
Front-to-Front Bidirectional Best-First Search Reconsidered

Leopold E. Mayer, Kurt D. Krebsbach
Department of Mathematics and Computer Science
Lawrence University, Appleton, Wisconsin 54911
{leopold.e.mayer, kurt.krebsbach}@lawrence.edu

Abstract

We present several new algorithms for bidirectional best-first
search that employ a front-to-front strategy of estimating dis-
tances from newly-generated frontier nodes in one search di-
rection to existing frontier nodes in the other search direction,
rather than estimating distances to terminal nodes in both
searches. Unlike previous front-to-front strategies that use a
shared priority queue to manage both frontiers, we use a sepa-
rate data structure for each search, and choose that data struc-
ture to minimize the amount of computational effort required
by the best-first search algorithm it supports. We demonstrate
several results. First, we show that Bidirectional Front-to-
Front Greedy (BFFG) is able to quickly find sub-optimal so-
lutions to very large state-space problems and with a small
fraction of nodes expanded (and stored) compared to other
unidirectional and bidirectional greedy techniques. Secondly,
we show that Bidirectional Front-to-Front A* (BFFA*) sim-
ilarly outperforms both Unidirectional A* and Bidirectional
Front-to-End A* (BFEA*) in terms of node expansions when
searching for optimal solutions. Finally, we describe three im-
provements to BFFA*, each of which reduces the overall run-
time by limiting the number of opposing frontier nodes that
need be considered while preserving the optimality criterion.

Best-First Search
Best-first search is so-called because we choose to select for
expansion the “best-looking” node from the candidates that
have been generated but not yet expanded. We refer to this
list of candidate (leaf) nodes as the frontier of the search.
Table 1 provides a guide to both the acronyms we use for
the algorithms we discuss, and the (slightly extended) con-
ventional notation used when discussing best-first search al-
gorithms.

Since its introduction, the A* search algorithm (Hart,
Nilsson, and Raphael 1968) has become the standard by
which best-first search algorithms are judged. Unidirec-
tional A* expands nodes based on the sum (denoted f ) of
the cost accumulated along a path (g), and a heuristic es-
timate of the distance from that node to the nearest goal
state (h). This node-expansion strategy guarantees that A* is
complete and optimal, provided that h never overestimates
the actual distance to a goal state (Dechter and Pearl 1985).

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Notation Meaning
BFFG Bidirectional Front-to-Front Greedy
BFEG Bidirectional Front-to-End Greedy
BFFA* Bidirectional Front-to-Front A*
BFEA* Bidirectional Front-to-End A*
GR Unidirectional Greedy
A* Unidirectional A*
S Start node (root)
T Terminal node (goal)
g(n) Actual distance of S → n
h(n) Estimated distance of n→ T
f(n) Estimated distance of S → n→ T
h(n,m) Estimated distance of n→ m
f(n,m) Estimated distance of S → n→ m→ T
d(n,m) Actual distance of n→ m
c(n1, n2) Step cost from n1 to n2

Table 1: Bidirectional Search Notational Conventions. Note
also that whenever we use n, ni,m,mi, the all the n nodes
are on the opposite search as the m nodes. There are tech-
nically forward and reverse functions for g, h and f , but for
concision we leave those out, and which function we use will
be dependent on the context of the nodes.

Unfortunately, A* requires an amount of memory exponen-
tial in the length of the solution path, causing the algorithm
to run out of memory before solving difficult problems. For
problems not requiring an optimal solution, a simplification
of A* in which g, the accumulated cost, is ignored (f = h)
is known as Unidirectional Greedy (GR), since the search
is solely guided by estimated nearness to the goal without
regard for the accumulated path cost. For this reason, GR
tends to follow fewer (but longer) paths, often finding a solu-
tion very quickly without exploring much of the state space.
This efficiency comes at the cost of low-quality solutions.

Bidirectional Best-First Search
To reduce the exponential memory required for best-first
search, researchers have proposed to conduct one such
search forward from start to goal, while simultaneously con-
ducting another search backward from goal to start (Pohl
1971). While such a strategy is only possible if certain con-
ditions hold—e.g., that predecessor states of a node can

The Thirty-Second International Florida 
Artificial Intelligence Research Society Conference (FLAIRS-32)

14



be computed to support the backward search—it holds the
promise of halving the exponent of the space and time com-
plexity by stopping when a common node is found between
the two searches.

We have several choices when designing a bidirectional
best-first search algorithm. For example, the algorithms we
design and implement in this paper (BFFG and BFFA*) as
well as the algorithms we implement for empirical com-
parison (A*, GR, BFEG, and BFEA*) use two separate
queues to manage two frontiers, one for each search di-
rection. Furthermore, these algorithms strictly alternate be-
tween expanding a single node in one direction followed a
single node in the other.

Alternative approaches to managing frontiers include us-
ing a single queue to represent the union of the frontiers,
from which the best-looking node is chosen for expansion
regardless of direction. Each node is marked as forward or
backward for the purpose of generating appropriate succes-
sor nodes, but nodes from each search could still be com-
pared according to f -value (see (Kaindl and Kainz 1997)
for a thorough treatment). A second single-queue approach
includes nodes that represent a pair of states: one from each
search direction (Felner et al. 2010).

Others have suggested more elaborate switching schemes
for two-queue approaches. For example, (Holte et al. 2016)
switch between queues to ensure that the two searches “meet
in the middle.” Still others expand many nodes in one direc-
tion, then run the rest of the search from the other direc-
tion, possibly with different search algorithms (Kaindl et al.
1999).

Finally, there is a choice in bidirectional search regard-
ing precisely what the heuristic estimate h(n) measures. We
now turn our attention to these strategies, which can be clas-
sified as front-to-end and front-to-front bidirectional search
strategies.

Bidirectional Front-to-End Search

In Bidirectional Front-to-End search, two heuristic functions
are necessary. The first, hf , is the estimated distance from a
node to the goal state, and is used by the forward search. The
second, hb is the estimated distance from a node to the start
state, using reverse actions, and it is used by the backward
search. In the case of BFEG the f -value of a node is equal
to its h-value, and in the case of BFEA* the f -value of a
node is equal to the sum of its h-value and g-value. These
are exactly the same as Unidirectional Greedy and Unidi-
rectional A*, and that is because Front-to-End bidirectional
search is precisely running two unidirectional searches in
parallel. The only communication between the two searches
is that whenever a node is expanded, the algorithm checks
if there is a node in the other search’s open or closed list
representing the same state, and if there is it reconstructs a
solution path from the two parts. Since BFEG is sub-optimal
anyway, there is no point in continuing search after the first
solution is found. But for BFEA*, the first common node
found might not constitute an optimal solution, and search
may need to continue.

Figure 1: Front-to-End: Bidirectional Heuristic Search us-
ing front-to-end estimates. When a node n is generated in
the forward search, h(n) estimates the distance to the goal.
Since n is in the forward search, it estimates to T . Nodes
generated in the backward search instead estimate to S.

Bidirectional Front-to-Front Search
In Bidirectional Front-to-Front (Sint and de Champeaux
1977), when a node is added to a frontier, we estimate the
distance to the frontier of the opposite search. Since the fron-
tier is always in flux, we need to generalize the notion of
heuristic function. For any two nodes n1, n2, let h(n1, n2)
be the estimated cost to move from the state represented by
n1 to the state represented by n2. All the familiar defini-
tions are similarly generalized: h is admissible if, for all
n1, n2 we have h(n1, n2) ≤ d(n1, n2). We call h consis-
tent if for all n1, n2, n3 with n1 and n2 adjacent, we have
h(n1, n3) ≤ c(n1, n2) + h(n2, n3). The h-value of a node
will ultimately be determined by the estimate to a single
node on the other frontier, and strategies for determining
which node to estimate to can vary. For BFFG the f -value
is equal to the h-value. In theory, it makes sense to estimate
to the node that minimizes h, but in practice it is effective to
use the top of the opposite frontier (explained in more depth
shortly). Unless otherwise stated, we assume BFFG always
only estimates to the top of the other frontier.

For BFFA* the f -value of a node is the sum of three
terms: the h-value, the g-value, and the g-value of the node
on the other frontier being estimated to. For admissible
heuristics, f(n,m) will always be less than or equal to the
actual shortest path from S to T through n and m. To pre-
serve optimality, a node must be chosen which minimizes
this f -value. This guarantees that for each node n, we have
f(n) less than or equal to the actual shortest path through
n. This is because the actual shortest path will necessarily
go through some node m on the other frontier, and by the
way we chose the f -value we have f(n) ≤ f(n,m). In
Front-to-Front, the two searches are in constant communi-
cation; a node from one search direction makes use of the
progress made in the other direction by estimating to a node
on its frontier. Since part of the f -value comes from the g-
value of the node being estimated to, and g-values are never
less than the corresponding h-values, the overall f -values
of nodes in BFFA* will be greater than or equal to the f -
values of the same nodes in BFEA*, which means more
nodes will be pruned. An important note is that this ver-
sion of the algorithm is slightly different from the originally
proposed Front-to-Front A* from (Sint and de Champeaux
1977). In that version, when the time came to expand an-
other node, f(n,m) was computed for every node n on the
forward frontier as well as every node m on the reverse fron-

15



tier, and when f(n′,m′) was found to be the minimum, one
of n′ or m′ was to be expanded. In our version, when any
node n is generated, its f -value, f(n), is computed, stored,
and never recomputed. This implies that f(n) is not always
“up-to-date”: when n is expanded, the node it originally esti-
mated to may no longer exist on the opposite frontier. There
is a tradeoff here: it takes more computations to keep ev-
erything “up-to-date”, but the f -values would generally be
higher, resulting in more nodes being pruned.

Figure 2: Front-to-Front: Bidirectional Heuristic Search us-
ing front-to-front estimates. When a node is generated, it es-
timates to individual nodes on the opposite frontier.

Empirical Results
We now present empirical results of running the search al-
gorithms discussed under a variety of assumptions.

Greedy Bidirectional Search
In our first experiment, we compare GR to both BFEG and
BFFG (Figure 3). The graph shows the number of nodes ex-
panded and solution cost from 10 randomly-generated 35-
puzzles. While there is not much difference in solution qual-
ity, front-to-front clearly generates significantly fewer nodes
on average, and front-to-end performs similarly to unidi-
rectional. More precisely, the average number of nodes ex-
panded for BFFG was only 10.1% of the average for GR,
while BFEG expanded 8.1% more nodes than GR, on aver-
age.

In the second greedy experiment, we investigate if it is
justifiable to always only estimate to the top node on the
other frontier. In Figure 4, we compare the number of nodes
expanded and the total cost of the solution found to a quan-
tity we call “sample size”. The sample size refers to how
many nodes are estimated to whenever a new node is gen-
erated. Specifically, BFFG with a sample size of k means
that whenever a new node is generated, it estimates to the
top k nodes on the other frontier, and the smallest of those
estimates is used for its h-value. Our implementation used a
heap for the frontier, so “the top k nodes” does not necessar-
ily mean the lowest k nodes when ordered by f -value, but
rather the first k nodes reached by iterating through the heap.
Figure 4 shows a minor trend toward better performance as
we increase the sample size, but there appears to be a lot of
unpredictability.

We also note that BFEG performs well in very large state
spaces. We used randomly-generated 35-puzzles for Fig-
ure 3 because GR and BFEG ran out of memory too reg-
ularly on 48-puzzles, but BFFG was able to solve 93 out

Figure 3: Greedy: Unidirectional vs. Front-to-End vs. Front-
to-Front Number of nodes expanded and solution cost from
10 randomly-generated 35-puzzles, solved by the three al-
gorithms using the Manhattan heuristic.

of 100 randomly-generated 80-puzzles, which have a state
space size of approximately 3.58× 10118.

A* Bidirectional Search
We now present empirical results of running the three forms
of A* search under varying assumptions. In all cases, we
preserve optimality, in contrast to the greedy experiments
reported on above.

In our first experiment, we compare A* to both BFEA*
and BFFA* on 10 randomly-generated 11-puzzles (3×4
sliding-tile puzzle) (Figure 5). From the graph, BFFA* has
the clear advantage. In almost every case, it expanded only
5 − 10% of the nodes A* did. BFEA* performed better
than its greedy counterpart, but still was much worse than
BFFA*. The biggest challenge for BFFA* that is not fac-
tored into this graph is the runtime. BFFA* needs to scan
the entire opposite frontier each time a node is expanded. A
more accurate way to compare these algorithms, and what
we propose as the standard for future analysis of Front-
to-Front algorithms, is to compare instead how many h-
calculations the algorithm performs. For A* and BFEA*
this measure is equal to the nodes expanded plus the size
of the frontier when the search ends. This is simply because

16



Figure 4: BFFG with varied sample size on opposing fron-
tier: Average number of nodes expanded and average path
cost over 100 randomly-generated 80-puzzles, as a function
of the “sample size” on the opposite frontier.

a node’s f -value is computed when it is added to the frontier,
and for those two algorithms, determining a node’s f -value
requires a single h-calculation. A consequence of is that we
can now quantify how many h-calculations per node BFFA*
can afford while still being competitive with A*. This will
depend on the size of the problem, but our empirical data
show that BFFA* needs to average 10-20 h-calculations per
node in order to be competitive with A* for 11-puzzles.
Currently, BFFA* does as many h-calculations as there are
nodes on the opposite frontier, but in the next section we
introduce and discuss strategies for driving the number of
h-calculations down.

A* Front-to-Front Improvements
The primary disadvantage of Bidirectional Front-to-Front
A* is that it takes so long to scan the opposite frontier. Under
the naive implementation of the algorithm, the entire fron-
tier needs to be evaluated each time a node is generated.
This downside has historically prevented BFFA* from se-
rious consideration. The goal of this section is to explore
improvements to limit the amount of scanning required.

Improvement 1: Ordered Scanning
Suppose n is a node being generated and m is a node on
the opposite frontier. Then we necessarily have f(n,m) ≥
f(m). To see this, recall that for an admissible heuristic, f -
values are never overestimates. The value f(m) never over-

Figure 5: A*: Unidirectional vs. Front-to-End vs. Front-
to-Front: Number of nodes expanded for 10 randomly-
generated 11-puzzles, solved by the three algorithms using
the Manhattan heuristic. Solution cost is not compared be-
cause all three algorithms are optimal.

estimates the shortest solution path through m, and f(n,m)
never overestimates the shortest solution through n and m.
Since m is already on the frontier, and n is just being added,
there was some ancestor n′ of n that was on the frontier
when m was generated. That means f(m,n′) ≥ f(m), but if
the heuristic is consistent we also have f(m,n) ≥ f(m,n′).
Now we can describe the improvement. At all times, keep
both frontiers ordered by f -value. When a node n is ex-
panded, first estimate to m0, the node in the opposite fron-
tier with minimum f -value. Continue scanning the opposite
frontier in ascending order, keeping track of the lowest f -
value so far, until the f -value of the next node is greater
than or equal to the current best f -value. For each node mi

yet to be scanned, we have f(mi) no less than the current
best, so the remaining values f(n,mi) will also be no less
than the current best. Thus, the current best is provably the
best in the entire other frontier, and there is no need to con-
tinue scanning. As Figure 6 shows, Ordered Scanning was
able to reduce the number of h-calculations by 64%.

Analysis of number of h-calculations

Suppose a node n is added to the frontier. Although there is
no way to know f(n) before scanning, BFFA* with Ordered
Scanning necessarily scans every node m with f(m) <
f(n). This means that the number of h-calculations for a
node is dependent on its f -value, and also on the state of
the frontier. Figure 6 depicts the number of h-calculations
across a single instance of BFFA* solving a 15-puzzle. The
first row is the number of h-calculations done from nodes
whose f -value ended up being equal to the minimum f -
value on the opposite frontier. We will call these nodes
“near”. The second row accounts for all the h-calculations
done from nodes whose f -value ended up being two more
than the minimum f -value on the opposite frontier. We call

17



these nodes “mid”. This continues for the rest of the rows1,
whose nodes we will call “far”. The results also go along
with intuition. We expect most nodes to be “near”, and ac-
cording to the comment above, “near” nodes require rela-
tively few h-calculations. It is more unlikely to find “far”
nodes, but when we do, more calculations are required. Ul-
timately, the most work is done on the “mid” nodes, since
these are still common, but also require scanning a signifi-
cant portion of the opposite frontier.

Figure 6: Bidirectional Front-to-Front A* h-calculation
count: The number of h-calculations made while solving a
single randomly-generated 15-puzzle, classified by the dif-
ference between the node’s f -value and the minimum f -
value on the other frontier. We tested BFFA* combinations
of the three improvements: Ordered Scanning (ORD), Par-
ent Check (P) and Sibling Check (S).

Improvement 2: Parent Check
Currently, BFFA* only remembers nodes’ f -values, and
there’s no keeping track of which node was ultimately es-
timated to. Parent Check does keep track, and it uses that
information to save on the number of h-calculations. When
generating a node, find the node that its parent pointed to,
then estimate to the descendants of that node which are
currently on the opposite frontier. Scanning the rest of the
frontier will only be necessary if there’s a possibility of
finding a lower f -value than the one created by the ini-
tial guess. For example, in Figure 7, node n1 was just ex-
panded, so we need to compute an f -value for the newly
generated n2. Parent Check tells us that n1 estimated to m1

(i.e. f(n1) = f(n1,m1)). Since m2 and m3 are the frontier
nodes descended from m1, we first calculate f(n2,m2) and
f(n2,m3). This is a good idea because m1 seemed closest
to n1, so there is a good chance that the descendants of m1

will be close to the children of n1. This improvement mainly
targets nodes that fall into the “near” section of the h-count
distribution. Even if a node’s f -value is equal to the mini-
mum in the opposite frontier, there could be lots of nodes in
the frontier with equal f -values, and there is still the poten-
tial of having to scan most of those before finding one that
yields the correct f -value. The parent check makes an ini-
tial guess, and tries find an f -value right away that can’t be
improved. If the node being generated is not in the “near”
section, scanning will still be necessary, since by definition,
the node’s f -value is greater than the minimum of the fron-
tier. The initial guess can only prevent having to scan nodes

1Oddly enough, our tests suggest that N-Puzzle either only had
even f -values or only had odd f -values. There also never were two
nodes in the same frontier whose difference in f -value exceeded 6.

with f -value equal to the node being evaluated, and so the
farther from “near” a node is, the less effective Parent Check
will be. This line of reasoning is confirmed by Figure 6.
The column labeled “ORD, P” shows the distribution of h-
calculations for BFFA* with Parent Check. As expected, far
fewer calculations were made in the “near” section, slightly
fewer in “mid”, and slightly more in “far”.

Figure 7: Parent Check Graph: Node n2 is being added to
the frontier. Its parent, n1, ended up estimating to node m1,
which has descendants m2, m3 on the forward frontier. Us-
ing Parent Check, n2 would first estimate to m2 and m3, and
only scan the rest of the frontier as necessary.

Improvement 3: Sibling Check
In this section we describe an improvement that only works
on environments where every action has an inverse. Once
we’ve calculated the f -value for a node, we can use that to
bound the possible f -values of its siblings. Given an opti-
mal path through its sibling, a path to the node can easily
be created with only slightly higher cost. Since that path
cannot be lower than the node’s f -value, we can bound the
f -value of the sibling. A higher lower-bound is useful be-
cause it could result in fewer nodes being scanned. In Fig-
ure 8, let c be the cost of moving from n1 to n2. If there
exists a path of length f(n3), then the path can be modi-
fied in the way Figure 8 illustrates to end up with a path
through n2 of length f(n3)+2c. Since an admissible heuris-
tic implies f -values are never overestimates, it follows that
f(n2) ≤ f(n3)+2c, or f(n3) ≥ f(n2)−2c. This is useful,
because now when we want to compute f(n3), we might not
have to scan every opposing frontier node with f -value less
than f(n3). If we scan a node m on the opposing frontier
such that f(n3,m) = f(n2) − 2c, we can stop scanning,
since it will be impossible to get a lower f -value. Essen-
tially, Sibling Check makes note whenever a “far” node is
found, and then lowers the expectations for the siblings of
that “far” node. Because of this, Sibling Check is designed
to reduce the number of h-calculations spent on “far” and
“mid” nodes. For “near” nodes, the lower bound is less than
or equal to the minimum of the opposite frontier, which was
already a lower bound on f(n3), so there is nothing to be
gained. Figure 6 shows that Sibling Check decreased the
number of h-calculations for “mid” and “far” nodes, and
didn’t change the count for “near” nodes, which is exactly
what was expected.

Future Work
We are currently exploring several directions. Parent Check
targeted “near” nodes, and Sibling Check targeted siblings
of “far” nodes, but a clear majority of the h-calculations

18



Figure 8: Sibling Check Graph: Node n2 has already been
added to the frontier, and node n3 will be added next. Any
solution passing through n3 can be modified to pass through
n2. This is done by adding a step from n1 to n2 and another
from n2 back to n1. We can use this construction to bound
f(n3).

came from the “mid” section. Developing improvements
that target that class more directly could have a significant
impact on performance.

The improvement that led to the greatest reduction in run-
time for BFFA* was Ordered Scanning. It worked by be-
ing able to iterate through the frontiers in order, and to do
that it used a better data structure than a simple heap for
the frontiers. Perhaps other data structures would be even
better-suited for the frontiers, allowing the algorithm to find
the minimum estimate faster.

Because questions still remain about the number of nodes
expanded by BFFA* we would like to identify certain con-
ditions that allow us to prove that BFFA* expands fewer
nodes than A*, as the empirical results suggest.

In our version of BFFG only the top of the frontier was
considered, and that allowed the algorithm to avoid the run-
time challenges faced by BFFA*. Only estimating to the top
of the other frontier (or the top k nodes on the other frontier)
for BFFA* would greatly reduce the time needed to expand
each node. Optimality would be sacrificed, but near-optimal
solutions might often be found. Characterizing the relation-
ship between k and bounds on near-optimality would be a
useful result.

Conclusion
We have introduced two new algorithms, BFFG (sub-
optimal) and BFFA* (optimal), that employ a front-to-front
bidirectional search strategy that uses alternative data struc-
tures to manage the opposing search frontiers. We have
shown that both algorithms expand many fewer nodes than
competing approaches. Finally, we develop and evaluate
three improvements to BFFA* to limit the number of h-
calculations required for each node generation while pre-
serving optimality.

References
Dechter, R., and Pearl, J. 1985. Generalized best-first search
strategies and the optimality of A*. Journal of the ACM
32(3):505–536.
Felner, A.; Moldenhauer, C.; Sturtevant, N. R.; and Schaef-
fer, J. 2010. Single-frontier bidirectional search. In AAAI.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost

paths. IEEE Transactions on Systems Science and Cyber-
netics SSC-4(2):100–107.
Holte, R. C.; Felner, A.; Sharon, G.; and Sturtevant, N. R.
2016. Bidirectional search that is guaranteed to meet in the
middle. In AAAI, volume 16, 3411–3417.
Kaindl, H., and Kainz, G. 1997. Bidirectional heuristic
search reconsidered. Journal of Artificial Intelligence Re-
search 7:283–317.
Kaindl, H.; Kainz, G.; Steiner, R.; Auer, A.; and Radda, K.
1999. Switching from bidirectional to unidirectional search.
In IJCAI, 1178–1183.
Pohl, I. 1971. Bi-directional search. In Meltzer, B., and
Michie, D., eds., Machine Intelligence 6. 127–140.
Sint, L., and de Champeaux, D. 1977. An improved bidi-
rectional heuristic search algorithm. Journal of the ACM
(JACM) 24(2):177–191.

19




