la lecture de Textes assistée par ordinaleur.
In Proceedings of the 1995 International Conferencence on
Statistics and Texts. Rome.
Shaumyan, S. K. 1998. Two Paradigms of Linguistics: The
Semiotic Versus Non-Semiotic Paradigm. Web Journal of Formal,
Computational and Cognitive Linguistics.
Shonenberg, M.H.; Mans, R.S.; Russell, N.C.; Mulyar, N.A.; and
Van Der Aalst, W.M.P., 2008. Process Flexibility: a Survey of
Contemporary Approaches. In Advances in Enterprise
Engineering. Lecture Notes in Business Information Processing
Book Series. Volume 10.
Warr, A. W. 2007. Integration, analysis and collaboration. An
Update on Workflow and Pipelining in cheminformatics. Strand
Life Sciences.
Witten, I.; Frank, E.; and Hall, M. 2011. Data Mining: Practical
Machine Learning Tools and Techniques. Morgan Kaufmann
Publishers.

Y

(C (C2
 (B2 M3 (B2 M1 (B (C (B M6 M5)) M4)))))

B M2 M7

X

Z

Y

(B (C (C2
 (B2 M3 (B2 M1 (B (C (B M6 M5)) M4))))) (B M2 M7))

Z X

T

441

http://www.cs.waikato.ac.nz/~ihw
http://www.cs.waikato.ac.nz/~eibe
http://www.cs.waikato.ac.nz/~mhall

