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Abstract

The similarity assumption in Case-Based Reasoning (simi-
lar problems have similar solutions) has been questioned by
several researchers. If knowledge about the adaptability of
solutions is available, it can be exploited in order to guide
retrieval. Several approaches have been proposed in this con-
text, often assuming a similarity or cost measure defined over
the solution space. In this paper, we propose a novel approach
where the adaptability of the solutions is captured inside a
metric Markov Random Field (MRF). Each case is repre-
sented as a node in the MRF, and edges connect cases whose
solutions are close in the solution space. States of the nodes
represent the adaptability effort with respect to the query. Po-
tentals are defined to enforce connected nodes to share the
same state; this models the fact that cases having similar so-
lutions should have the same adaptability effort with respect
to the query. The main goal is to enlarge the set of potentially
adaptable cases that are retrieved (the recall) without signifi-
cantly sacrificing the precision of retrieval. We will report on
some experiments concerning a retrieval architecture where
a simple kNN retrieval is followed by a further retrieval step
based on MRF inference.

Keywords: Case-Based Reasoning, Adaptation Guided Re-
trieval, Markov Random Fields.

1 Introduction
The main postulate of Case-Based Reasoning (CBR) is that
“similar problems have similar solution(s)” (similarity as-
sumption). The more valid the similarity assumption, the
more efficient the CBR process is, since the retrieved so-
lutions are more similar to the (unknown) solution to the
query.

The most common retrieval strategy is based on k-Nearest
Neighbor (kNN) algorithms, returning the solutions of the k
cases stored in the library that have the most similar descrip-
tion with respect to the query; let us call it structural similar-
ity in contrast to solution similarity. The postulate of similar-
ity assumption has been questioned by several researchers,
since there are problems (and applications) where it is un-
safe to rely on it (Smyth and Keane 1998; Stahl and Schmitt
2002; Abdel-Aziz, Strickert, and Hüllermeier 2014). In par-
ticular, when structural similarity is not a real proxy for solu-
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tion similarity, new retrieval techniques should be devised,
in order to guarantee that retrieved solutions are likely to
be useful (i.e. reusable or at least revisable). Different solu-
tions have been devised to address this problem: the intro-
duction of specific or task dependent adaptation knowledge
into the retrieval step in adaptation-guided retrieval (Smyth
and Keane 1998; Portinale, Torasso, and Magro 1997; Diaz-
Agudo, Gervas, and Gonzales-Calero 2003), the modeling
of solution preferences in preference-based CBR (Abdel-
Aziz, Strickert, and Hüllermeier 2014), the learning of a
utility-oriented similarity measure minimizing the discrep-
ancies between the similarity values and the desired utility
scores (Xiong and Funk 2006).

In this paper, we describe a novel technique where stan-
dard kNN retrieval is improved through an adaptation guided
inference process based on Markov Random Field (MRF),
inference (Murphy 2013). In the following, we first in-
troduce some basic notions concerning MRFs and metric
MRFs in particular. We then describe the characterization
of case adaptability we rely on, and we discuss a framework
for case retrieval based on inference on an MRF, capturing
the relevant adaptation knowledge. A retrieval architecture
integrating kNN with MRF inference is then proposed. An
experimental framework for the evaluation of the proposed
architecture is illustrated, together with the discussion con-
cerning the results that have been obtained.

2 Markov Random Fields
A Markov Random Field (MRF) is a Probabilistic Graphi-
cal Model (PGM) defined as the pair 〈G,P〉 where G is an
undirected graph whose nodes represent random variables
(we assume here discrete random variables) and edges rep-
resent dependency relations among connected variables. P
is a probabilistic distribution over the variables represented
in G. In Pairwise MRFs: each edge (Xi — Xj) is associated
with a potential Φi,j : D(Xi)×D(Xj) → R+ ∪ {0}; here
D(X) is the domain (i.e. the set of states or values) of the
variable X .

In a MRF, the distribution P factorizes over G, i.e.:

P(X1 . . . Xn) =
1

Z

∏
i,j

Φi,j(Xi, Xj)

where Z =
∑

X1...Xn

∏
i,j Φi,j(Xi, Xj) is a normalization

constant called the partition function.
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A special case of pairwise MRFs are metric MRFs, where
all nodes take values in the same label space V , and a dis-
tance function d : V × V → R+ ∪ {0} is defined over V ;
the edge potentials take then a log-linear form

Φi,j(xi, xj) = exp(−wijd(xi, xj))

given that xi is a value or state of variable Xi, and wij > 0
is a suitable weight stressing the importance of the distance
function in determining the potential.

Concerning inference, we are interested in the computa-
tion of the posterior probability distribution of each single
unobserved variable, given the evidence. In this paper, we
will resort to mean field inference, a variational approach
where the target distribution is approximated by a com-
pletely factorized distribution (Weiss 2000). This algorithm
is implemented in the MATLAB UGM toolbox (Schmidt
2007) that we have exploited in our experimental analysis.

3 Characterizing Case Adaptability
In the standard CBR process, because of the similarity as-
sumption we expect that the solutions of similar cases are
also similar. If this assumption is not valid, kNN retrieval
can result in a set of unuseful cases, since their adaptation
level with respect to the query is unsuitable (i.e., no adapta-
tion mechanism can be adopted with a reasonable effort). In
order to circumvent this problem, we need to exploit adap-
tation knowledge during retrieval, by resorting to some ab-
stract notion of adaptation space (see (Leake, Kinley, and
Wilson 1997; Bergmann et al. 2016)). Let us assume, as
done in (Stahl and Schmitt 2002; Abdel-Aziz, Strickert, and
Hüllermeier 2014), that the solution space is equipped with
a similarity or a distance metric.

Let ci(sol) be a boolean condition on a solution sol; we
say that sol has an adaptation level i, if and only if ci(sol) is
true. For the sake of simplicity, we assume in the following
that each case has only one solution; we can then talk about
the adaptation level of a case as the adaptation level of its
solution.

Example 1. Suppose we have a case library containing
the description of some used cars for sale (this corresponds
to the case study described in section 6); let the solution of
each case be the selling price of the car. Consider now a
customer with a specific budget b and the possibility of a
loan l; the following adaptation levels could be defined:

• Level 1: c1(price) ≡ (price ≤ b)
• Level 2: c2(price) ≡ (b ≤ price ≤ b+ l)

• Level 3: c3(price) ≡ price > b+ l

For instance, we can consider a solution with level 1 to be
reusable, a solution with level 2 to be revisable, and a solu-
tion with level 3 to be non-adaptable. Solutions at levels 1
and 2 can then be considered as adaptable.

Given the above characterization, cases having similar so-
lutions tend to have similar adaptation levels with respect to
a given query. Adaptation levels reflect a different adaptation
effort or cost, and can be tought as values of a linear feature

Input: #adapt levels; st > 0
Output: a metric MRF

MRF← empty graph
for each case c do

add node c to MRF
end for
for each node n do
num states(n)← #adapt levels

end for
for each pair of nodes (n,m) do

if sim s(n,m) > st then
add edge e = (n,m) to MRF

end if
end for
for each edge e = (n,m) do
s← sim s(n,m)
for i = 1 . . .#adapt levels do

for j = 1 . . .#adapt levels do
Φn,m(i, j)← exp(−s |i− j|)

end for
end for

end for
Algorithm 1: MRF construction.

(Wilson and Martinez 1997). It is then straighforward to de-
fine their similarity as a measure of closeness of two levels
on a linear scale (see section 4 for the details).

In the following, we propose to characterize the principle
“similar solutions imply similar adaptation levels” by means
of a metric MRF built on the case library; results from kNN
retrieval are then used in order to provide evidence on the
MRF, regarding the adaptation level of the retrieved cases.
By computing the posterior probability of the adaptation lev-
els of each case in the library, we can then suggest more po-
tentially adaptable cases, and to finally reject cases that are
likely to be unadaptable. Section 4 will discuss the details.

4 A Framework for Retrieval
based on MRF Inference

Given a case library of stored cases with solutions, we first
construct a metric MRF. Let #adapt levels be the num-
ber of different adaptation levels, sim s be the similarity
metric defined over the solution space and st be a threshold
of minimal similarity for solutions. Algorithm 1 shows the
pseudo-code for the construction of the MRF.

Nodes of the MRF have the possible case adaptation lev-
els as states (in the simplest situation they are binary nodes
with states “0: adaptable” and “1: non-adaptable”), and they
are connected only if the corresponding cases have a suf-
ficiently large solution similarity. (greater than the thresh-
old st). Concerning edge potentials Φn,m(i, j), since states
represent adaptation levels that are linearly ordered, a sim-
ple distance metric as the absolute value of their difference
is sufficient. When a given node assumes a specific state,
connected nodes tend to assume close state values with a
high probability (we expect cases having similar solution
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Input: al(1) . . . al(k); cond()
Output: a set of (cases, adaptation levels) pairs (c, al)

for i = 1 : k do
set evidence(i, al(i))

end for
Bel[ ] = MRF Inference
for each not retrieved case c do

if cond(Bel[i]) then
output (i, cond(Bel[i]))

end if
end for

Algorithm 2: MRF inference for adaptable cases re-
trieval.

to have a very close adaptation level). Moreover, the more
similar the solutions of the cases, the stronger this effect
should be; this is the reason why we use solution similar-
ity s = sim s(n,m) as a weight for the metric potential.

Once we know the adaptation level of some of the stored
cases, MRF inference can be used to propagate this informa-
tion in the case library. The idea is to start from a standard
kNN retrieval, followed by the usual reuse and revise steps.
The results of the reuse/revise phases are used as input for
MRF inference. Algorithm 2 details this process. Let al(i)
be the adaptation level of the i-th retrieved case (through
kNN retrieval); for each retrieved case, its adaptation level
is set as evidence in the corresponding node of the MRF.
Inference is then performed and the posterior probability of
each MRF node is computed into the multidimensional vec-
tor Bel. Bel[i] is the posterior distribution or node belief of
node i; Bel[i] is a l-dimensional vector (where l is the num-
ber of adaptation levels) such thatBel[i, j] is the probability
of node i being in state j given the evidence. Input parameter
cond() is a function testing a condition on the node belief;
if this condition is not satisfied, it returns false, otherwise
it returns the state of the node (i.e., the adaptation level) for
which the condition is satisfied. Algorithm 2 finally ouputs
a set of cases with their adaptability level.

Example 2. Suppose we want to determine for each (non
retrieved) case the most probable adaptation level, then we
will set cond(Bel[i]) = arg maxj Bel[i, j]. In this case ev-
ery case has a potential adaptation level and we can consider
it for the next actions: for instance, we could be interested
only in the most easily adaptable cases, and if 1 is the mini-
mum adaptation level, we will select only those nodes i for
which cond(Bel[i]) = 1

Consider now a more complex condition: suppose we
consider as interesting any adaptation level from 1 to a, and
suppose that we want to be pretty sure about the adaptability
of the case. We could set a probability threshold pt and to
require that

if Bel[i, 1] + . . . Bel[i, a] > pt then
cond(Bel[i])← a

else
cond(Bel[i])← false

end if

In this case we are collapsing all the adaptability levels
from 1 to a into a unique level (the choice of a is completely
arbitrary here, and any other label would be fine as we no
longer need to distinguish them); in case the required con-
fidence on adaptability is not reached, we will simply ig-
nore the case. Of course, several other implementations of
the cond() function can be devised.

5 An Integrated kNN/MRF Architecture
The problem of retrieving “useful” cases with respect to a
given query is characterized by two different aspects: the
structural similarity between the query and the retrieved case
(addressed by kNN retrieval), and the adaptability to the
query of the retrieved solution (addressed by MRF infer-
ence); this means that the cases of interest are those which
are sufficiently similar to the query, while having an adapt-
able solution. We call them “positive” cases. We would like
the retrieval to return only positive cases, possibly with a
large structural similarity and with a low adaptability cost.
While cases retrieved through kNN do not have the guaran-
tee of being adaptable, cases retrieved through MRF infer-
ence are more likely to be adaptable, but they do not have
any guarantee of being sufficiently similar (from the struc-
tural point of view) to the query. Moreover, the reason why
retrieval is often restricted to a set of k cases, is because it is
in general unfeasible to take into consideration all the posi-
tive cases: considering all the cases returned by MRF infer-
ence may lead to an unreasonably large number of cases to
be managed.

In the following, we will consider a specific retrieval ar-
chitecture combining kNN and MRF based retrieval trying
to address the above mentioned issues, and we will evaluate
it on a given case study. We start with kNN retrieval; if all
the k retrieved cases are actually adaptable, then the process
terminates with such k cases as a result. On the contrary, let
0 ≤ k′ < k be the number of adaptable cases retrieved by
kNN; MRF inference is performed as shown in Algorithm 2,
then the top k − k′ cases in descending order of structural
similarity are returned, from the output of Algorithm 2.

The main idea underlying this architecture is that k is the
desired output size. In case kNN retrieval tangles with the
solution similarity problem, we complement the retrieval set
with some cases that are likely to be adaptable. Since they
are selected by considering their structural similarity with
respect the query, we also maximize the probability of such
cases being positive. In order to evaluate the effectiveness
of such architecture, we set up an experimental framework
described in section 6, and which results are reported in sec-
tion 7.

6 Experimental Framework
We consider the “used cars” dataset related to the problem
of suggesting suitable used cars to a requesting customer1.
We have produced a sample of 350 cases having the follow-
ing features: Age, Miles, Doors, Power, Speed, CCM,

1This dataset was delivered with an old version of the MYCBR
tool (Bach and Althoff 2012) called CBRWORKS.
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Price. We consider the first six features to be the case de-
scription, and the feature Price to be the solution of the
case2. Similarity measure for both case descriptions and so-
lutions is computed as s(i, j) = 1

1+d(i,j) where d() is the
standardized Euclidean distance (0 < s(i, j) ≤ 1).

In order to model an adaptability criterion, we consider
the situation described in Example 1 of section 3: given a
budget b and a possible loan l, we get three different adap-
tation levels depending on the retrieved price. Moreover, we
adopt the evaluation criterion defined in Example 2 of sec-
tion 4, by considering level 1 and 2 as adaptable and level 3
as non-adaptable3. We set the threshold pt = 0.9 (a case is
adaptable if the probablity of being either reusable or revis-
able is greater than 90%), while a “positive” case is defined
as a case having a structural similarity with the query greater
or equal to a given threshold thr, and such that its adaptabil-
ity level is either 1 or 2. We define the following measures
for retrieval evaluation:
• True Positive (TP) cases: positive cases that are retrieved;
• True Negative (TN) cases: missed (non retrieved) cases

that are not positive;
• False Positive (FP) cases: retrieved cases that are not pos-

itive;
• False Negative (FN) cases: positive cases that are missed.
We consider the usual notions of precision (p), recall (r),
accuracy (a) and F-score (F ).

p =
TP

TP + FP
r =

TP

TP + FN

a =
TP + TN

TP + TN + FP + FN
F = 2

prec rec

prec+ rec

With respect to kNN, MRF based retrieval tends to move
some cases from FN to TP, but with the risk of moving cases
from TN to FP as well. What we expect is then an increase
in the recall with a corresponding decrease in precision. To
measure if this trade-off is well balanced we consider F :
an increase of F means that increase in recall is worth the
decrease in precision. If also accuracy increases, this further
confirms that MRF based retrieval has been useful.

7 Experimental Results
We consider two different kind of queries: a query involving
a small set of features, loosely correlated with the solution,
and a query involving almost all the features of the cases. In
the first situation, we expect the structural similarity not be-
ing a suitable proxy for solution similarity, increasing then
the probability of retrieving non-adaptable cases via kNN.
We adopted the thresholds st = 0.9 (see Algorithm 1) and

2All the features in this dataset are linear, however the general-
ization to the situation where also nominal features are present is
straightforward.

3This criterion is just a constraint on the solution, and in prin-
ciple it can be checked during kNN retrieval; it has been defined in
order to set up a simple experimental framework. In real-world ap-
plications checking adaptability during retrieval could be impracti-
cle or even impossible.

Figure 1: Small feature set, thr = µc, b+ l = µp

Figure 2: Small feature set, thr = µc, b+ l = 2µp

pt = 0.9 (see Example 2 in section 4). A 10-fold cross val-
idation has been performed in each experiment, in order to
get 10 different test sets containing the queries, and 10 dif-
ferent corresponding case libraries. The construction of the
metric MRF (Algorithm 1) and the MRF inference (Algo-
rithm 2) have been implemented in MATLAB by exploiting
the UGM toolbox (Schmidt 2007). In particular, we resort to
mean field variational inference as previously mentioned4.
We finally consider two other evaluation parameters: the av-
erage structural similarities among the cases in the case li-
brary µc, and the average value µp of the solutions (the aver-
age price of the cars in the case library). We have used these
parameters in order to vary the structural similarity threshold
and the adaptation criterion in the experiments.

The first set of experiments concerns queries restricted to
features Doors (number of doors) and CCM (engine capac-
ity). We have performed 4 runs of 10-fold cross validation,
by varying parameters thr and b+l. We have measured F , a,
p and r for different values of k, namely k = 3, 5, 7, 10. The
average values of the performance measures are reported in
figure 1 to figure 4 for different values of parameter k.

We can notice that MRF outperforms kNN in all experi-
ments with regards to almost every measure (with the excep-
tion of p in figure 4). In figure 1, MRF is able to keep p close

4Comparable results have been obtained by using Loopy Belief
Propagation (Weiss 2000).
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Figure 3: Small feature set, thr = 2µc, b+ l = µp

Figure 4: Small feature set, thr = 2µc, b+ l = 2µp

to 1, but r is quite low, increasing as k increases. This is ex-
plained by the fact that there are a lot of cases sufficiently
similar to the query and potentially adaptable; despite that,
kNN alone has difficulty in retrieving positive cases (query
features are not well correlated with the solution), and the
integration with MRF inference is fruitful.

Similar situation is reported in figure 2, where we add
more adaptable cases to the case library; there is a small im-
provement in pwith a small decrease in a due to the presence
of more FN cases. MRF shows a definite better balance of p
and r than in kNN. Figure 3 concerns a situation where we
restrict the set of positive cases by increasing the minimal
required structural similarity; a and r become larger, since
there are less FN and more TP. Precision shows a slight de-
crease as k increases, due to the fact that the presence of less
positive cases provides an increase of FP cases. From the
positive side, F is larger than in the previous settings. Fig-
ure 4 confirms that; however results concerning p deserve
some attention. With respect to figure 3 there are more adapt-
able cases, so the drop of p as k increases is again explained
by the presence of more FP cases; however, the value for
kNN is larger than in the previous setting, because the pres-
ence of more adaptable cases limits the number of FP. MRF
is worse than kNN in precision, since when it adds more
adaptable cases to the retrieval set there is a larger proba-
bility of getting cases that are adaptable, but not sufficiently
similar from the structural point of view. In conclusion, with

Figure 5: Augmented feature set, thr = µc, b+ l = 2µp

Figure 6: Augmented feature set, thr = 2µc, b+ l = 2µp

a very restricted requirement for structural similarity and
with a large number of adaptable cases, MRF inference can
be penalized in terms of precision.

The second set of experiments concerns queries involv-
ing more features and in particular Age (number of years),
Miles (miles traveled), Power (engine power) and CCM
(engine capacity). All these features (both taken as alone and
together) are quite correlated with the car’s price, so we are
modeling a situation which is potentially unfavourable for
MRF. We report here 2 runs of 10-fold cross validation, by
varying parameters thr, and by fixing b + l = 2µp. The
average results are reported in figure 5 and figure 6,

In the setting corresponding to figure 5 we still notice that
MRF outperforms kNN, even in presence of features which
are significantly indicative of the solution, with considera-
tions that are similar to those obtained from figure 1 and fig-
ure 2. In contrast, results reported in figure 6 show a better
performance of kNN, with the exception of r, where how-
ever both kNN and MRF tend to reach a perfect recall as
k increases. On the other hand, the other performance mea-
sures show a decrease as k increases. Indeed, since there are
less positive cases, more FP are introduced as k increases.
These results show a situation where MRF introduces more
FP than kNN alone. The decrease of F for both methods
indicates that a large k is not suitable in this setting.
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8 Conclusions
We have discussed a novel framework for enhancing kNN
retrieval in CBR systems, by addressing the problem of re-
trieving cases that are likely to be easily adaptable. We have
proposed to exploit a metric MRF model, taking into ac-
count the relationships among cases having similar solu-
tions. We have introduced the notion of adaptation level,
representing the effort a case solution requires in order
to be adapted to the current query. We have evaluated a
kNN/MRF integrated retrieval architecture where cases re-
trieved from standard kNN are complemented with cases re-
trieved through MRF inference. Experimental results, eval-
uated in terms of accuracy, precision and recall of the re-
trieval, suggest that the integrated architecture can provide
advantages in several situations; in particular, when the
query is underspecified and some features significantly cor-
related with the solution are missing, exploiting MRF in-
ference can increase recall and accuracy without paying a
big price in terms of precision. On the other hand, when
the problem requires the retrieval of cases with very high
structural similarity and a large number of adaptable cases is
available, then MRF inference can be penalized in terms of
precision; in this case, kNN alone can provide more effective
results. We have reported the results of an experimentation
concerning a dataset of 350 cases representing used cars,
and an implementation of MRF inference based on mean
field approximation. It is worth noting that, the approach is
likely to scale-up, since a reasonable MRF model of the case
library tends to have multiple connected components. This
is due to the fact that only cases having close solutions are
connected. Inference on such MRF components can be per-
formed independently, and if they involve a limited number
of nodes, even exact inference may be attempted.

Other researchers have already investigated the integra-
tion of CBR and PGMs for retrieval, usually by concen-
trating on directed models like Bayesian Networks (BN).
In (Aamodt and Langseth 1998), a BN model is coupled
with a semantic network to exploit statistically sound contri-
bution to case indexing and retrieval. BN-based retrieval is
triggered by the introduction of the observed features as evi-
dence, and cases can be set in the on state and retrieved if the
posterior probability of such state exceeds a given threshold.
Recent advances in this setting are presented in (Nikpour,
Aamodt, and Bach 2018) in the context of the BNCreek sys-
tem which applies a Bayesian analysis aimed at increasing
the accuracy of the similarity assessment. These approaches
have some resemblance with our proposal, but they concen-
trate only on structural similarity and there is no attempt to
address the problem of adaptation-guided retrieval. To the
best of our knowledge, no approach integrating PGM and
CBR directly tackle the problem of the validity of the simi-
larity assumption.
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Learning solution similarity in preference-based cbr. In
Proc. ICCBR 2014, LNAI 8765, 17–31. Springer.
Bach, K., and Althoff, K. 2012. Developing case-based
reasoning applications using myCBR3. In Proc. ICCBR-12,
LNAI 7466. Springer. 17–31.
Bergmann, R.; Muller, G.; Zeyen, C.; and Manderscheid, J.
2016. Retrieving adaptable cases in process-oriented Case-
Based Reasoning. In Proc. 29th FLAIRS 2016, 419–424.
AAAI Press.
Diaz-Agudo, B.; Gervas, P.; and Gonzales-Calero, P. 2003.
Adaptation guided retrieval based on formal concept analy-
sis. In Proc. ICCBR 2003, LNAI 2689. Springer. 131–145.
Leake, D.; Kinley, A.; and Wilson, D. 1997. Case-based
similarity assessment: estimating adaptbility from experi-
ence. In Proc. 14th AAAI 97, 674–679. AAAI Press.
Murphy, K. P. 2013. Machine Learning: a probabilistic pre-
spective. MIT Press. chapter Undirected Graphical Models
(Markov Random Fields), 661–705.
Nikpour, H.; Aamodt, A.; and Bach, K. 2018. Bayesian-
supported retrieval in BNCreek: A knowledge-intensive
case-based reasoning system. In Proc. ICCBR 2018, LNAI
11156, 422–437. Springer.
Portinale, L.; Torasso, P.; and Magro, D. 1997. Selecting
most adaptable diagnostic solutions through Pivoting-Based
Retrieval. In Proc. ICCBR97, LNAI 1266. Springer Verlag.
393–402.
Schmidt, M. 2007. UGM: A Matlab toolbox for proba-
bilistic undirected graphical models. http://www.cs.ubc.ca/
∼schmidtm/Software/UGM.html.
Smyth, B., and Keane, M. T. 1998. Adaptation-guided re-
trieval: questioning the similarity assumption in reasoning.
Artificial Intelligence 102(2):249 – 293.
Stahl, A., and Schmitt, S. 2002. Optimizing retrieval in
CBR by introducing solution similarity. In Proc. IC-AI’02).
CSREA Press.
Weiss, Y. 2000. Comparing the mean field belief propaga-
tion for approximate inference in MRF. In Advanced Mean
Field Methods: Theory and Practice. MIT Press. 229 – 240.
Wilson, D., and Martinez, T. 1997. Improved heteroge-
neous distance functions. Journal of Artificial Intelligence
Research 6:1–34.
Xiong, N., and Funk, P. 2006. Building similarity metrics
reflecting utility in case-based reasoning. Journal of Intelli-
gent & Fuzzy Systems 17(4):407–416.

352




