
Relational Forward Backward Algorithm for Multiple Queries

Marcel Gehrke, Tanya Braun, Ralf Moller¨
Institute of Information Systems, University of Lübeck, Lübeck

{gehrke, braun, moeller}@ifis.uni-luebeck.de

Abstract
The lifted dynamic junction tree algorithm (LDJT) efficiently
answers filtering and prediction queries for probabilistic rela-
tional temporal models by building and then reusing a first-
order cluster representation of a knowledge base for mul-
tiple queries and time steps. Specifically, this paper con-
tributes (i) a relational forward backward algorithm with
LDJT, (ii) smoothing for hindsight queries, and (iii) differ-
ent approaches to instantiate a first-order cluster representa-
tion during a backward pass. Further, our relational forward
backward algorithm makes hindsight queries with huge lags
feasible. LDJT answers multiple temporal queries faster than
the static lifted junction tree algorithm on an unrolled model,
which performs smoothing during message passing.

1 Introduction
Areas like healthcare or logistics and cross-sectional aspects
such as IT security involve probabilistic data with relational
and temporal aspects and need efficient exact inference al-
gorithms. These domains involve many objects in relation to
each other with changes over time and uncertainties about
object existence, attribute value assignments, or relations be-
tween objects. More specifically, IT security involves net-
work dependencies (relational) for many components (ob-
jects), streams of attacks over time (temporal), and uncer-
tainties. Therefore, in this paper, we study the problem of
exact inference in relational temporal probabilistic models.

First-order probabilistic inference leverages the relational
aspect of a static model. For models with known domain
size, it exploits symmetries in a relational static model by
combining instances to reason with representatives, known
as lifting (Poole 2003). Poole (2003) introduces parametric
factor graphs as relational models and proposes lifted vari-
able elimination (LVE) as an exact inference algorithm on
relational models. Taghipour et al. (2013), besides others,
extend LVE to its current form. To benefit from the ideas
of the junction tree algorithm (Lauritzen and Spiegelhalter
1988) and LVE, Braun and Möller (2018) present the lifted
junction tree algorithm (LJT) that efficiently performs exact
lifted inference on relational models given a set of queries.

Now, we take a look at approches that perform infer-
ence at discrete time steps on relational temporal models.

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Most approaches for relational temporal models perform
approximate inference. Additionally to being approximate,
these approaches involve unnecessary groundings or are not
designed to handle multiple queries efficiently. Ahmadi et
al. (2013) propose lifted belief propagation for dynamic
Markov logic networks (DMLNs). Geier and Biundo (2011)
and Papai, Kautz, and Stefankovic (2012) present online in-
ference algorithms for DMLNs. Vlasselaer et al. (2016) in-
troduce an exact approach for relational temporal models,
but perform inference on a ground knowledge base.

We (2018a) present parameterised probabilistic dynamic
models (PDMs) to represent probabilistic relational tempo-
ral behaviour and propose the lifted dynamic junction tree
algorithm (LDJT) to efficiently answer multiple filtering and
prediction queries exactly. LDJT combines the advantages
of the interface algorithm (Murphy 2002) and LJT (Braun
and Möller 2018). This paper extends LDJT and specifically
contributes (i) a relational forward backward algorithm by
introducing an inter first-order junction tree (FO jtree) back-
ward pass, (ii) performing smoothing for hindsight queries,
and (iii) different FO jtree instantiation approaches during a
backward pass.

Even though a backward pass is crucial for many AI prob-
lems and smoothing is a key inference problem, to the best
of our knowledge there is no approach with a backward pass
which solves smoothing efficiently for relational temporal
models. Additionally, a backward pass is required for prob-
lems such as learning. Therefore, we extend LDJT, leverag-
ing the well-studied LVE and LJT algorithms. Further, our
relational forward backward algorithm allows for instanti-
ating FO jtrees by leveraging LDJT’s forward pass, which
makes hindsight queries with huge lags feasible.

In the following, we begin by recapitulating PDMs and
present LDJT, an efficient reasoning algorithm for PDMs.
Afterwards, we extend LDJT with an inter FO jtree back-
ward pass and discuss different approaches to instantiate an
FO jtree during a backward pass. Lastly, we evaluate LDJT
against LJT and conclude by looking at extensions.

2 Parameterised Probabilistic Models
We shortly present parameterised probabilistic models
(PMs) for relational static models (Braun and Möller 2018)
and extend PMs to the temporal case, resulting in PDMs
(Gehrke, Braun, and Möller 2018a).

The Thirty-Second International Florida
Artificial Intelligence Research Society Conference (FLAIRS-32)

464

2.1 Parameterised Probabilistic Models
PMs combine first-order logic with probabilistic models,
representing first-order constructs using logical variables
(logvars) as parameters. As an example, we set up a PM to
model if a server is compromised. We use logvars to repre-
sent users with certain privileges and model different attacks
on different user groups, which can also infect each other. A
boolean random variable (randvar) holds if it is infected.
Definition 1. Let L be a set of logvar names, Φ a set of
factor names, and R a set of randvar names. A parame-
terised randvar (PRV) A = P (X1, ..., Xn) represents a set
of randvars behaving identically by combining a randvar
P ∈ R with logvars X1, ..., Xn ∈ L. If n = 0, the PRV
is parameterless. The domain of a logvar L is denoted by
D(L). The term range(A) provides possible values of a
PRV A. Constraint (X, CX) allows for restricting logvars
to certain domain values and is a tuple with a sequence of
logvars X = (X1, ..., Xn) and a set CX ⊆ ×ni=1D(Xi).
The symbol> denotes that no restrictions apply and may be
omitted. The term lv(Y) refers to the logvars in some ele-
ment Y . The term gr(Y |C) denotes the set of instances of
Y with all logvars in Y grounded w.r.t. constraint C.

From R = {IA, IU}, for infected admin respectively
user, and L = {X,Y } with D(X) = {x1, x2, x3} and
D(Y) = {y1, y2}, we build the boolean PRVs IA(Y)
and IU(X). With C = (X, {x1, x2}), gr(IU(X)|C) =
{IU(x1), IU(x2)}. gr(IU(X)|>) also contains IU(x3).
Definition 2. We denote a parametric factor (parfactor) g
with ∀X : φ(A) |C, X ⊆ L being a set of logvars
over which the factor generalises, C a constraint on X, and
A = (A1, ..., An) a sequence of PRVs. We omit (∀X :) if
X = lv(A). A function φ : ×ni=1range(A

i) 7→ R+ with
name φ ∈ Φ is identical for all grounded instances of A.
The complete specification for φ is a list of all input-output
values. A PM G := {gi}n−1i=0 is a set of parfactors and se-
mantically represents the full joint probability distribution
PG = 1

Z

∏
f∈gr(G) f with Z as normalisation constant.

Adding boolean PRVs UserAttack, AdminAttack,
IS, for infected server, and Infects(X,Y), we build the
PM Gex={gi}4i=0, with g0=φ0(UserAttack, IU(X))|>,
g1=φ1(AdminAttack, IA(Y))|>, g2=φ2(IU(X),
IA(Y), Infects(X,Y))|>, g3=φ3(IS, IU(X))|>, and
g4=φ4(IS, IA(Y))|>. g2 has eight, the others four input-
output pairs (omitted). Constraints are >, i.e., the φ’s are
defined for all domain values. Figure 1 depicts Gex as a
parfactor graph.

The semantics of a model is given by grounding and
building a full joint distribution. In general, a query asks for
a probability distribution of a randvar using a model’s full
joint distribution and given fixed events as evidence.
Definition 3. Given a PMG, a query termQ (ground PRV),
and events E = {Ei = ei}i (ground PRVs with fixed range
values), the expression P (Q|E) denotes a query w.r.t. PG.

2.2 Parameterised Probabilistic Dynamic Models
We define PDMs based on the first-order Markov assump-
tion. Further, the underlying process is stationary.

IS

g3IU(X)
g0

UserAttack

g4IA(Y)
g1

AdminAttack

g2Infects(X,Y)

Figure 1: Parfactor graph for Gex

Definition 4. A PDM is a pair of PMs (G0, G→) where G0

is a PM representing the first time step and G→ is a two-
slice temporal parameterised model representing At−1 and
At where Aπ is a set of PRVs from time slice π.

Figure 2 shows Gex→ consisting of Gex for time step t− 1
and t with inter-slice parfactors for the behaviour over time.
In this example, the parfactors gA and gU are the inter-slice
parfactors, modelling the temporal behavior.

Definition 5. Given a PDM G, a query term Q (ground
PRV), and events E0:t = {Eit = eit}i,t (ground PRVs with
fixed range values), P (Qt|E0:t) denotes a query w.r.t. PG.

The problem of answering a marginal distribution query
P (Aiπ|E0:t) w.r.t. the model is called prediction for π > t,
filtering for π = t, and smoothing for π < t.

3 Lifted Dynamic Junction Tree Algorithm
We recapitulate LJT (Braun and Möller 2018) to answer
queries for PMs and LDJT (Gehrke, Braun, and Möller
2018a) to answer filtering and prediction queries for PDMs.

3.1 Lifted Junction Tree Algorithm
LJT provides efficient means to answer queries P (Qi|E),
with Qi ∈ Q a set of query terms, given a PM G and ev-
idence E, by performing the following steps: (i) Construct
an FO jtree J for G. (ii) Enter E in J . (iii) Pass messages.
(iv) Compute answer for each query Qi ∈ Q.

We first define an FO jtree, with parameterised clusters
(parclusters) as nodes, and then go through each step.

Definition 6. A parcluster C is defined by ∀L : A|C. L is
a set of logvars, A a set of PRVs with lv(A) ⊆ L, and C a
constraint on L. We omit (∀L :) if L = lv(A). A parclus-
ter Ci can have parfactors φ(Aφ)|Cφ assigned given that
(i) Aφ ⊆ A, (ii) lv(Aφ) ⊆ L, and (iii) Cφ ⊆ C holds. We
call the set of assigned parfactors a local model Gi.
An FO jtree for a PM G is J = (V,P) where J is a cycle-
free graph, the nodes V denote a set of parclusters, and P is
a set of edges between parclusters. An FO jtree must satisfy
the properties: (i) A parcluster Ci is a set of PRVs from G.
(ii) For each parfactor φ(A)|C in G,A must appear in some
parcluster Ci. (iii) If a PRV from G appears in two parclus-
ters Ci and Cj , it must also appear in every parcluster Ck

on the path connecting nodes i and j in J . The separator Sij
of edge i− j is given by Ci ∩Cj containing shared PRVs.

LJT constructs an FO jtree using a first-order decompo-
sition tree, enters evidence in the FO jtree, and passes mes-
sages through an inbound and an outbound pass. To compute
a message, LJT eliminates all non-separator PRVs from the

465

ISt−1

g3t−1IUt−1(X)
g0t−1

UserAttackt−1

g4t−1IAt−1(Y)
g1t−1

AdminAttackt−1

g2t−1Infectst−1(X,Y) ISt

g3tIUt(X)
g0t

UserAttackt

g4tIAt(Y)
g1t

AdminAttackt

g2tInfectst(X,Y)

gA

gU

Figure 2: Gex→ the two-slice temporal parfactor graph for model Gex

parcluster’s local model and received messages. After mes-
sage passing, LJT answers queries. For each query, LJT finds
a parcluster containing the query term and sums out all non-
query terms in its local model and received messages.

Figure 3 shows an FO jtree of Gex with the local mod-
els of the parclusters and the separators as labels of edges.
During the inbound phase of message passing, LJT sends
messages from C1 and C3 to C2 and during the outbound
phase from C2 to C1 and C3. If we want to know whether
UserAttack holds, we query for P (UserAttack) for which
LJT can use parcluster C1. LJT sums out IU(X) from C1’s
local model G1, {g0}, combined with the received mes-
sages, here, one message from C2.

3.2 LDJT: Overview
LDJT efficiently answers queries P (Qiπ|E0:t), with Qiπ ∈
Qt and Qt ∈ {Qt}Tt=0, given a PDM G and evidence
{Et}Tt=0, by performing the following steps: (i) Construct
two FO jtrees J0 and Jt with in- and out-clusters from G.
(ii) For t = 0, using J0 to enter E0, pass messages, answer
each query term Qiπ ∈ Q0, and preserve the state in mes-
sage α0. (iii) For t > 0, instantiate Jt for the current time
step t, recover the previous state from message αt−1, enter
Et in Jt, pass messages, answer each query term Qiπ ∈ Qt,
and preserve the state in message αt.

We begin with LDJT’s FO jtree construction. The
FO jtrees contain a minimal set of PRVs to m-separate the
FO jtrees. M-separation means that information about these
PRVs renders FO jtrees independent from each other. After-
wards, we present how LDJT connects FO jtrees for reason-
ing to solve the filtering and prediction problems efficiently.

3.3 LDJT: FO Jtree Construction for PDMs
LDJT constructs FO jtrees for G0 and G→, both with an in-
coming and outgoing interface. To be able to construct the
interfaces in the FO jtrees, LDJT uses a PDM G to identify
the interface PRVs It for a time slice t.

Definition 7. The forward interface is defined as
It−1 = {Ait−1 | ∃φ(A)|C ∈ G : Ait−1 ∈ A ∧ ∃A

j
t ∈ A}.

UserAttack,
IU(X)
{g0}

C1

IS, IU(X),
IA(Y), Infects(X,Y)

{g2, g3, g4}

C2

AdminAttack,
Admin(Y)
{g1}

C3
{IU(X)} {IA(Y)}

Figure 3: FO jtree for Gex (local models as labels)

PRVs Usert−1(X) and Admint−1(Y) from Gex→ , shown
in Fig. 2, have successors in the next time slice, making up
It−1. To ensure interface PRVs I ending up in a single par-
cluster, LDJT adds a parfactor gI over the interface to the
model. Thus, LDJT adds a parfactor gI0 over I0 toG0, builds
an FO jtree J0, and labels the parcluster with gI0 from J0 as
in- and out-cluster. ForG→, LDJT removes all non-interface
PRVs from time slice t − 1, adds parfactors gIt−1 and gIt ,
constructs Jt, and labels the parcluster containing gIt−1 as
in-cluster and the parcluster containing gIt as out-cluster.

The interface PRVs are a minimal required set to m-
separate the FO jtrees. LDJT uses these PRVs as separator
to connect the out-cluster of Jt−1 with the in-cluster of Jt,
allowing to reuse the structure of Jt for all t > 0.

3.4 LDJT: Reasoning with PDMs
Since J0 and Jt are static, LDJT uses LJT as a subroutine
by passing on a constructed FO jtree, queries, and evidence
for step t to handle evidence entering, message passing, and
query answering using the FO jtree. Further, for proceed-
ing to the next time step, LDJT calculates an αt message
over the interface PRVs using the out-cluster to preserve the
information about the current state. Afterwards, LDJT in-
creases t by one, instantiates Jt, and adds αt−1 to the in-
cluster of Jt. During the inbound and outbound message
passing, αt−1 is distributed through Jt. Thereby, LDJT per-
forms an inter FO jtree forward pass to proceed in time.

Figure 4 depicts the passing on of the current state from
time step three to four. To capture the state at t = 3, LDJT
sums out the non-interface PRVs IS3 and IA2(Y) from
C3

3’s local model and the received messages and saves the
result in message α3. After increasing t by one, LDJT adds
α3 to C2

4, the in-cluster of J4. α3 is then distributed by mes-
sage passing and accounted for during calculating α4.

4 Relational Forward Backward Algorithm
We begin by introducing a relational forward backward pass.
Further, we propose instantiation approaches for a backward
pass and combine them to answer hindsight queries.

4.1 Relational Forward Backward Algorithm
Using the forward pass, each FO jtree contains evidence
from the initial time step up to its time step. The inter
FO jtree backward pass propagates information to previous
time steps to answer queries P (Aiπ|E0:t) with π < t.

To perform a backward pass, LDJT uses the in-cluster of
the FO jtree Jt to calculate a βt message over the interface

466

IU2(X), IU3(X),
IA2(Y)

{gU , gI2}

in-cluster C2
3

IU3(X), IA3(Y),
Infects3(X,Y)

{g23}

C1
3

IS3, IU3(X),
IA2(Y), IA3(Y)

{gA, gI3 , g33 , g43}

out-clusterC3
3

IU3(X),
UserAttack3

{g03}

C4
3

IA3(Y),
AdminAttack3

{g13}

C5
3

α3

β4

IU3(X), IU4(X),
IA3(Y)

{gU , gI3}

in-cluster C2
4

IU4(X), IA4(Y),
Infects4(X,Y)

{g24}

C1
4

IS4, IU4(X),
IA3(Y), IA4(Y)

{gA, gI4 , g34 , g44}

out-clusterC3
4

IU4(X),
UserAttack4

{g04}

C4
4

IA4(Y),
AdminAttack4

{g14}

C5
4

{IU3(X), IA3(Y)}

{IU3(X), IA2(Y)}

{IU3(X)}
{IA3(Y)}

{IU4(X), IA4(Y)}

{IU4(X), IA3(Y)}

{IU4(X)}
{IA4(Y)}

∑ ∪

∪
∑

Figure 4: Forward and backward pass of LDJT (local models and in- and out-cluster labeling in grey)

PRVs and sends βt to the out-cluster of Jt−1. Therefore,
LDJT has to ignore the αt−1 message, received from the out-
cluster of Jt−1. After LDJT calculates βt by summing out
all non-interface PRVs, it decreases t by one. Finally, LDJT
instantiates the Jt−1 for the new time step t − 1 with the
βt message in the out-cluster. Figure 4 also depicts LDJT’s
backward pass. LDJT uses the in-cluster of J4 to calculate
β4. After decreasing t by one, LDJT adds β4 to the out-
cluster of J3. β4 is then distributed and accounted for in β3.

Algorithm 1 outlines the relational forward backward al-
gorithm. LDJT constructs FO jtrees J0 and Jt and the set
of interface PRVs using DFO-JTREE as described in Sec-
tion 3.3. Afterwards, LDJT answers all queries by perform-
ing a routine of entering evidence, message passing, query
answering for the current time step, and proceeding in time.

For query answering, LDJT identifies the query type,
namely filtering, prediction, and hindsight. To perform fil-
tering, LDJT passes the query and the current FO jtree to
LJT to answer the query. LDJT applies the forward pass un-
til the time step of the query is reached to answer the query
for prediction queries. To answer hindsight queries, LDJT
applies the backward pass until the time step of the query is
reached and answers the query. Further, LDJT uses LJT for
message passing to account for α and β messages.

Let us now illustrate how LDJT answers hindsight
queries, which is only possible due to the relational forward
backward algorithm. Assuming the server is compromised
at time step 1983, we would like to know whether IA(y1)
infected IU(x1) at time step 1973 and whether IU(x1)
holds at timestep 1978. LDJT answers the marginal distri-
bution queries P (Q1983|E0:1983), with E1983 consisting of
{IS1983 = true} and the set of query terms Q1983 consist-
ing of at least {IU1978(x1), Infects1973(x1, y1)}.

LDJT enters the evidence {IS1983 = true} in J1983
and passes messages. To answer the queries, LDJT per-
forms a backward pass and first calculates β1983 by sum-
ming out IU1983(X) from C2

1983’s local model and received
messages without α1982. LDJT adds the β1983 message to
C3

1982’s local model and passes messages in J1982 using
LJT. In such a manner LDJT proceeds until it reaches time
step 1978 and thus propagated the information to J1978.

Having J1978, LDJT answers the marginal distribution
query P (IU1978(x1)|E0:1983). To answer the query, LJT
sums out UserAttack1978 and IU1978(X) where X 6= x1

from C4
1978’s local model and the received message from

C3
1978. To answer the other marginal distribution query

P (Infects1973(x1, y1)|E0:1983), LDJT performs additional
backward passes until it reaches time step 1973 and then
uses LJT to answer P (Infects1973(x1, y1)|E0:1983).
Theorem 1. LDJT’s backward pass is correct.

Proof. Each FO jtree contains evidence up to the time step
the FO jtree is instantiated for. During a backward pass,
LDJT distributes information, including evidence, from the
current FO jtree Jt backwards. Therefore, LDJT performs
an inter FO jtrees backward message pass over the interface
separator. The βt message is correct, since calculating the βt
message, the in-cluster received all messages from its neigh-
bours and ignores the αt−1 message, which originated from
the designated receiver. The βt message, which LDJT adds
to the out-cluster of Jt−1, is then accounted for during the
message pass inside Jt−1, as well as the αt−1 message. Fol-
lowing this approach, every FO jtree included in the back-
ward pass contains all information, as the α message en-
codes all past information and the β message encodes all
information from the future. Thus, it suffices to apply the
backward pass until LDJT reaches the desired time step and
does not need to apply the backward pass until t = 0.

The forward and backward pass instantiate FO jtrees from
the corresponding structure given a time step. However,
since LDJT already instantiates FO jtrees during a forward
pass, it has different approaches to instantiate FO jtrees dur-
ing a backward pass. The first approach is to preserve all
instantiated FO jtrees from the forward pass. The second ap-
proach is to instantiate FO jtrees on-demand using evidence
and α messages, which is only possible by leveraging the
m-separation of the FO jtrees and the forward pass.

Preserving FO Jtree Instantiations Preserving all in-
stantiated FO jtrees, including computed messages, is time-
efficient since the approach reuses already performed com-
putations. Thereby, during an intra FO jtree message pass,
LDJT only needs to account for the β message and not also
the αmessage. The main drawback is the memory consump-
tion, as each FO jtree needs to be stored.

On-Demand FO Jtree Instantiation To instantiate an
FO jtree, LDJT enters evidence, α and β messages, and re-
peats a complete message pass. Instantiating FO jtrees using

467

Algorithm 1 LDJT Alg. for PDM (G0, G→), Queries
{Q}Tt=0, Evidence {E}Tt=0

procedure LDJT(G0, G→, {Q}Tt=0, {E}Tt=0)
t := 0
(J0, Jt, It) := DFO-JTREE(G0, G→)
while t 6= T + 1 do

Jt := LJT.EnterEvidence(Jt,Et)
Jt := LJT.PassMessages(Jt)
for qπ ∈ Qt do

AnswerQuery(J0, Jt, qπ, It, α, t)
(Jt, t, α[t− 1]) := ForwardPass(J0, Jt, t, It)

procedure ANSWERQUERY(J0, Jt, qπ, It, α, t)
while t 6= π do

if t > π then
(Jt, t) := BackwardPass(J0, Jt, It, α[t−1], t)

else
(Jt, t,) := ForwardPass(J0, Jt, It, t)

LJT.PassMessages(Jt)
print LJT.AnswerQuery(Jt, qπ)

function FORWARDPASS(J0, Jt, It, t)
αt :=

∑
Jt(out-cluster)\It Jt(out-cluster)

t := t+ 1
Jt(in-cluster) := αt−1 ∪ Jt(in-cluster)
return (Jt, t, αt−1)

function BACKWARDPASS(J0, Jt, It, αt−1, t)
βt :=

∑
Jt(in-cluster)\It(Jt(in-cluster) \ αt−1)

t := t− 1
Jt(out-cluster) := βt+1 ∪ Jt(out-cluster)
return (Jt, t)

evidence and α messages, by leveraging the m-separation of
FO jtrees, is space efficient. The main drawback are repeated
computations, due to a complete message pass.

4.2 Discussion
We discuss how LDJT efficiently combines the instantiation
approaches and show how LDJT reuses calculations for mul-
tiple hindsight and prediction queries from one time step.

Combining Instantiation Approaches Having reoccur-
ring hindsight queries, LDJT knows the maximum lag, for
which it has to perform backward passes, also called fixed
lag smoothing. With a known fixed lag, a combination of
our two approaches is advantageous. Assuming the fixed
smoothing lag is 10, LDJT can preserve the last 10 FO jtrees
and instantiate additional FO jtrees on-demand. If an on-
demand hindsight query has a lag of 20, LDJT instantiates
the FO jtrees starting with Jt−11. Thereby, LDJT preserves
a certain number of FO jtrees instantiated for fast query an-
swering, and in case a hindsight query is even further in the
past, reconstructs FO jtrees using evidence and α messages.

Further, LDJT cannot keep all FO jtrees in memory due to

the memory consumption for a huge number of time steps.
Thus, by only storing the α messages, which is a fraction
compared to all messages and parfactors for each time step,
LDJT preserves the required information to perform hind-
sight queries even for the first time step. Hence, combining
the approaches is a necessary compromise between time and
space efficiency.

Reusing Computations for One Time Step LDJT also
reuses computations to answer multiple queries for one time
step. For example, a robot with a stream of location data
would like to know where he was 2 and 4 time steps ago.
Here, LDJT reuses the calculations performed during the
hindsight query with a lag of 2, namely it starts the back-
ward pass for the query with lag 4 at Jt−2.

To reuse computations, the first option is that the hindsight
queries are sorted based on the time difference to the current
time step. Here, LDJT preserves the FO jtree from the last
hindsight query and performs additional backward passes.
The second option is to preserve the calculated β messages
for the current time step and instantiate the FO jtree closest
to the currently queried time step. Analogously, LDJT reuses
computations for prediction queries. Under the presence of
prediction queries, LDJT uses the computed αt to proceed
to the next time step. However, based on the problem, given
new evidence for a new time step all other α and β messages
that LDJT calculated for the previous time step are invalid.

5 Evaluation
Now, we show that LDJT can answer queries efficiently,
namely in linear time, even if no FO jtrees are preserved. For
the evaluation, we use the example model Gex with the set
of evidence being empty. To answer queries, LDJT performs
on-demand FO jtree instantiation. Additionally, we compare
the runtime for multiple maximum time steps against LJT
provided with the unrolled model and unrolled FO jtree. We
do not compare LDJT against the ground case, as from a
runtime complexity perspective of LDJT, there is no differ-
ence in either performing smoothing with lag 10 or predic-
tion with 10 time steps into the future. Thus, the previous
results that LDJT outperforms the ground case also hold for
the relational forward backward algorithm.

We define our set of queries for each time step as: {ISt,
IUt(x1), IAt(y1)} with lag 0, 2, 5, and 10. Thus, for each
time step, these 12 queries are executed, e.g., 1200 queries
for 100 time steps. Now, we evaluate the runtimes of LDJT
and LJT providing 16 GB of RAM using the set of queries.

Figure 5 shows the runtime in seconds in log scale for
each maximum time step up to 10, 000 time steps. We can
see that the runtime of LDJT (diamond) to answer the ques-
tions is linear to the maximum number of time steps. Thus,
LDJT more or less needs a constant time to answer queries
once it has instantiated the corresponding FO jtree. Addi-
tionally, the time to perform either a forward or backward
pass is more or less constant. For LDJT, the runtimes for
each operation are independent from the current time step,
since the structure of the model stays the same over time.
Providing the unrolled model to LJT (circle) yields results
for the first 8 time steps with a reduced set of queries. The

468

●

●

●

0 2000 4000 6000 8000 10000

10−1

100

101

102

103

104

105

106

● LJT_model
LJT_fojt1
LJT_fojtAll
LDJT

Figure 5: Runtimes [seconds], x-axis: maximum time steps

FO jtree construction of LJT is not optimised for the tempo-
ral case, such as creating an FO jtree similar to an unrolled
version of LDJT’s FO jtree. Therefore, the number of PRVs
in a parcluster increases with additional time steps in LJT.
In our example, the maximum number of PRVs in a parclus-
ter for 4 time steps is 14 and for 8 time steps is 27 and the
complexity of LVE is exponential to the maximum number
of PRVs (Taghipour et al. 2013).

But even with an optimised FO jtree (filled and unfilled
triangle), LJT still does not handle the temporal aspects ef-
ficiently and always performs a message pass on the un-
rolled FO jtree, which is comparable to performing a hind-
sight query for the first time step and a prediction query for
the very last time step with LDJT. Thus, the message pass
normally involves unnecessary computations. Even if LJT
performs only one message pass (filled triangle), i.e., all in-
formation for all time steps is directly provided, the over-
head of performing a complete message pass is evident com-
pared to LDJT. Performing for each time step one message
pass (unfilled triangle), to obtain the same results as LDJT,
shows that handling the temporal aspects efficiently is or-
ders of magnitudes faster. Additionally, LJT needs to store
all information for each time step, which is not feasible if the
maximum number of time steps is huge due to the memory
consumption. In our small example LJT could only unroll
and store the information for about 7400 FO jtrees. Hence, a
combination of our instantiation approaches is advantageous
and necessary to answer hindsight queries with a huge lag.

Overall, Fig. 5 shows (i) how crucial proper handling of
temporal aspects is and (ii) that LDJT answers the queries
with on-demand instantiation in linear time. Evidence is not
included in the evaluation as symmetric evidence only in-
creases the groups to reason over, while asymmetric evi-
dence completely grounds the model over time. This eval-
uation shows that LDJT has a linear behaviour given a lifted
solution is possible. In general, in case LDJT cannot com-
pute a lifted solution, it is equivalent to ground algorithms.
However, LDJT outperforms the ground case, independent
of the complexity of the inter-slice parfactors, as long as
a lifted solution is possible. Further, we (2018b) show that
when lifting an algorithm, one also needs to ensure precon-
ditions of lifting. LDJT prevents unnecessary groundings by
ensuring preconditions of lifting while proceeding in time
(Gehrke, Braun, and Möller 2018b) to obtain a lifted solu-
tion if possible.

6 Conclusion
We present the first relational forward backward algorithm,
LDJT, to efficiently answer hindsight, filtering, and predic-
tion queries for relational temporal models. LDJT answers
multiple queries by reusing a compact FO jtree structure
for multiple queries. The ensured temporal m-separation of
FO jtrees allows for reusing computations and for reducing
memory consumption, making a relational forward back-
ward algorithm possible and answering hindsight queries
with huge lags feasible. First results show that LDJT’s run-
time is linear to the number of time steps and significantly
outperforms LJT. Overall, answering hindsight, filtering,
and prediction queries is crucial for all kinds of AI problems,
which becomes manageable in combination with lifting.

We currently work on calculating the most probable ex-
planation as well as supporting decision making. Further-
more, we now can look into learning relational temporal
models and how to preserve a lifted representation over time.

Acknowledgement This research originated from the Big
Data project being part of Joint Lab 1, funded by Cisco Sys-
tems, at the centre COPICOH, University of Lübeck

References
Ahmadi, B.; Kersting, K.; Mladenov, M.; and Natarajan,
S. 2013. Exploiting Symmetries for Scaling Loopy Be-
lief Propagation and Relational Training. Machine learning
92(1):91–132.
Braun, T., and Möller, R. 2018. Parameterised Queries and
Lifted Query Answering. In Proc. of IJCAI, 4980–4986.
Gehrke, M.; Braun, T.; and Möller, R. 2018a. Lifted Dy-
namic Junction Tree Algorithm. In Proc. of the 23rd Int.
Conf. on Conceptual Structures, 55–69. Springer.
Gehrke, M.; Braun, T.; and Möller, R. 2018b. Preventing
Unnecessary Groundings in the Lifted Dynamic Junction
Tree Algorithm. In Proc. of AI 2018, 556–562. Springer.
Geier, T., and Biundo, S. 2011. Approximate Online Infer-
ence for Dynamic Markov Logic Networks. In Proc. of the
23rd ICTAI, 764–768. IEEE.
Lauritzen, S. L., and Spiegelhalter, D. J. 1988. Local Com-
putations with Probabilities on Graphical Structures and
their Application to Expert Systems. Journal of the Royal
Statistical Society. Series B (Methodological) 157–224.
Murphy, K. P. 2002. Dynamic Bayesian Networks: Repre-
sentation, Inference and Learning. Ph.D. Dissertation, UCB.
Papai, T.; Kautz, H.; and Stefankovic, D. 2012. Slice Nor-
malized Dynamic Markov Logic Networks. In Proc. of
NIPS, 1907–1915.
Poole, D. 2003. First-order probabilistic inference. In Proc.
of IJCAI, volume 3, 985–991.
Taghipour, N.; Fierens, D.; Davis, J.; and Blockeel, H. 2013.
Lifted Variable Elimination: Decoupling the Operators from
the Constraint Language. JAIR 47(1):393–439.
Vlasselaer, J.; Van den Broeck, G.; Kimmig, A.; Meert, W.;
and De Raedt, L. 2016. TP-Compilation for Inference in
Probabilistic Logic Programs. JAR 78:15–32.

469

