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Abstract

We focus on the problem of modeling deterministic equations
over continuous variables in discrete Bayesian networks. This
is typically achieved by a discretisation of both input and
output variables and a degenerate quantification of the corre-
sponding conditional probability tables. This approach, based
on classical probabilities, cannot properly model the informa-
tion loss induced by the discretisation. We show that a reli-
able modeling of such epistemic uncertainty can be instead
achieved by credal sets, i.e., convex sets of probability mass
functions. This transforms the original Bayesian network in a
credal network, possibly returning interval-valued inferences,
that are robust with respect to the information loss induced
by the discretisation. Algorithmic strategies for an optimal
choice of the discretisation bins are also discussed.

Introduction
Bayesian networks (Koller and Friedman 2009) are popular
probabilistic graphical models commonly used in AI for ma-
chine learning and to implement knowledge-based decision-
support systems. Originally designed for discrete variables
only (Pearl 1988), Bayesian networks have been extended
to continuous variables (Lauritzen and Jensen 2001). Yet,
this can be done only under some limiting assumptions (e.g.,
normal distributions on the nodes and linear relations). In
practice, when coping with knowledge-based models, con-
tinuous variables are often discretised in order to ease the
elicitation of the probabilities from the experts (Wang and
Druzdzel 2000). Even in machine learning, algorithms learn-
ing Bayesian networks from data are known to provide more
accurate inferences after the discretisation (Friedman and
Goldszmidt 1996).

To discretise continuous variables in a Bayesian network,
i.e., decide the number and the (not necessarily constant)
size of the intervals, standard approaches are adopted. When
coping with data, these are based on information-theoretic
concepts in both supervised (Fayyad and Irani 1992) and
unsupervised (e.g., quantiles) settings, while in knowledge-
based systems the discretisation intervals are instead manu-
ally defined by the experts with the goal of simplifying the
elicitation process as much as possible. In all these cases the
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need of reducing the information loss induced by the dis-
cretisation process is traded off against the number of dis-
cretisation intervals, which should be also kept as small as
possible.

In this paper we focus on the particular problem of dis-
cretising Bayesian networks when the model embeds deter-
ministic knowledge in the form of an equation constraining
the values of some of its (originally continuous) variables.

A typical approach consists in discretising the variables
in the equation by some of the above considered techniques
and then providing a degenerate quantification (i.e., one for a
state, zero for all the other ones) of the corresponding condi-
tional probabilities. This is intended to reflect the fact that a
specification of the input variables in the equation produces
a single value of the output variable with no uncertainty.

Yet, the above approach does not take into account the
epistemic uncertainty induced by the discretisation of the in-
put variables (Tonon 2004). To do that, many authors ad-
vocate the need of non-classical models of uncertainty such
as fuzzy systems (Dubois and Prade 2012), evidence theory
(Tonon 2004), or imprecise probabilities (Beer, Ferson, and
Kreinovich 2013).

The goal of this paper is to discuss these ideas in the
framework of Bayesian networks and adopt an imprecise-
probabilistic approach corresponding to a set of distribu-
tions, or credal set (Augustin et al. 2014), to achieve that.
This basically converts the original Bayesian network into
a credal network (Cozman 2000), for which dedicated in-
ference algorithms (Antonucci et al. 2015) might be used to
compute interval-valued posterior probabilities robust with
respect to such epistemic uncertainty.

I Category BMI [Kg/m2]
i1 Very severely underweight ≤15
i2 Severely underweight 15-16
i3 Underweight 16-18.5
i4 Normal 18.5-25
i5 Overweight 25-30
i6 Moderately obese 30-35
i7 Severely obese 35-40
i8 Very severely obese ≥40

Table 1: BMI categories
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w1 (55-60) 4 4 4 3-4 3-4 3-4 2-3 1-2 1-2

w2 (60-65) 4-5 4-5 4 4 4 3-4 3-4 2-3 2-3

w3 (65-70) 5 4-5 4-5 4 4 4 3-4 3-4 3

w4 (70-75) 5-6 5 4-5 4-5 4 4 4 3-4 3-4

w5 (75-80) 5-6 5-6 5 4-5 4-5 4 4 4 4

w6 (80-85) 6-7 5-6 5-6 5 4-5 4-5 4 4 4

w7 (85-90) 6-7 6-7 5-6 5-6 5 4-5 4-5 4 4

w8 (90-95) 7 6-7 6 5-6 5-6 5 4-5 4-5 4

w9 (95-100) 7 6-7 6-7 6 5-6 5-6 5 4-5 4-5

w10 (100-105) 7 7 6-7 6-7 6 5-6 5-6 5 5

w11 (105-110) 7 7 7 6-7 6-7 6 5-6 5-6 5

w12 (110-115) 7 7 7 7 6-7 6-7 6 5-6 5-6

Table 2: BMI for different combinations of W and H

The above example is intended to clarify these ideas.
Example 1. The body mass index (BMI) I of a person
whose weight (in Kg) is W and height (in m) is H is de-
fined as I := W/H2 (Flegal et al. 2012). Consider a person
with (W,H) equal to (89, 1.71) and another one with values
(86, 1.74). Following the canonical BMI categories in Table
1, the first is considered moderately obese (BMI ' 30.4)
while the second is just overweight (BMI' 28.4). Assuming
measurements in ranges of 5 Kg and 5 cm, we might not dis-
tinguish the two persons, thus being unable to assign them
a single BMI category. Table 2 shows other combinations of
ranges of W and H leading to a similar indecision.

The term epistemic uncertainty is used in the literature to
contrast that of aleatory uncertainty. The first refers to the
uncertainty affecting the subjective way a process is mod-
eled, while the latter refers to the intrinsic randomness of
the process (Dubois and Guyonnet 2011).

The uncertainty about W and H in Example 1 is epis-
temic as we decide to measure weight and height with a
tolerance, which in principle can be reduced. The exam-
ple shows that such epistemic uncertainty induced by the
discretisation of the input variables W and H propagates
through the deterministic relation defining BMI and this
might lead to a non-unique identification of the output.

Basics
Discretisation. Let X denote a (real) variable defined on
the interval [a, b] ⊆ R ∪ {+∞,−∞}. A discretisation ∆ of
X is a collection of values {xi}ni=0 such that: xi ∈ [a, b] for
each i, xi′ < xi′′ for each i′ < i′′, x0 = a and xn = b.
The discretisation ∆ induces the specification of a categori-
cal variable, denoted as X̃ , with n possible values {x̃i}ni=1.
Given a possible value of X , say x ∈ [a, b], the correspond-
ing value of X̃ depends on which interval of the partition of
[a, b] induced by the discretisation ∆ contains x, i.e.,

X = x ∈ [xi−1, xi)⇒ X̃ = x̃i . (1)
for each i = 1, . . . , n:1

1For x̃n both the extreme values of the interval are included.

WEIGHT
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Figure 1: A Bayesian network over four variables

The inner points of ∆, i.e., {xi}n−1
i=1 are called bins, while

x0 and xn are called extremes. If ∆′ is a discretisation with
same extremes of ∆, same bins, and one or more additional
bin, we call ∆′ a refinement of ∆. The refinement of ∆ ob-
tained by adding a new bin x ∈ (a, b) will be denoted as
∆+x. We call coarsening the inverse operation consisting
in the removal of one or more bins and denote as ∆−x the
coarsening of ∆ obtained by removing the bin x.

Bayesian networks. A probability mass function P (X̃)

over a discrete variable X̃ is a non-negative real function
over the values of X̃ , that is also normalised to one. The
mass function is degenerate if all the mass is assigned to a
single state of X̃ . Let X̃ ′ denote a second discrete variable.
A conditional probability table (CPT) P (X̃|X̃ ′) is a col-
lection of probability mass functions over X̃ , one for each
possible value of X̃ ′. We call X̃ the output variable of the
CPT and X̃ ′ the input (that might also be a joint variable).
The mass functions in a CPT, that are indexed by the states
of the input variable, are called columns.

CPTs are the key to define Bayesian networks. Given a
collection of discrete variables, say X̃1, . . . , X̃m, and a (di-
rected acyclic) graph whose nodes are in one-to-one corre-
spondence with these variables, a Bayesian network is a col-
lection of CPTs {P (X̃j |Paj)}mj=1, where Paj denotes the
parents of Xj , i.e., the variables associated to the predeces-
sors of the node associated to X̃j in the graph. A Bayesian
network defines a joint probability mass function factoris-
ing as follows: P (x̃1, . . . , x̃m) =

∏m
j=1 P (x̃j |paj). The

factorisation follows from the Markov condition, i.e., the
conditional independence of each variable from the non-
descendants non-parents given the parents. These concepts
are clarified in the following example.

Example 2. Consider a discrete Bayesian network over four
variables associated to the graph in Figure 1. Following
the Markov condition we observe the conditional indepen-
dence between gender and BMI conditionally on weight and
height. The CPTs of this Bayesian network are P (I|W,H),
P (W |G), P (H|G) and the (unconditional, asG has no par-
ents) P (G). The BMI equation, whose (continuous) input
and output coincide with the (discrete) input and output of
the CPT associated to the I , can be therefore used for the
quantification of P (I|W,H).
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Figure 2: Credal sets for a ternary variable

Credal sets. A credal set K(X̃) over X̃ is defined as a
convex set of probability mass functions over X̃ . This repre-
sents a generalisation of classical uncertainty models corre-
sponding to a (single) probability mass function P (X̃). The
vacuous credal set is the largest credal set we can define, and
it includes all the probability mass functions over X̃ . This is
commonly regarded as a model of ignorance about the state
of X̃ . More informative credal sets are obtained by adding
constraints to the vacuous credal set.

A special class of credal sets is associated to events. Let
X̃ denote the set of possible values of X̃ . Given a subset X̃ ′
of X̃ , the set of all the probability mass functions assigning
probability one to X̃ ′ and zero to its complement is denoted
as KX̃ ′(X) and it is called the credal set of the event X̃ ′. In
particular the vacuous credal set is the credal set associated
to the universe, i.e., KX̃ (X̃), while the credal sets associ-
ated to singletons are degenerate probability mass functions.
Credal sets associated to events can be analogously defined
for continuous variables. Figure 2 depicts a geometrical view
of the vacuous credal set for a ternary variable (gray trian-
gle), together with a more informative model (white trian-
gle), and the credal set associated to event X̃ ′ = {x̃2, x̃3}
(dotted segment).

Credal networks. Credal networks (Cozman 2000) are
an extension of Bayesian networks based on credal sets.
Each CPT column P (X̃i|pai) is replaced by a credal
set K(X̃i|pai) A credal network defines a joint credal
set K(X̃1, . . . , X̃m) whose elements are joint mass func-
tions associated to Bayesian networks with the same graph
with each CPT column P (X̃i|pai) taking values from
K(X̃i|pai). The typical inference tasks for Bayesian net-
works consists in the computation of the conditional prob-
ability for a variable of interest given evidence about other
variables (e.g., P (i|g) for the Bayesian network in Exam-
ple 2), the analogous problem for a credal network consists
in the computation of the lower and upper bounds of this
conditional probabilities, e.g., [P (i|g), P (i|g)], with respect
to any Bayesian network specification consistent with the
credal sets of the credal network.

i5 i6

(w7, h5)

(w7, h4)

25 3530

Figure 3: BMI ranges and spanned intervals

Discretising Equations
In this section we present a possible solution to the problem
of quantifying a CPT in a Bayesian network on the basis of
a deterministic equation whose input and output variables
are the same as in CPT (as in Example 2). Again we use the
BMI example to introduce the discussion.

Example 3. Consider the CPT P (I|W,H) of the discrete
Bayesian network in Example 2. The quantification of this
CPT might be based on the deterministic equation (for the
corresponding continuous variables) I = W/H2. As shown
in Table 2, the intervals spanned by the BMI for the ranges
of weight and height associated to some discrete values of
these input variables are entirely included in one of the BMI
ranges in Table 1. E.g., a person whose weight is in the
range 85-90 and height in 1.75-1.80 has a BMI in the range
26.23-29.39, i.e., certainly belonging to the category over-
weight (i.e., i5). The corresponding column P (I|w7, h5) can
be therefore safely quantified as a degenerate mass function
having all its mass in the state i5. As already discussed in
Example 1, this is not the case for P (I|w7, h4), for which
the interval spanned by the BMI overlaps with both i5 and
i6 (see Figure 3).

Strategies to solve the indecision between i5 and i6 can
be obtained within the framework of Bayesian networks and
classical probabilities. For instance, we can split the prob-
ability mass between i5 and i6 in equal parts or according
to some weighting scheme (e.g., proportional to the over-
lap between the BMI range and each interval). Alternatively,
we can adopt representative values for the input ranges
(e.g., midpoints), compute the corresponding output with the
equation, and concentrate the mass on the category including
the output. In the example, as BMI(87.5, 1.725) ' 29.41,
this would be i4. All these approaches are based on implicit
heuristic assumptions we make explicit by the following re-
sult.

Proposition 1. The CPT P (Ỹ |X̃1, . . . , X̃m) in a Bayesian
network is quantified by an equation Y = F (X1, . . . , Xm)
whose (continuous) input and output variables coincide (af-
ter discretisation) with those of the CPT. The conditional
probability P (ỹi|x̃1

j1
, . . . , x̃

(m)
jm

) corresponds to the integral:

∫ yi

yi−1

∫ x1
j1

x1
j1−1

. . .

∫ xm
jm

xm
jm−1

δ[y − F (x1, . . . , xm)]

m∏
k=1

[
πk(xk)dxk

]
dy (2)

where πk(xk) is the (continuous) conditional probability
distribution for Xk given that X̃k = x̃kjk .
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Proof. From Equation (2) remove the integration over y and
the constraints on the integration bounds for the other inte-
gration variables. By the total probability theorem, the re-
sulting integral is the (continuous) posterior probability dis-
tribution for Y given (x̃1

j1
, . . . , x̃mjm). By inverting the impli-

cation in Equation (1):

X̃k = x̃kjk ⇒ xk ∈ [xkjk−1, x
k
jk

) , (3)

i.e., the support of πk is [xkjk−1, x
k
jk

). Thus, the previously
obtained integral can be restricted to the same integration
bounds as in Equation (2) and the probability for ỹi is just
the integral over the corresponding range [yi−1, yi).

Note also that the conditional distributions in Equation (2)
can be obtained from the marginal distribution π̂(xk) as:

πk(xk) =
π̂(xk)I[xjk−1,xjk

)(xk)∫ xk
jk

xk
jk−1

π̂(xk) dxk
, (4)

where I the indicator of the corresponding interval.
Proposition 1 makes clear that, despite the determinism

provided by the equation, a proper quantification on the CPT
requires the assessment of the marginal distributions of the
(continuous) input variables. Having data available for these
variables, a statistical procedure can be used to assess the
marginal and, after the transformation in Equation (4), Equa-
tion (2) might be eventually used for the CPT quantification.

If no data are available (which is the typical case for
knowledge-based systems), the only information we might
rely on is that the support of the conditional distributions is
the interval in Equation (3). The approach taking represen-
tative midpoints of the ranges corresponds to:

πk(xk) := δ

(
xk −

xkjk−1 + xkjk
2

)
. (5)

This appears as a very unrealistic assumption of a marginal
distribution made of a combination of improper functions.
The proportional approach corresponds instead to the case
of a uniform marginal (leading to uniform conditionals)
which, again, seems very unrealistic in many scenarios. As
noticed in (Walley 1996), uniform distributions are model-
ing of condition of indifference among the different options,
while in our case we cope with a condition of ignorance,
which should be better modeled by a vacuous credal set, i.e.,
all the possible specification for the marginal distributions
π̂. The corresponding conditional distributions returned by
Equation (4) are all the distributions whose support is as in
Equation (3). In this setting, Equation (2) returns different
values for different specifications of πk, this transforming
the original Bayesian network specification into a credal net-
work.

The extreme values of this specification can be equiv-
alently obtained by considering extreme (i.e., degenerate)
distributions only (Benavoli and Noack 2012). Accordingly,
we rewrite Equation (2) with, for each k = 1, . . . ,m,
πk(xk) := δ(xk − x̂k), with x̂k ∈ [xkjk−1, x

k
jk

), and obtain

that P (ỹi|x̃1, . . . , x̃m) is:∫ yi

yi−1

δ(y − F (x̂1, . . . , x̂m)) ={
1 if F (x̂1, . . . , x̂m) ∈ [yi−1, yi),
0 otherwise .

(6)

This corresponds to a degenerate credal set assigning zero
probability to all the discrete states of Ỹ non-overlapping
the interval [F , F ], where:

F := min
xk∈[xk

jk−1,x
k
jk

)

k=1,...,m

F (x̂1, . . . , x̂m) (7)

and analogously for F .
Assuming the function associated to the deterministic

equation easy to minimize/maximize on hypercubes, we
have a clear procedure to embed equations in CPTs. The ap-
proach is reliable in the sense that the resulting credal net-
works, to be queried by dedicated inference algorithm (An-
tonucci et al. 2015), return interval-valued inferences corre-
sponding to the union of the inferences obtained for any pos-
sible quantification of the marginals of the input variables.

Discretisation Strategies
In the previous section we assumed the discretisation of both
the input and the output variables given. In this section we
discuss possible strategies to identify ad hoc discretisations
reducing the information loss in the CPTs embedding deter-
ministic equations. This can be intended as an optimisation
task requiring the minimisation of the information loss in-
duced by the discretisation with respect to some freedom in
the choice of the position and the number of bins.

Following (Abellán and Moral 2005) we can adopt the up-
per entropy of credal sets as an information-theoretic mea-
sure. In the special case of credal sets associated to events,
the upper entropy takes a particularly simple form, being
simply the logarithm of the number of ranges with non-
zero probability. For CPTs we can simply sum of the upper
entropies of all the columns. The information loss/gain ob-
tained when moving from a discretisation to another one is
therefore the difference between the two sums. Such a sim-
ple descriptor might already trade off against the number of
bins for the input variables, as the highest is this number,
the highest is the number of columns in the CPT (and then,
possibly, the total entropy of the CPT). To eliminate possible
ties, we also take into account the total size of the ranges as-
sociated to the events. Optimal discretisations for the setup
considered in this paper should therefore minimise the total
entropy of the CPT.

The simplest situation consists in having a fixed discreti-
sation of the input variables and complete freedom in the
choice of the discretisation of the output variable. A simple
strategy inspired by the interval partitioning problem (Sahni
1976) is depicted by Algorithm 1. The idea is to iteratively
add bins to the discretisation (up to a bound on the maximum
size nmax of the discretisation). The choice is restricted to
the bounds of the intervals [F , F ] spanned by the function in
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the deterministic equation defined as in Equation (7) when
the input variables vary in their ranges. By taking these in-
tervals for the different columns of the CPT as the input for
Algorithm 1, we obtain a discretisation minimising the in-
formation loss. Remember that in case of ties in the iden-
tification of ŷ, we take the y leading to the set of intervals
associated to the smallest range by only considering the ele-
ments of the tie. Such an algorithm has worst-case quadratic
complexity with respect to the number of intervals which, in
turn, corresponds to the CPT size.

Algorithm 1 Optimal discretisation of the output variable
input: I ← {[li, ui]}qi=1 // set of intervals
∆ = {a, b} // initialise discretisation
γ ← true
while γ and |∆| < nmax do

// minimum overlap with other intervals
ŷ ← arg miny∈{l1,...,ln,u1,...,un}\∆ |{I ∈ I : y ∈ I}|
if E(∆+ŷ) < E(∆) then

∆← ∆ ∪ {y} // add bin if entropy decrease
else
γ ← false // stop otherwise

end if
end while
output: ∆ // discretisation

For a very preliminary validation of the algorithm, we ob-
tained an alternative BMI discretisation different from that
in Table 1 but with the same number of bins. The new dis-
cretisation induces a more informative CPT compared to
that in Table 2 because of an increased number of precise
columns. Yet, to prevent concentration effects (i.e., a sin-
gle large range and all the other ones very small) additional
constraints such a minimum width for the discretisation in-
tervals should be better added.

Conclusions
A novel approach to the embedding of deterministic equa-
tion in discrete Bayesian networks has been proposed. This
allows for a robust modeling of the epistemic uncertainty
induced by the discretisation. A clear semantics for the pro-
posed approach has been provided. As a future work we in-
tend to study the relation between the particular credal net-
works considered in this paper and the possibilistic networks
(Benferhat et al. 2000) in order to devise dedicated inference
algorithms.2

References
Abellán, J., and Moral, S. 2005. Upper entropy of credal
sets. applications to credal classification. International Jour-
nal of Approximate Reasoning 39(2-3):235–255.
Antonucci, A.; de Campos, C. P.; Huber, D.; and Zaffalon,
M. 2015. Approximate credal network updating by linear

2Some of the basic ideas of this paper have been already pre-
sented by the authors of this paper during the XXII World Congress
of the International Measurement Confederation (IMEKO 2018).

programming with applications to decision making. Inter-
national Journal of Approximate Reasoning 58:25–38.
Augustin, T.; Coolen, F. P.; de Cooman, G.; and Troffaes,
M. C. 2014. Introduction to imprecise probabilities. John
Wiley & Sons.
Beer, M.; Ferson, S.; and Kreinovich, V. 2013. Imprecise
probabilities in engineering analyses. Mechanical systems
and signal processing 37(1-2):4–29.
Benavoli, A., and Noack, B. 2012. Pushing Kalman’s idea
to the extremes. In Proceedings of the 15th International
Conference on Information Fusion, 1202–1209. IEEE.
Benferhat, S.; Dubois, D.; Garcia, L.; and Prade, H. 2000.
Directed possibilistic graphs and possibilistic logic. In In-
formation, Uncertainty and Fusion. Springer. 365–379.
Cozman, F. G. 2000. Credal networks. Artificial intelligence
120(2):199–233.
Dubois, D., and Guyonnet, D. 2011. Risk-informed
decision-making in the presence of epistemic uncertainty.
International Journal of General Systems 40(02):145–167.
Dubois, D., and Prade, H. 2012. Gradualness, uncertainty
and bipolarity: making sense of fuzzy sets. Fuzzy Sets and
Systems 192:3–24.
Fayyad, U. M., and Irani, K. B. 1992. On the handling
of continuous-valued attributes in decision tree generation.
Machine learning 8(1):87–102.
Flegal, K. M.; Carroll, M. D.; Kit, B. K.; and Ogden, C. L.
2012. Prevalence of obesity and trends in the distribution
of body mass index among us adults, 1999-2010. Jama
307(5):491–497.
Friedman, N., and Goldszmidt, M. 1996. Discretizing con-
tinuous attributes while learning Bayesian networks. In Pro-
ceedings of the Thirteenth International Conference on In-
ternational Conference on Machine Learning, 157–165.
Koller, D., and Friedman, N. 2009. Probabilistic graphical
models: principles and techniques. MIT Press.
Lauritzen, S. L., and Jensen, F. 2001. Stable local computa-
tion with conditional Gaussian distributions. Statistics and
Computing 11(2):191–203.
Pearl, J. 1988. Probabilistic reasoning in intelligent sys-
tems: networks of plausible inference. San Mateo, Califor-
nia: Morgan Kaufmann.
Sahni, S. K. 1976. Algorithms for scheduling independent
tasks. Journal of the ACM (JACM) 23(1):116–127.
Tonon, F. 2004. Using random set theory to propagate epis-
temic uncertainty through a mechanical system. Reliability
Engineering & System Safety 85(1-3):169–181.
Walley, P. 1996. Inferences from multinomial data: learn-
ing about a bag of marbles. Journal of the Royal Statistical
Society. Series B (Methodological) 3–57.
Wang, H., and Druzdzel, M. J. 2000. User interface tools
for navigation in conditional probability tables and elicita-
tion of probabilities in Bayesian networks. In Proceedings
of the Sixteenth conference on Uncertainty in Artificial In-
telligence, 617–625. Morgan Kaufmann Publishers Inc.

457




